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Machine Learning’s base pillars  
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Data 

Data is there but, needs to be carefully processed to be useful 
• Accessing datasets 
• Merging disparate datasets 
• Imputing missing data 
• Interpolating data 
• Over-sampling or down-sampling to obtain balanced classes 
• Feature engineering and dimension reduction 
• Categorical data 
• Managing non-stationary data 
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Visualization 
Q: What is the best visual representation for the application? 
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Mutual Funds – Framework 

➢ Manager Selection 
➢ Features: Alternative data, holding data 
➢ Optimization: LSTM 

➢ Portfolio Construction / Asset Allocation 
➢ Traditional methods 
➢ Optimization, DL, Clustering, Reinforcement Learning 

➢ Stress Testing / Real Time Impacts 
➢ Visualization 
➢ Market Indicators 

➢ Macroeconomic 
➢ Jump Prediction 
➢ Sentiment data 

Tugce Karatas 
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Mutual Funds – Manager Selection 

Motivation: 
Which managers “may” outperform given objective functions? 

Machine Learning Applications in Asset Management 

Data Processing Analytical Tools/Framework Objective Function Visualization Example 
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Mutual Funds – Portfolio Construction / Asset Allocation 

Motivation: 
How to allocate assets given objective functions? 

Traditional methods – asset allocation is primarily done based on historical returns data – 
given risk/return appetite. 

Machine Learning - In LSTM, the input is w = [wi ,t ], for all funds given a time horizon. 
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Mutual funds – Traditional / EF 

Introduced by Harry Markowitz in 1952. 

Motivation 
Maximize expected return of a portfolio for a given level of risk 

1
min wT Σw − wT μ 

w λ 
s.t. wT e = 1 

wi ≥ 0 for i = 1,⋯, N 

where Σ = [σi, j]N
i, j=1 is correlation matrix, μ = [μi]N

i=1 is return 
vector, and λ is risk-tolerance factor. 
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Mutual funds – Traditional 

Equal Weight Allocation 

Sharpe Ratio Based Allocation 
Sharpe Ratio measures the performance of an asset compared to 
risk-free asset and adjusted for its risk. 

Machine Learning Applications in Asset Management 

, and , forS Ri = 
(ri − r ) 

σi 
wi = 

S Ri 

∑N 
j=1 S Rj 

i = 1,⋯, N 

, for 

is the weight of mutual fund i , and N is the number of mutual funds in the 
portfolio. 

wi = 
1 

N 
i = 1,⋯, N 

wi 
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Mutual funds – Traditional 

Calmar Ratio Based Allocation 
Calmar Ratio uses max drawdown to measure the risk and 
combines it with profit and loss. 

Mixed Ratio Based Allocation 
Mixed Ratio combines Sharpe Ratio and Calmar Ratio. 

, and , for C Ri = 
PLi 

M DDi 
wi = 

C Ri 

∑N 
j=1 C Rj 

i = 1,⋯, N 

, and , for M Ri = 
PLi 

σi ⋅ M DDi 
wi = 

M Ri 

∑N 
j=1 M Rj 

i = 1,⋯, N 
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Mutual Funds – Sample Nested Clustered Optimization 

Lopez de Prado, Marcos. ”A
Robust Estimator of the Efficient 
Frontier.” Available at SSRN 
3469961 (2019). 
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Mutual Funds – Reinforcement Learning 

• After building LSTM models for weights, we need to come up with 
the final weights of the portfolio. 

• β(i , t) is combination weights. 
• w (i , t) is predicted portfolio weights from each LSTM model. 
• Reinforcement Learning Formula: 

5 

wt = β(i , t) ⋅ w (i , t)∑ 
i=1 

1 
ϵ(i, t)

where β (i , t ) = , ϵ (i , t ) = |wtrue(i , t ) − wLSTM (i , t ) | 

∑j 
5
=1 ϵ(

1 
j, t) 
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Mutual Funds – Asset Allocation Visualization  

Simulating future performance of the portfolios 

Tugce Karatas & Satyan Malhotra 

Backtesting the asset allocation strategy by historically simulating its performance 
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Mutual Funds – Stress Testing / Real Time Impacts 

Motivation 
Testing the market conditions and portfolios against historic   
scenarios and news to assess impacts 

➢ We can do stress testing in order to see the resilience of 
the models under possible crisis like 2008 economic crisis, 
Covid-19, etc. As an example, a stable ranking system for 
Market Indicators  can test  the models under current 
market situation to see the effect of Covid-19. 

➢ NLP and sentiment can be leveraged to assess the 
potential impact on sectors, portfolios, other 
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Market Indicators 

Motivation 

Machine Learning Applications in Asset Management 

Identifying the relative potential and attractiveness of sectors,  
sub-sectors, other given the market and economic conditions 

21 
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Market Indicators – Data 

Health- 
care 

Financial 
Services 

Materials 

Con- 
sumer 
Goods 

Sectors 

Tech-
nology 

Energy 

Indus-
trials 

Utilities 

➢ Classify sectors, sub-
sectors, other 

➢ Compile macro and 
cohort specific data 

➢ Train models for common 
macro-economic and 
sector-based indicators 
over various time 
horizons 
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DATA COLLECTION 

Macroeconomic Determine the Apply ML and DL Rank sectors 
Indicators and most important algorithms to based on the 
Performance features for each predict the predicted values 
Benchmark Data sector Performance 
by Sectors Benchmark Data 

for each sector 

Market Indicators – Analytical Tools 
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Market Indicators – Echo State Networks Application 

Source: https://doi.org/10.1016/j.ins.2016.08.081 

x (n + 1) = f (W x (n) + Winu (n + 1)) 

y (n + 1) = f out(W out x (n + 1)) 

Jaeger, Herbert. ”The “echo state” approach to 
analysing and training recurrent neural networks-with 
an erratum note.” Bonn, Germany: German National 
Research Center for Information Technology GMD 
Technical Report 148.34  
(2001): 13.
• The reservoir with fixed weights solves the 

vanishing gradient problem in traditional RNNs.
• The output is a linear combination from the 

reservoir. Therefore, linear regression algorithms
can be used to predict the output weights.

• It works faster than traditional RNNs. 
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Market Indicators – Extensions 

➢ Jump Prediction 
➢ Objective: Detecting the effect of unexpected conditions on the 

models and its effect on the ranking 
Methodology: 

➢ 1 Filtering the data with H-P filtering 
➢ 2 Signal prediction on the filtered data 
➢ Sentiment Analysis 

➢ Objective: Detecting the effect of news on the models and its 
effect on the ranking 
Methodology: 

➢ 1 News data collection from different sources 
➢ 2 Labeling the data Loughran and McDonald Dict 
➢ 3 BERT model vs TFIDF model 
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Market Indicators – Visualization Examples 

Utilities 3-year trend simulation 
Sector trend simulation 

Utilities 5-year trend simulation 
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Illiquid products – Private Equity 

➢ Manager Selection* 
➢ Investment Selection* 
➢ Market Indicators* 
➢ Cash Flow Forecasting 

Tugce Karatas
* Unique dataset but, extension of the Analytical Tools and Visualization from the Liquid Products 
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Illiquid products – Cash Flow Forecasting 

➢ Cash Flow questions 
➢ What are the contribution 

and distributions profiles? 
➢ What impact do unplanned 

events have on the profile? 
➢ How close is the profile to 

the generic sectors or sub-
sectors profiles? 

➢ What is the tracking error 
and reinforcement method? 

➢ Data challenges 
➢ Sparse and difficult to 

access 
➢ Not standard 
➢ Infrequent updates 
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Illiquid Products – Illustrative Traditional Models 

➢ Takahashi, Dean, and Seth Alexander. ”Illiquid alternative asset fund modeling.” The Journal of 
Portfolio Management 28.2 (2002): 90-100. 

➢ The model is discrete-time and deterministic. 
➢ There are certain assumptions and input parameters to be estimated 
➢ Contributions and distributions are dependent. 
➢ It is difficult to update to the recent data. 

➢ Buchner, Axel, Christoph Kaserer, and Niklas Wagner. Stochastic modeling of private equity: an 
equilibrium based approach to fund valuation. No. 2006-02. CEFS working paper series, 2006. 

➢ It is continuous-time and stochastic 
➢ There are 2 independent stochastic process for Capital Contributions and Distributions. 
➢ It allows performing risk analysis 
➢ Rate of contribution is modelled with mean-reverting square-root process 
➢ Certain assumptions: Capital distributions follow lognormal distribution. 
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DATA 

2014-2019 
CuMeny 
Bencnmar'II: Data 

• FundTypes 
8uyoul 
Real Estate -c;...,.. 

--
• LSTM . -­LSTM 
• CHN-LSTM 
• Corwl.STM 

Illiquid Products – Machine Learning Applications 

➢ Both models have used certain 
assumptions. ML allows us to build 
assumption-free models. 

➢ Key Challenge: Inconsistent and 
insufficient data 

➢ Each fund type has different 
characteristics. We need to have 
separate models for each fund type. 

➢ Initially, historical benchmarks for each 
fund type are used for cash flow 
forecasting. 

➢ Contributions and distributions are 
predicted independently. 
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Illiquid Products – Visualization Sample 

Data: 2014-2019 quarterly benchmark data 
Interpolation: Brownian Bridge 
Model: CNN-LSTM Model 
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Conclusion 

➢ Machine Learning Applications in Asset Management is a huge 
space to explore! 

➢ There is a broad range of projects* we are working on, but all the 
projects are based on the Machine Learning base pillars: Data, 
Analytical Tools, and Visualization. 

➢ Research and applicability of the solutions highlight the edge market 
participants can leverage. 

* Columbia research on all topics covered in the presentation is available.  
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