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Outline

• Why is ML useful for particle accelerators?

• Review of successful use cases at CERN
• Anomaly detection in simulations
• Collimator beam-based alignment
• Sample-efficient reinforcement learning
• Tune estimation
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Why is ML useful for accelerators?
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• Anomaly detection and machine protection

• High energy / high intensity machines are equipped with machine protection systems (MPS) 
which should extract the beam from the machine before catastrophic damage can occur.

• MPS are critical and therefore hardware-based.
• However, machine learning can be used to capture operational issues which impact beam 

quality, or precursors of faults which could lead to downtime (e.g. for machine refilling).



Why is ML useful for accelerators?
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• System modeling
• A challenge in accelerators is to have machine models which are

• Sufficiently accurate
• Can execute quickly enough to be useful during operation, using real input from beam 

instrumentation (i.e. online modeling).

• Most simulation tools are too slow to be used in 
control systems or provide guidance to operators 
during machine operation.
• System modeling through ML allows to learn 

representations that combine information from 
physics-based simulations with measured data
• aka surrogate modeling



Why is ML useful for accelerators?
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• Tuning and control

• Operational settings tend to be established through theory and optimized during beam 
commissioning.

• These settings may need to be tuned over time due to effects of ground motion, changes in 
beam parameters, radiation to electronics etc.

• Accelerators may have dozens of operational modes and complex operational cycles.
• A lot of beam time is spent by operators ‘reconfiguring’ the machine to desired parameters.

Reinforcement Learning and optimization 
techniques are well suited for these types of 
problems, and can be easily re-trained over time

Issues: sample efficiency and transfer learning



Why is ML useful for accelerators?
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• Advanced data analysis

• Particle accelerators generate huge volumes of data
• E.g. LHC: 1.5 million signals are logged from all the accelerator sub-

systems = 2 TB/day

• Data analysis and visualization is a constant aspect of operation: to 
validate performance, try to diagnose and understand faults etc

• Unsupervised learning techniques could be very useful to 
understand hidden structures in data, e.g. understand which 
machine parameters contribute to beam losses

• If ‘unknown’ issues are uncovered, mitigation measures can be 
taken to improve machine performance and availability. 



ML in accelerators: review of case studies

1. Anomaly detection (DA)

2. Collimator beam-based alignment

3. Sample efficient particle accelerator control

4. Improved LHC tune estimation

These are only some examples – for several others e.g. optics measurements and 
corrections, optimisation of beam lifetime and losses, detection of instabilities see 
P. Arpaia et al., “Machine learning for beam dynamics at the CERN Large Hadron 
Collider”, NIM A vol. 985, 2021.
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1. Anomaly detection for Dynamic Aperture simulations
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• DA is region of phase space in which the particle’s motion remains bounded 
over a finite number of turns.

• Outlier identification is important in DA simulations as outliers may have an 
impact on the DAmin.

• They may be due to the excitation of particular resonances as a result of the 
distribution of nonlinear magnetic errors, which is highly seed-dependent. 

M. Giovannozzi et al., “Machine Learning applied to the analysis of nonlinear beam dynamics 
simulations for the CERN Large Hadron Collider and its luminosity upgrade”, MDPI Information, 2021.



2. LHC Collimator Alignment
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• Almost 100 LHC collimators need to be aligned to the beam at various 
points of the machine cycle to establish their operational settings:

G. Azzopardi et al., “Automatic spike detection in beam loss signals for LHC 
collimator alignment”, NIM A vol. 934, pp. 10-18, 2019.



3. Sample-efficient reinforcement learning
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• Reward = Beam Position Monitor (BPM) RMS

• Trained continuous model-free Normalized Advantage Function (NAF) agent 
modified to have Prioritized Experience Replay
• PER-NAF: experience sampled from replay buffer

• Training performed on both real machine and in an OpenAI simulation 
environment using a response matrix generated through MAD-X.

• An orbit feedback system is necessary to ensure 
that the particles are on the correct trajectory 
(orbit):

Δ𝑥 = 𝑊Δ𝜃

where the response matrix 𝑅 = 𝑈.𝑊.𝑉!

• Can RL be used to learn a more efficient policy?

Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE)



3. Sample-efficient reinforcement learning
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Validation results on the machine 
following training on simulation 

Validation results on the machine 
following training on the machine 

Training of NAF agent on the machine

V. Kain et al., “Sample-efficient reinforcement 
learning for CERN accelerator control”, Phys 
Rev Accel Beams 23, 124801 2020



● The LHC tunes in H and V, B1 and B2 are measured by observing
turn-by-turn betatron oscillations using a beam position monitor.

● 50 Hz harmonics
○ Present since start of LHC – due to main dipole magnets.
○ Harmonics perturb the spectrum, which affects reliability

of the tune estimates.
○ Unstable tunes cause the Tune Feedback (QFB) system to

switch itself off as a preventive measure.

4. Tune estimation in the LHC

L. Grech et al., MDPI Information, 2021.



Stability

Variant of GAN called SimGAN used to improve simulated spectra:

Simple approach
Simulated data trains DNN and CNN

Second order system simulation 
of real  BBQ spectra:

4. Tune estimation in the LHC

Some limitations, over-fitting to 
simulated training data:

First spectra were simulated, passed through trained SimGAN, 
and a dataset  was created to train ML models.

ML-Refined has same architecture as best simple model 
(Model #1) but trained over improved SimGAN dataset.

ML-Refined shows
better stability than the 
current tune estimation
algorithm, meaning
better tune control in
LHC.

Fully Connected tune 
estimation model

Convolution layer tune 
estimation model



Conclusions
• The past few years have seen an high growth in the take-up of ML by the accelerator 

community, driven by:
• Deep learning developments
• Increase in scale and complexity of machines
• Availability of data

• See “opportunities in ML for particle accelerators”: https://arxiv.org/abs/1811.03172

• Some of the latest activities involving anomaly detection, pattern recognition and 
particle accelerator control problems were reviewed.

• ML will be a key tool to help meet demands for higher beam brightness, energy and 
intensity.
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