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* Why is ML useful for particle accelerators?

* Review of successful use cases at CERN
* Anomaly detection in simulations
 Collimator beam-based alignment
* Sample-efficient reinforcement learning
* Tune estimation



Why is ML useful for accelerators?

 Anomaly detection and machine protection

* High energy / high intensity machines are equipped with machine protection systems (MPS)
which should extract the beam from the machine before catastrophic damage can occur.
* MPS are critical and therefore hardware-based.

* However, machine learning can be used to capture operational issues which impact beam
quality, or precursors of faults which could lead to downtime (e.g. for machine refilling).
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Why is ML useful for accelerators?

e System modeling

* A challenge in accelerators is to have machine models which are

» Sufficiently accurate

e Can execute quickly enough to be useful during operation, using real input from beam
instrumentation (i.e. online modeling). ;

* Most simulation tools are too slow to be used in B
control systems or provide guidance to operators W)=
during machine operation.

e System modeling through ML allows to learn
representations that combine information from
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Why is ML useful for accelerators?

* Tuning and control

Operational settings tend to be established through theory and optimized during beam

commissioning.

These settings may need to be tuned over time due to effects of ground motion, changes in

beam parameters, radiation to electronics etc.

Accelerators may have dozens of operational modes and complex operational cycles.
A lot of beam time is spent by operators ‘reconfiguring’ the machine to desired parameters.
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Reinforcement Learning and optimization
techniques are well suited for these types of
problems, and can be easily re-trained over time

Issues: sample efficiency and transfer learning
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Why is ML useful for accelerators?

 Advanced data analysis

Particle accelerators generate huge volumes of data

* E.g. LHC: 1.5 million signals are logged from all the accelerator sub-
systems = 2 TB/day

Data analysis and visualization is a constant aspect of operation: to
validate performance, try to diagnose and understand faults etc

Unsupervised learning techniques could be very useful to
understand hidden structures in data, e.g. understand which
machine parameters contribute to beam losses

If ‘unknown’ issues are uncovered, mitigation measures can be
taken to improve machine performance and availability.



ML in accelerators: review of case studies

1. Anomaly detection (DA)
2. Collimator beam-based alignment
3. Sample efficient particle accelerator control

4. Improved LHC tune estimation

These are only some examples — for several others e.g. optics measurements and
corrections, optimisation of beam lifetime and losses, detection of instabilities see
P. Arpaia et al., “Machine learning for beam dynamics at the CERN Large Hadron
Collider”, NIM A vol. 985, 2021.
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1. Anomaly detection for Dynamic Aperture simulations

DA is region of phase space in which the particle’s motion remains bounded

over a finite number of turns.

Outlier identification is important in DA simulations as outliers may have an

impact on the DAin.

They may be due to the excitation of particular resonances as a result of the
distribution of nonlinear magnetic errors, which is highly seed-dependent.
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2. LHC Collimator Alignment

Almost 100 LHC collimators need to be aligned to the beam at various
points of the machine cycle to establish their operational settings:
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3. Sample-efficient reinforcement learning

Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE)

8 —— distorted rms = 3.96 mm
iteration 1 rms = 2.12 mm
* An orbit feedback system is necessary to ensure j T feration 2 ms = 1.6 mm
that the particles are on the correct trajectory ; //\/\
(orbit): € o _—
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where the response matrix R = U. W.VT B 5 3 z z 7
no. BPM
* Can RL be used to learn a more efficient policy?
reward
Reward = Beam Position Monitor (BPM) RMS > 4 N - \
RL AGENT policy ENVIRONMENT
: . _ . ANN  To(s,2)
Trained continuous model-free Normalized Advantage Function (NAF) agent A -

modified to have Prioritized Experience Replay
* PER-NAF: experience sampled from replay buffer

Training performed on both real machine and in an OpenAl simulation
environment using a response matrix generated through MAD-X.
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3. Sample-efficient reinforcement learning

Training of NAF agent on the machine
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4. Tune estimation in the LHC

® The LHC tunes in H and V, B1 and B2 are measured by observing
turn-by-turn betatron oscillations using a beam position monitor.
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® 50 Hz harmonics
o  Present since start of LHC — due to main dipole magnets.
o Harmonics perturb the spectrum, which affects reliability

of the tune estimates.
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o  Unstable tunes cause the Tune Feedback (QFB) system to
switch itself off as a preventive measure.

L. Grech et al., MDPI Information, 2021.
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4. Tune estimation in the LHC

Second order system simulation
of real BBQ spectra:

norm(wfiee) = 0.76,

Variant of GAN called SImGAN used to improve simulated spectra:
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First spectra were simulated, passed through trained SImGAN,
and a dataset was created to train ML models.

ML-Refined has same architecture as best simple model
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Conclusions

* The past few years have seen an high growth in the take-up of ML by the accelerator
community, driven by:
* Deep learning developments
* Increase in scale and complexity of machines
* Availability of data

* See “opportunities in ML for particle accelerators”: https://arxiv.org/abs/1811.03172

* Some of the latest activities involving anomaly detection, pattern recognition and
particle accelerator control problems were reviewed.

ML will be a key tool to help meet demands for higher beam brightness, energy and
intensity.
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