
1. Introduction 
Given the disease severity and well-

publicized philanthropic efforts concerning 
breast cancer, it is not a new arena for 
medical researchers, computational or 
otherwise. The goal in most breast cancer 
classification problems is to determine 
whether a patient’s lesion is malignant or 
benign.   

Machine learning has been 
successfully applied to this problem in 
recent years; for example, a group in Turkey 
reported higher than 99% accuracy for SVM 
classification on the widely used Wisconsin 
University breast cancer dataset. However, 
the holy grail of machine learning 
techniques that fuse high or even reasonable 
accuracy with readily accessible features 
from the average clinic has proved elusive. 
The previously mentioned group used 
carefully measured pathological features 
such as single cell epithelial size and 
mitoses that are not always included in a 
standard clinical report.1 Thus, it is still 
highly clinically relevant to search for breast 
cancer machine learning features that are 
highly predictive of disease state. 
 This project lays the foundation for 
continued research on two machine learning 
applications to breast cancer: predicting 
malignant vs. benign tumors to aide in 
biopsy decisions, and predicting whether a 
patient’s cancer will successfully respond to 
specific treatment regimens. 
 
2. Methods 
2.1 Diagnosis Dataset 

This dataset from Stanford 
Radiology includes patients who had 
suspicious breast lesions and underwent MR 
scans. After radiologist inspection of the 
MRI, results were still inconclusive for 77 

patients, and thus these patients had biopsies 
and pathology reports done to determine if 
the tumor was indeed malignant. Thus, these 
patients did not have “obvious” malignant or 
benign tumors; the tumors themselves were 
often difficult to even identify on a scan. 

The dataset includes 78 lesions total 
(one patient had two lesions), and 64.9% 
were path-proven malignant tumors. This 
means that there was an unnecessary biopsy 
for 35.1% of tumors.  
 
2.1.1 Features 

The currently available data beyond 
the biopsy-confirmed response variable of 
malignancy status incudes the three basic 
measurements of age, longest tumor length, 
and ADC, or Apparent Diffusion 
Coefficient. ADC maps are created from 
Diffusion Weighted Images (DWI).  ADC 
measurements provide a quantitative 
measure of the underlying vasculature in 
tumor structures by measuring water flow 
patterns through the tumors.  
 

 
DWI scans, and therefore ADC 

values, are not yet widely used in clinical 
practice, mainly due to DWI being a 
relatively new MR technique. However, 
ADC values have proven correlative to 
tumor status2 and further supporting 
evidence such as its utility as a machine 
learning algorithm feature could impact 
clinical imaging protocols. 
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2.2 Treatment Dataset 

Stanford is the main treatment center 
for a Phase II neoadjuvant breast cancer 
study of gemcitabine, carboplatin, and poly 
(ADP-Ribose) polymerase (PARP) inhibitor 
BSI-201. Neoadjuvant therapy implies that 
chemotherapy or other drugs are given to a 
patient before surgical removal of the tumor, 
in an attempt to shrink the tumor and 
prevent re-growth, and/or avoid a complete 
mastectomy. In certain patient groups, 
neoadjuvant therapy has proven efficacious 
in eradicating cancer growth.3 

While gemcitabine and carboplatin 
are standard chemotherapy treatments, the 
PARP inhibitor is a novel therapeutic agent 
recently shown to increase progression-free 
and overall survival in triple-negative breast 
cancer patients.4 This class of breast tumor 
is known to be extremely aggressive, and, 
until the PARP inhibitor drug, it was often a 
grim diagnosis for this patient subset.  

Some patients have had dramatic 
results on the drug, such as the patient 
above, whose tumor essentially vanished 
after PARP inhibitor treatment. 

 
2.2.1 Features 

The trial is ongoing; at this point in 
time, the final dataset used included 43 
patients and 15 multinomial features, 
outlined in Table I. All input features were 
measured before treatment or only after 1 
cycle of treatment (patients had a total of 4-6 
treatment cycles). The response variable was 

a binary complete or incomplete pathologic 
response. 

Unfortunately, most of the 
quantitative MRI measurements are not yet 
complete (due to HIPAA/anonymization 
pre-processing requirements), and thus 
could not be included in this initial 
experiment. However, the current dataset is 
still quite rare, given that it includes 
pathology/tissue results of both the lymph 
nodes and main tumor, and gene tests.  

 

 
 
 3. Pre-Processing 
3.1 Diagnosis Dataset 

Following HIPAA protocol, I 
downloaded all patient scans from Stanford 
PACS (Picture Archiving Communication 
System) and anonymized them. I was given 
a brief tutorial by Stanford radiologist Dr. 
Bruce Daniel on how to identify breast 
lesions so that I could compute length and 

Term Definition
Demographics Race/ethnicity of patient
Age Age in Years
Clinical Stage 0-IV, IV= most aggressive
Node Sample Biopsy result: cancerous or 

benign?
Node Imaging Nodes present on MRI?
Node Baseline Nodes palpable to clinican?
Node C2D1 Palpable after 1 drug cycle?
Initial Measurement Initial tumor size
C2D1 Measurement  Size after 1 drug cycle
Total Drug Cycles  4 or 6 cycles
Pathology Grade 1-3, 3 = fastest cell growth
BRCA 1 Gene Test Positive for known harmful 

BRCA 1 gene mutations?
BRCA 2 Gene Test Positive for BRCA 2 gene 

mutations?
MRI Tumor Length Length (cm) on MRI 
Pathologic Response Response variable: patient 

fully responded to treatment 
or had an incomplete 
response (i.e. cancer is still 
present after all cycles 
completed)

Table I: Key PARP Features

Pre-treatment Post-treatment 



ADC measurements using Osirix, an open-
source DICOM viewing software.  
 
3.2 Treatment Dataset  

For the treatment dataset, I had 
access to Stanford’s REDCap Database, a 
secure online site that stores IRB-approved 
study information. There were 
approximately 40 features total, and I 
consulted Stanford radiologist Dr. Jafi 
Lipson to understand the clinical 
significance of each feature. I then chose 
features based on both clinical significance, 
and how many patients already had a 
specific feature measured, in an attempt to 
maintain a reasonably sized dataset. 
 
3.3 Discretization 

In order to test classification rates 
using models such as Naïve Bayes, Logistic 
Regression, and SVM classification, all 
features had to be discretized. In the 
diagnostic dataset, all three input features, 
age, tumor length, and ADC value, were 
discretized, and in the treatment dataset, age 
and any tumor measurements were 
discretized.  

In an attempt to create biologically 
intuitive models, I did not simply assign a 
blanket number of discrete states to all 
features, as this would mean that for any 
categories in which no observed feature 
occurred, I would have to assign this zero 
state a small nonzero probability to avoid 
computational issues. Yet consider the 
tumor length feature in the treatment dataset: 
none of the patients had tumors less than 2 
cm in diameter, as this was a patient 
entrance criterion for the trial.  

Assigning a separate state to say 
tumors below 1cm would not create 
computational errors, but it would create a 
model that is fitting parameters based on a 
nonsensical medical setting for this subset of 
patients. Thus, I took care to look at every 
single feature in both datasets, continuous or 

discrete, to decide the best discrete 
categories.   Attempting to retain medical 
intuition in breast cancer datasets is no new 
phenomenon; gene signatures from machine 
learning techniques have already come 
under scrutiny.5 

 

	  
Figure	  1:	  An	  example	  of	  the	  difficulty	  of	  biologically	  
intuitive	  discretization.	  Here,	  one	  can	  see	  that	  9	  
separate	  categories	  for	  0-‐90	  does	  not	  reflect	  the	  true	  
patient	  distribution	  and	  will	  result	  in	  lower	  statistical	  
power	  for	  categories	  with	  extremely	  sparse	  data	  points. 

Even in the already discrete category 
of stage in the treatment dataset, no patients 
had a stage of 1. Therefore, I discretized the 
lowest state to <= stage 2.  Because this data 
is only for extremely high-risk patients, it 
should be fit to optimize this patient cohort, 
even if this limits model usage beyond 
triple-negative patients. 
 
3.4 Matrix Preparation for LibSVM 

Once discretized, each category 
within a multinomial feature was 
represented as one binomial feature. While 
not a requirement for all the classification 
software packages used, the LibSVM 
development group at National Taiwan 
University recommend on their website to 
prep the data matrices in this manner. Sparse 
matrices were then created using the 
SparseM package in R. 
 
3.5 Classification Packages Used 

The diagnostic dataset was initially 
run on a Naïve Bayes multinomial model 



with Laplace smoothing coded in MATLAB 
and tested on a randomly selected 20% 
holdout sample. 

Further classification attempts on 
both datasets were done in R, using the 
LibSVM package, GLM, and knn (K-
Nearest Neighbor).  For cross-validation on 
GLM and knn, the cv.GLM and knn.cv 
functions were used.  Leave-one-out cross-
validation (LOOCV) was the only accuracy 
measure employed on all models due to the 
small size of these datasets. 
 
4. Classification & Results 
4.1 Varying SVM and GLM Inputs 

For SVM and GLM, a wide array of 
function inputs was tested. In SVM, both 
classification Type I and Type II (labeled C 
and nu in R) and all available kernels 
(radial, sigmoid, linear, polynomial) were 
tested. A range of function inputs such as 
gamma and Cost were also tested. In GLM, 
distribution models of Binomial and 
Gaussian were tested. 

Testing various scenarios of these 
function parameters did not lead to 
significant increases in accuracy. This is 
most likely due to the small size of the 
datasets – no specific combination of 
classification function inputs led to a 
serendipitous jump in accuracy. 

Because logistic regression and GDA 
assume continuous outputs, I tested both the 
discretized and original datasets. The 
discrete diagnostic dataset had been split 
into greater than five categories for each of 
the three variables, leading to little 
difference between discrete and continuous 
states. Most features in the treatment dataset 
were already binary and could not be 
construed as true continuous random 
variables. 
 
4.2 Diagnosis Predictions 

The key results from classification 
models on the diagnostic dataset are listed in 

table 3. Logistic regression performed the 
best with 75% LOOCV accuracy. It is 
intuitive that a regression model performed 
best, given that the original features were 
indeed continuous.   

It is reassuring that the Naïve Bayes 
model obtained 70% accuracy both with a 
random 20% hold-out sample in my own 
MATLAB code, and with LOOCV in R.   
 

 
 
4.3 Treatment Predictions 

LOOCV accuracy rates deviated on a 
wider scale for the treatment dataset than the 
diagnostic dataset. For example, the 
LibSVM SVM I function with a linear input 
kernel resulted in 47% accuracy, while the 
polynomial kernel with degree 4, the best 
performer, resulted in 69% accuracy.  

 

 
 
The high variability is most likely 

due to the small sample size of 43 patients 
with 16 multinomial features (resulting in 
about 30 total binomial features) and the 
dataset being a mix of continuous and 
discrete variables. Attempting to employ 
KNN beyond k=1 resulted in a significant 
drop in accuracy, indicating that the dataset 

Model LOOCV 
Accuracy

Naïve Bayes & Laplace Smoothing 70%
K-Nearest Neighbor (k=1) 70%
K-Nearest Neighbor (k=3) 61%
Logistic Regression 75%
SVM Type 1, Sigmoid Kernel 66%

Table II: Diagnostic Classification Results

Model LOOCV 
Accuracy

K-Nearest Neighbor (k=1) 65%
K-Nearest Neighbor (k=3) 48%
Logistic Regression 67%
SVM Type 1, Linear Kernel 47%
SVM Type 1, Radial Kernel 67%
SVM Type 1, Polynomial, d=4 69%

Table III: Treatment Classification Results



did not contain many repeat patients of 
similar feature inputs and response results. 
Because knn.cv saves the prediction results, 
I was, however, able to note that there was 
not a significant difference in the number of 
false positives and false negatives predicted, 
on either dataset. 

Expanding the features in a higher-
dimensional space with a polynomial kernel 
of 4 proved to provide the best results, with 
41 support vectors being chosen by LibSVM 
for the model. However, both logistic 
regression and SVM with a radial kernel 
provided similar results. 
 
5. Discussion & Future Work 
5.1 Diagnostic Data 

Even though a predictive accuracy of 
75% is not high enough for widespread 
clinical use, it is surprising that with my 
own untrained eye both identifying and 
outlining tumors, my logistic regression 
model performed better than the clinician 
(65%) in deciding which tumors should be 
biopsied.  

This result emphasizes the potential 
utility of ADC values in diagnostics. 
Additionally, a logistic regression using the 
ADC feature alone resulted in 70% LOOCV 
accuracy, highlighting its predictive strength 
as a stand-alone feature.  

I plan to present these initial results 
to Stanford breast cancer radiologists with 
two aims: 1) Re-identify and outline tumors 
with the aide of a trained radiologist to 
reduce noise/ decrease error 2) Recruit 
radiologists to participate in studies that 
compare their performance alone to 
combined performance with machine 
learning aids that incorporate ADC values. 

Additionally, the diagnostic dataset 
has a host of quantitative features in DCE-
MRI images that can be data mined. I hope 
to employ unsupervised clustering 
techniques to find quantitative, unbiased 
feature inputs I can add to the model. 

 
5.2 Treatment Data 
 I am particularly excited about the 
groundwork laid for the PARP treatment 
dataset; while the accuracy is only 69% at 
the moment, imaging features have yet to be 
added. I will also be working on another 
treatment dataset from UCSF next quarter 
that has hundreds of patients, is extremely 
well curated, includes a wider range of 
breast cancer types, and is longitudinal.   

Given that this small initial dataset 
still achieved 69% predictive accuracy, work 
on the more comprehensive UCSF dataset 
could result in models that are truly 
implemented in clinical practice. 
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