
MACHINE LEARNING AND

PATTERN RECOGNITION

Spring 2004, Lecture 3:

Probabilistic Learning:

Maximum Likelihood Estimation,

MAP

Yann LeCun
The Courant Institute,
New York University
http://yann.lecun.com

Y. LeCun: Machine Learning and Pattern Recognition – p. 1/24

Probabilistic Framework for Learning

Given a set of observations S = [(X1, Y 1), (X2, Y 2)...(XP , Y P)] (training set), we
want to produce a model that predict Y from X . More precisely, we want to estimate a
function that computes the conditional distribution P (Y |X) for any given X , in a way
that is consistent with the observations S. We write this function P (Y |X,S)

STEP 1, architecture and parameterization: We assume
that P (Y |X,S) can be decomposed into two parts:

P (Y |X,S) =

∫
P (Y |X, W)P (W |S)dW

Our estimate of P (Y |X, W) will taken among a family
of functions {G(Y, X, W), ∀W}, parameterized by a
parameter vector W .

This family of functions, which we will call the archi-
tecture of the learning machine, must be chosen care-
fully for each particular problem. Examples of architec-
tures include logistic regressors, neural networks, Hidden
Markov Models, and literally hundreds of others.

Y. LeCun: Machine Learning and Pattern Recognition – p. 2/24

Energy Function

STEP 2, energy function: for convenience we will
often define G(Y, X, W) as the normalized
exponential of an energy function E(X, Y, W):

P (Y |X, W) ≈ G(Y, X, W) =
exp(−βE(X, Y, W))

ZE(X, W, β)

where β is an arbitrary positive constant, and
ZE(X, W, β) is a normalization term

ZE(X, W, β) =

∫
exp(−βE(X, Y, W))dY

(often called the partition function) which ensures
that our estimate of P (Y |X, W) is normalized.

Y. LeCun: Machine Learning and Pattern Recognition – p. 3/24

Probabilistic Framework for Learning

P (Y |X,S) =

∫
P (Y |X, W)P (W |S)dW

STEP 3, learning: P (W |S) is the result of a
learning procedure that assigns a probability (or
an energy) to each possible value of W as a
function of the training set.

Intuitively, the learning procedure will assign high
probabilities to values of W that assign high com-
bined probability (low combined energy) to the ob-
served data.

Y. LeCun: Machine Learning and Pattern Recognition – p. 4/24

Assigning Probs to Parameter Values

STEP 3.1, likelihood of observations: Let us define

X = (X1, X2, . . .Xp), and Y = (Y 1, Y 2, . . . Y p)

Using Bayes inversion while keeping all the terms conditioned on X , we can write:

P (W |S) = P (W |Y,X) =
P (Y|X , W)P (W |X)

P (Y|X)

where the denominator is a normalization term:

P (Y|X) =

∫
P (Y|X , W)P (W |X)dW

that ensures that
∫

P (W |S)dW = 1.

Y. LeCun: Machine Learning and Pattern Recognition – p. 5/24

Likelihood of the Observations

STEP 3.2, sample independence: To compute P (Y|X , W), we use the assumption that
it can be written as a product of terms that each depend on a single training sample. In
other words, we see the drawing of the samples (X i, Y i)’s as independent events:

P (Y|X , W) =
∏

i

P (Y i|Xi, W) =
∏

i

G(Y i, Xi, W)

Using the definition for G:

P (Y|X , W) = exp(−β
∑

i

[E(Y i, Xi, W)+
1

β
log ZE(Xi, W, β)])

with ZE(X, W, β) =
∫

exp(−βE(X, Y, W))dY .

Y. LeCun: Machine Learning and Pattern Recognition – p. 6/24

Priors, Regularizers, Penalty terms

P (W |S) = P (W |Y,X) =
P (Y|X , W)P (W |X)

P (Y|X)

STEP 3.3, choosing a regularizer: The term P (W |X) is an arbitrary prior distribution
over the values of W that we can choose freely. In the following, we will drop the
dependency on X . We will often represent this prior as the normalized exponential of
a penalty term or regularizer H(W):

P (W) =
1

ZH

exp(−βH(W))

Parameters that produce low values of the regular-
izer will be favored over parameters that produce
large values. Therefore our choice or regularizer
will determine what we consider “good” models
(e.g. simple, smooth, well behaved) for which the
regularizer is small, and “bad” models for which
the regularizer is large.

Y. LeCun: Machine Learning and Pattern Recognition – p. 7/24

Probability of a Parameter

STEP 3.4, Putting it all together: The probability of a particular parameter
value W given the observations S is:

P (W |S) =
exp(−β{

∑
i[E(Y i, Xi, W) + 1

β
log ZE(Xi, W, β)] + H(W)})

ZW (S, β)

E(Y, X, W) is our energy function. We can give it any form we like.
Considerable effort should be spent designing appropriate forms of E(Y, X, W)
(good architectures) for particular problems. Many specific architectures will be
discussed in the rest of the course.

H(W) is the regularizer that contains our preferences for “good” models over
“bad” ones. Our choice of H(W) is somewhat arbitrary, but some work better
than others for particular applications.

Y. LeCun: Machine Learning and Pattern Recognition – p. 8/24

Probability of a Parameter (continued)

P (W |S) =
exp(−β{

∑
i[E(Y i, Xi, W) + 1

β
log ZE(Xi, W, β)] + H(W)})

ZW (S, β)

ZW (S, β) is the normalization term that ensures that the integral of P (W |S)
over W is 1: ZW (S, β) is the integral over W of the numerator.

ZE(Xi, W, β) are the normalization terms (one for each sample) that ensure
that the integral P (Y |X i, W) over Y is 1:
ZE(Xi, W, β) =

∫
exp(−βE(Y, X i, W))dY .

β is a positive constant that we are free to choose as we like or that we can
estimate. It reflects the “reliability” of the data. Low values should be used to
get probability estimates with noisy data. Large values should be used to get
good discrimination. We can estimate β through learning too (we can fold it
into E, as a component of W).

Y. LeCun: Machine Learning and Pattern Recognition – p. 9/24

Intractability of Bayesian Learning

Recall that the formula for our predictor was:

P (Y |X,S) =

∫
G(Y, X, W)P (W |S)dW

To compute the distribution of Y for a particular input X , we are supposed to
integrate the product of two complicated functions over all possible values of
W .

This is totally intractable in general.

There are special classes of functions for G for which the integral is tractable,
but that class is fairly restricted.

So, we need to take a shortcut.

There is a number of popular shortcuts....

Y. LeCun: Machine Learning and Pattern Recognition – p. 10/24

Making Bayesian Learning Tractable

First shortcut: Maximum A Posteriori Estimation. simply replace the
distribution P (W |S) by a Dirac delta function centered on its mode
(maximum).

Second shortcut: Maximum Likelihood Estimation. Same as above, but drop the
regularizer.

Third Shortcut: Restricted Class of function. Simply restrict yourself to special
forms of G(Y, X, W) for which the integral can be computed analytically (e.g.
Gaussians). CAUTION: This is a perfect example of looking for your lost keys
under the street light.

Fourth shortcut: Sampling. Draw a a bunch of samples of W from the
distribution P (W |S), and replace the integral by a sum over those samples.

Fifth Shortcut: Local Approximations. compute a Taylor series of P (W |S)
around its maximum and integrate with the resulting (multivariate) polynomial.

Y. LeCun: Machine Learning and Pattern Recognition – p. 11/24

Maximum A Posteriori Estimation

Maximum A Posteriori Estimation: assume that
the mode (maximum) of P (W |S) is so much
larger than all other values that we can view
P (W |S) as a Dirac delta function centered
around its maximum

PMAP(W |S) ≈ δ(W − WMAP)

WMAP = argmaxW P (W |S)

with this approximation, we get simply:

P (Y |X,S) = P (Y |X, WMAP)

If we take the limit β → ∞, P (W |S) does converge to a delta function around its
maximum. So the MAP approximation is simply the large β limit.
Question: How do we compute WMAP?

Y. LeCun: Machine Learning and Pattern Recognition – p. 12/24

Computing WMAP

Now, here is the cool thing WMAP = argmaxW P (W |S) =

= argmaxW
1

ZW (S,β) exp(−β{
∑

i[E(Y i, Xi, W) + 1
β

log ZE(Xi, W, β)] + H(W)})

= argmaxW exp(−β{
∑

i[E(Y i, Xi, W) + 1
β

log ZE(Xi, W, β)] + H(W)})

= argminW

∑
i[E(Y i, Xi, W) + 1

β
log ZE(Xi, W, β)] + H(W)

= argminW

∑
i[E(Y i, Xi, W) + 1

β
log

∫
exp(−βE(Y, X i, W))dY] + H(W)

We can drop the normalizer 1
ZW (S,β) because it does not depend on W . We can take

the log because log is monotonic.
To find the MAP parameter estimate, we simply need to find the value of W that
minimizes:

LMAP(W) =
∑

i

[E(Y i, Xi, W) +
1

β
log

∫
exp(−βE(Y, X i, W))dY] + H(W)

Most learning algorithms are of that form
Y. LeCun: Machine Learning and Pattern Recognition – p. 13/24

Maximum Likelihood Estimation

Maximum Likelihood Estimation: same as MAP, but ignore H(W) altogether. This
is equivalent to finding the W that maximizes P (Y|X , W) (the likelihood of the data)
instead of P (Y|X , W)P (W |X) (the un-normalized posterior of the parameter).

We assume that the mode (maximum) of P (W |S)
is so much larger than all other values that we can
view P (W |S) as a Dirac delta function centered
around its maximum, and we assume that the prior
P (W) has no influence on the result:

P (W |S) ≈ δ(W−WMLE) WMLE = argmaxW P (Y|X , W)

with this approximation, we get simply:

P (Y |X,S) = P (Y |X, WMLE)

How do we compute WMLE?

Y. LeCun: Machine Learning and Pattern Recognition – p. 14/24

Computing WMLE

Same result as with WMAP, except that H(W) disappears: WMLE =

= argmaxW P (W |S) (1)

= argmaxW
1

ZW (S,β) exp(−β{
∑

i[E(Y i, Xi, W) + 1
β

log ZE(Xi, W, β)]}) (2)

= argmaxW exp(−β{
∑

i[E(Y i, Xi, W) + 1
β

log ZE(Xi, W, β)]}) (3)

= argminW

∑
i[E(Y i, Xi, W) + 1

β
log ZE(Xi, W, β)] (4)

= argminW

∑
i[E(Y i, Xi, W) + 1

β
log

∫
exp(−βE(Y, X i, W))dY] (5)

(6)

to find the MLE parameter estimate, we simply need to find the value of W that
minimizes:

LMLE(W) =
∑

i

[E(Y i, Xi, W) +
1

β
log

∫
exp(−βE(Y, X i, W))dY]

Y. LeCun: Machine Learning and Pattern Recognition – p. 15/24

A Little Digression

LMAP(W) =
∑

i

[E(Y i, Xi, W) +
1

β
log

∫
exp(−βE(Y, X i, W))dY] + H(W)

All of the terms in this equation have analogs and interpretations in Statistical
Physics and Thermodynamics.∑

i[E(Y i, Xi, W) is analogous to the Average Energy of a thermodynamical
system where each sample is analogous to a particle in an ideal gas.∑

i
1
β

log
∫

exp(−βE(Y, X i, W))dY is analogous to the Helmoltz Free Energy

of a thermodynamical system.

1/β is analogous to the Temperature of the system.

LMAP is analogous to the product of the Entropy by the Temperature.

The above equation is a form of the well-known thermodynamic equation <
Temperature > × < Entropy >=< AverageEnergy > − < FreeEnergy >.

MAP/MLE estimation is like entropy minimization.

Y. LeCun: Machine Learning and Pattern Recognition – p. 16/24

A Few Remarks on log
∫

exp()

The operator:

logmeanβ
i (Vi) = −

1

β
log

1

p

p∑
i=1

exp(−βVi)

has many interesting properties. Algebraically, it is to addition what addition is to
multiplication:

logmeanβ
i (Vi) = V ∗ + logmeanβ

i (Vi − V ∗)

lim
β→0

logmeanβ
i (Vi) =

1

p

p∑
i=1

Vi

lim
β→∞

logmeanβ
i (Vi) = Vmin

lim
β→−∞

logmeanβ
i (Vi) = Vmax

Y. LeCun: Machine Learning and Pattern Recognition – p. 17/24

Generative and Discriminative Models

Early on, we assumed that P (Y |X) was directly modeled by a parameterized family
of functions G(Y, X, W), ∀W . However, we can Bayes-invert P (Y |X) to get:

P (Y |X) = P (X|Y)P (Y)/P (X) = P (X|Y)P (Y)/

∫
P

(X|Y)P (Y)dY

and parameterize P (X|Y) for each Y by a family of functions QY (X, Wy) ∀Wy

This seems like a very silly thing to do (and
indeed it is in many cases): why should we submit
ourselves to estimating such a horrendous object
as P (X|Y)?

P (X|Y is the probability density (in input space)
for one particular value of Y (e.g. a category). It’s
horrendous, because it must be normalized over
the set of all possible X (which is big).

Models that estimate P (X|Y) are called genera-
tive because they can be used to generate input
vectors X by sampling from P (X|Y).Y. LeCun: Machine Learning and Pattern Recognition – p. 18/24

Generative/Discriminative Pros and Cons

:-) in some cases, it is simpler to independently estimate a separate function
P (X|Y, W) for each class Y . This allows us to add classes simply by
estimating P (X|Y, W) for the new class, without revisiting the models of all
the other classes.

:-) Sometimes, it is easier to come up with a good architecture for a generative
model by simply implementing a process that would synthesize the objects we
are trying to recognize/classify (a process known as analysis by synthesis.

:-) Training of generative models is generally faster.

:-(Generative models solve a considerably more complex and more
ill-conditioned problem than necessary.

:-(Generative models spend considerable resource getting the whole
distribution right when getting the class boundary right may be sufficient.

:-(Because the model must be normalized over X , we are restricted to using
simple “normalizable” density models. We can’t use non-normalizable models
like linear classifiers or neural nets.

:-(Generative models almost always require much more memory and CPU time
than discriminative one.

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/24

Unsupervised Learning

The probabilistic form of unsupervised learning is density estimation: finding a
function G(Y, W) that best approximates the distribution P (Y).

The entire derivation of MAP and MLE estimation can be transposed to the
case of unsupervised learning by simply omitting X from all the equations.

The unsupervised objective function to be minimnized for unsupervised MAP
is:

LMAP(W) =
∑

i

[E(Y i, W) +
1

β
log

∫
exp(−βE(Y, W))dY] + H(W)

The unsupervised objective function to be minimnized for unsupervised MLE is:

LMLE(W) =
∑

i

[E(Y i, W) +
1

β
log

∫
exp(−βE(Y, W))dY]

Y. LeCun: Machine Learning and Pattern Recognition – p. 20/24

Energy-Based Models

As we have seen, most reasonable probabilistic learning algorithms can be seen
as simply minimizing an appropriately defined Energy Function.

It is tempting, and often justified, to drop the probabilistic framework altogether,
and simply manipulate energy functions...

...but sometimes, we need to worry about the “Free Energy” terms which ensure
that everything is well normalized.

sometimes we can drop the free energy term or transform it beyond recognition
with no adverse effect (in fact with beneficial effects).

By doing so, we may loose the probabilistic interpretation but we may improve
the classification performance.

Y. LeCun: Machine Learning and Pattern Recognition – p. 21/24

MAP/MLE Example: Least Square = Gaussian

MAP estimation of Gaussian models gives
Least-Square Regression:

P (Y |X, W) =
1

Z
exp(−

1

2v
(Y − F (X, W))2)

LMAP(W) =
∑

i

(Y i − F (Xi, W))2 + H(W)

up to a constant which does not affect the
minimum.

note: F (X, W) can be non-linear: which leads to
a non-linear least square optimization problem.

if H(W) = λ||W ||2 this is Ridge Regression.

Y. LeCun: Machine Learning and Pattern Recognition – p. 22/24

MAP/MLE Example: Logistic Regression

MAP estimation of binomial distribution gives Logistic Regres-
sion. Y is binary (0 or 1) with a linear parametrization of the
likelihood ratio between the two classes:

log
P (Y = 1|X, W)

P (Y = 0|X, W)
= W ′X

P (Y = 1|X, W) =
1

1 + exp(−W ′X)

G(Y, X, W) = P (y = 1|X, W)Y (1 − P (y = 1|X, W))(1−Y)

E(Y, X, W) = Y log
1

1 + exp(−W ′X)
+ (1 − Y) log

1

1 + exp(W ′X)

LMAP(W) =
∑

i

Y i log
1

1 + exp(−W ′Xi)
+ (1 − Y i) log

1

1 + exp(W ′Xi)
+ H(W)

Y. LeCun: Machine Learning and Pattern Recognition – p. 23/24

The Subjectivity of Learning

LMAP(W) =
∑

i

[E(Y i, Xi, W) +
1

β
log

∫
exp(−βE(Y, X i, W))dY] + H(W)

Regularizers, Penalty functions, Prior probabilities, Measures of Randomness,
Capacity of a family of functions: these are different names for the same thing.

It is hopeless to try to find a “universally good” functional form for E or for H .
Different architctures and regularizers are good for different problems. Which
one you pick is up to you. No theory will tell you how to best design your E
and H for a particular problem.

No Free Lunch Theorem: if your family of function and your prior is good for
particular problems, it must be bad for others. No family/prior is good for all
problems.

The best theoretical framework to explain all this is the Vapnik-Chervonenkis
(VC) theory.

Y. LeCun: Machine Learning and Pattern Recognition – p. 24/24

	Probabilistic Framework for Learning
	Energy Function
	Probabilistic Framework for Learning
	Assigning Probs to Parameter Values
	Likelihood of the Observations
	Priors, Regularizers, Penalty terms
	Probability of a Parameter
	Probability of a Parameter (continued)
	Intractability of Bayesian Learning
	Making Bayesian Learning Tractable
	Maximum A Posteriori Estimation
	Computing $Wmap $
	Maximum Likelihood Estimation
	Computing $Wmle $
	A Little Digression
	A Few Remarks on $log int exp ()$
	Generative and Discriminative Models
	Generative/Discriminative Pros and Cons
	Unsupervised Learning
	Energy-Based Models
	MAP/MLE Example: Least Square = Gaussian
	MAP/MLE Example: Logistic Regression
	The Subjectivity of Learning

