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Abstract

The metal powder-bed AM process involves two main steps: the spreading of powder layer and
selective fusing or binding the spread layer. Most AM research is focused on powder fusion.
Powder spreading is more rarely studied but is of significant importance for considering the quality
of the final part and total build time. It is thus essential to understand how to modify the spread
parameters such as spreader speed, to generate layers with desirable roughness and porosity. A
computational modeling framework employing Discrete Element Method (DEM) is applied to
simulate the spreading process, which is difficult to study experimentally, of Ti-6Al-4V powder
onto smooth substrates. Since the DEM simulations are computationally expensive, machine
learning was employed to interpolate between the highly non-linear results obtained by the running
a few DEM simulations. Eventually, a spreading process map is generated to determine which
spreader parameters can achieve the desired surface roughness and spread speed. This eventually
saves the total time for printing and reduces the cost of build.

Keywords: Additive Manufacturing (AM), powder spreading process map, Discrete Element
Method, Machine Learning

Nomenclature

Symbol Meaning

A Overlap of a particle with another particle or geometry

Diameter of a spherical particle

Stiffness of spring in a spring-dashpot system

Damping of dashpot in a spring-dashpot system

~

Subscripts: normal and tangential directions respectively

Coefficient of restitution
Mass
Speed

Coefficient of sliding friction

Unit vector along the tangential direction

@l TR RS I ISR R R R I RSS

Translation speed of the spreader
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® Rotational speed of the spreader

Vs Volume of powder spread per unit time per unit width of spreader

Roughness of spread layer or substrate

Loss function

Total number of training samples

0 Actual and target output vectors respectively

Learning rate

Regularization parameter

IR R RS

Correlation coefficient

Introduction

Powder-bed additive manufacturing (AM), colloquially known as three-dimensional (3D)
printing, is one of the few types of technologies slated to disrupt the traditional manufacturing
industry predominantly dependent on casting, molding and subtractive manufacturing. The state-
of-the-art powder-bed 3D printers are optimized to work only with a handful of powders and the
parts built using such printers have rough exterior and porous interior. The 3D printing process
used involves repetitive spreading of powder and selective fusing or binding of particles in the
spread layer until the entire geometry is 3D printed (Strondl A. et al., 2015) refer Fig. 1. A
commonly used metal powder made of Ti-6Al-4V and a cylinder printed using this powder are
shown in Fig. 2a and 2b respectively. An optical scan of the top surface of printed cylinder can be
seen to have noticeable striations, see Fig. 2¢, which make the part non-isotropic with
unpredictable mechanical properties and rough exterior. Most of the existing AM research is
clustered around fusing (e.g., laser sintering or melting) process optimization (Beuth et al. 2013;
Gockel et al. 2014). The step of powder spreading is rarely studied and makes use of machine
default spread settings; however uniform spreading of powder layer is mandatory to 3D print dense
and isotropic parts with a smooth surface finish. Only a handful of studies (Herbold et al. 2015;
Haeri et al. 2016; Parteli & Pdschel 2016; Mindt et al. 2016) have attempted to answer the
influence of spreading step in the entire 3D printing process.

Herbold et al. in 2015 performed a computational study which used 40-particles square by
10-particles deep domain with particle sizes as seen in real AM metal powders but no justification
was provided as to the choice of the domain size and no experimental validation was provided for
the spreading simulations. Parteli & Pdschel in 2016 incorporated complex shapes of powder
particles and provided relationships between spreader speeds and layer roughness. Using only
model simulation results, in this work they employed a small domain size with periodic boundary
conditions. Haeri et al. in 2016 and Mindt et al. in 2016 followed a small domain simulation
approach as done by Parteli & Pdschel in 2016. Haeri et al. in 2016 made use of rod-like particles
and two spreader geometries, a blade and a roller, comprised of spherical particles, thereby adding
an unreal roughness to the spreaders. The study conducted by Mindt et al. in 2016 has accounted
for true geometry of the previously printed layer along with particle size distribution. They have
also simulated the fusion process. Similar to the aforementioned works, the domain simulated in
their work was smaller than the real size of a build platform.

The authors of this paper aim to study the spreadability of AM powders, i.e., the ability to
spread or make powders flow under a given compressive load, by following a synergistic approach
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Figure 1 Schematic of powder-bed AM process (top left) with insets showing powder spreading
(top right and bottom right) and contact model used in physics-based modeling (bottom left)
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Figure 2 (a) SEM micrograph of 250um Ti-6Al1-4V powder, (b) 3D printed cylinder from an

AM machine using electron beams for binding the metal powder shown in (a), (¢) Optical
image of the top surface of (b)

involving interplay of experiments, physics-based modeling and machine learning as summarized

in Section II. Section III describes the in silico virtual spreading experiments performed in
scenarios and at scales similar to those found in real 3D printers using physics-based GPU-
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optimized Discrete Element Method (DEM). Since the DEM simulations are computationally
expensive, only a few such simulations are run following a Design of Simulations (DoS) approach.
Subsequently, in Section 1V, machine learning has been employed to interpolate between the
highly non-linear results obtained by the DEM simulations. Spreading process maps generated
using such a synergistic approach can be used to find the most efficient spreading parameters to
achieve a desirable surface finish.

Methodology

The problem of studying the spreadability of AM powders is twofold, firstly, it is difficult
to study this problem experimentally inside a real 3D printer, due to the difficulty involved in
characterizing the spread layer parameters without interfering with the environmental conditions
required for working with Ti-6Al1-4V powder. The safety issues associated with the handling of
AM powders such as toxicity, flammability and explosivity make a trial-and-error approach,
common with experimental studies, unrealistic and unsafe (Huang et al. 2013). This first problem
makes the experimental study not only difficult but also expensive. Secondly, computational study
of this problem is also not trivial as the DEM, most well suited among other computational
techniques, is based on Lagrangian principles and has no simple constitutive laws for AM powders
(Bharadwaj 2012). Therefore, a synergistic, three-step approach as shown in Fig. 3 is used to
predict spreadabilty of AM powders. The first step involves the characterization of the AM powder
using a powder rheometer (Dougherty 2016) and using the data for calibrating a ‘virtual powder’
which behaves similar to the real AM powder as discussed in previous works of authors. This
rheometer also serves the purpose of experimentally validating the DEM model and exposes the
powder to loadings similar to those seen in powder spreading. The second step involves the
spreading simulation study of this rheometry-validated virtual powder and comparison to the real
spreading, if possible but has not been done in this study. Finally, referring to Fig. 3, the simulation
data is used to train and test regression algorithms based on machine learning, e.g., back
propagation neural networks, to generate spreading process maps. These maps show the relations
between 3D printer operator’s input parameters e.g., spreader speeds and spread layer parameters.

Experiments Physics-based Machine Learning
p modeling (P-STAC) (BP-NN)
Characterize the | Calibrate P-STAC Generate spreading
AM powder for virtual powder process map
Perform real Perform virtual 2 Run BP"NN for
spreading spreading T 1000s of virtual
. = spreads
,1’
%&)mp.nr&hlc? S :
Comparable?
v A
| Run P-STAC for 50 Train BP-NN to
virtual spreads match P-STAC data

Figure 3 Synergy between experiments, physics-based DEM and machine learning
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The following sections describe the second and third steps of this methodology and discuss the
results obtained using these steps.

Physics-based DEM Modeling

The Discrete Element Method (DEM) is used in this study to simulate the powder
spreading process in AM. In this study, DEM makes use of uniformly sized, 235,000 smooth
spherical, cohesionless elements of 250um diameter to represent the AM powder. Figure 2a shows
an SEM image of a Ti-6Al-4V powder, commonly used in AM, which has the maximum size of
about 250um. Also shown are a 3D printed cylinder and its top-surface optical scan in Fig. 2b and
Fig. 2¢ respectively. The striations seen in Fig. 2¢ are in the direction of spreading and can be
attributed to uneven heating of the spread layer by the electron beams (Ho et al. 2007). The
roughness Rq of the top surface of this 3D printed cylinder was about 46.5um. However, this study
is carried out on an ideally smooth substare. The length scales involved in these simulations, which
have particles with sizes of 10 to a few hundred micrometers and the spread layer of 10’s of
centimeters in size, drastically increase the number of computations as the particle count can easily
reach millions. In order to simulate this problem in realistic times without compromising the
accuracy of the simulation, the DEM code is parallelized to run on a Graphics Processing Unit
(GPU). There are two different types of collisions involved in the simulation of powder spreading
in AM, namely powder particles colliding with other powder particles and powder particles
colliding with the solid surfaces of the spreader. Each type of collision has its own computational
challenges. The former particle-particle collision requires an efficient neighborhood search (Ferrez
2001) while the latter, particle-surface collision, requires an accurate representation of the surface
geometry. The neighborhood search is the most time-consuming step in a DEM simulation. Hence,
a verlet-based (Ferrez 2001; Mpagazehe 2013; NVIDIA 2008) efficient neighborhood search
algorithm is employed using a technique called 'spatial binning' (Green 2013) to further improve
the performance of the solver.

Contact Model
The contact model used in this study is comprised of two damped Hookean-springs
(Bharadwaj 2012), one in normal (subscript #) and other in shear or tangential direction (subscript
f), as shown in Fig. (2). The K and f stand for stiffness and damping respectively and the
expressions for these are as given by equations 1, 2 (Mishra & Murty 2001):

1/2

Kn e
(1) B, = —2In(e) [W’Z("E)}Z] @)

fzmeqvnzlax L ¢

K, = S f =
" ¢)2 Amax

Here m., stands for the equivalent mass of colliding particles, having diameter ¢ and
constant coefficient of restitution ¢ which is independent of impact velocity (Bharadwaj 2012).
This m,, is one half of the harmonic mean of the individual masses. V. and A, are the estimated
maximum speed and inter-particle penetration respectively for the simulation at hand. These values
are usually guessed. A slider is also present in the shear direction. It limits the maximum frictional
force in this direction, the value of which is equal to the product of sliding friction coefficient u
and normal reaction force F, (given by Eq. 3). It is assumed that all the interactions cause particles

to slide thereby nullifying the tangential damped Hookean spring. In other words, only the slider
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acts in the shear direction. Therefore, the forces along the normal (F,) and tangential (F;) directions

experienced by a colliding particle with an overlap of 4 with other particle or solid surface
geometry, relative approach speed of 4 and unit vector in shear direction as e; can be represented

as:
Fo = Kndn = Budin ®) Fo= —ulffe @

This, in entirety, forms the DEM module of an in-house multi-purpose, multi-physics software
called as the Particle-Surface Tribology Analysis Code (P-STAC). P-STAC is used to perform
spreading simulations as described below.

Design of Simulations (DoS) for virtual spreading

Spreading simulations require a set of contact force parameters which can make the virtual
powder bulk behave in ways similar to a real AM powder. The density of these spherical particles
is 4430kg/m’ and is equal to the real AM Ti-6Al1-4V powder shown in Fig. 2a. This virtual bulk
is developed by using the calibration process mentioned in earlier works by authors of this study.
The DEM parameters used in this study are summarized in Table 1. GPU parallelized P-STAC,
though much faster than a CPU serial code, requires significant computational time to simulate a
spread of about 235,000 powder particles. So only 45 simulations have been conducted using an
n-factorial design of simulations (DoS) approach on the lines of design of experiments approach
carried out by Asadi-Eydivand et al. (2016). The different parameters for spreading simulations,
involving a roller as a spreader, are summarized in Table 2. The substrate is assumed to be
perfectly smooth. These ranges in spreader speeds nicely cover the speeds seen on a real 3D printer.
Sample simulation snapshots are shown in Fig. 4.

Table 1: DEM parameters used in spreading simulations

Ti-6Al-4V powder interacting with
Property 3D printed | Ti-6Al-4V
spreader
substrate powder
£ 0.8" 0.8" 0.8"
u 0.12¢ 0.25" 0.185*

Note: * => value tuned via the DEM calibration process,
@ —> value measured using rheometer,
* => assumed value
Table 2: Design of Simulations (DoS) for virtual spreading

Parameter Value(s)
Spreader diameter (mm) 10
Spreader length (mm) 70

Spreader translation speed, U
(mm/s) 40, 55, 70, 85, 100

Spreader rotation speed, ® (rad/s) 0, 5,10, 15, 20, -5, -10, -15, -20
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Figure 4 shows spreading of virtual 250um Ti-6Al-4V powder over a flat substrate at
spreader translation speed of 100mm/s and no rotation. A black slit is shown on the spreader to
visualize the direction of rotation, absent in this case, of the spreader. After the spreading
simulation, the spread layer is critiqued for layer parameters as described below. On an average,
each spreading simulation took 45 minutes to run on an nVIDIA GTX 1070 GPU.

Spread layer characterization

A 50mm x 50mm region centrally located above the substrate, after the spreading
simulation has completed, is sampled for two important properties: volume of powder spread per
unit time per unit width of the spreader, Vs and the roughness of the spread layer, Rq. Vs is
indicative of the efficiency of the spreading while Rq is indicative of the qualitative aspect of the
layer. The optimum values for Vs and Rq depend on the AM application. To calculate Vs, the mean
height of the spread layer in the sampling region is multiplied by the spreader translation speed U.
Rq is the standard deviation of the heights occupied by the spread layer in the sampling region.
The sampling region for the case shown in Fig. 4 is shown in Fig. Sb along with sampling regions
for cases involving spreader translation speed U of 100mm/s and rotation speed w of -20 rad/s
(Fig. 5a) and spreader translation speed of 100mm/s and rotation speed of 20 rad/s (Fig. Sc). These
spread layers over a flat substrate can be seen to have voids which result in porosity in the 3D
printed part and can eventually cause failure of the part during loading due to stress concentrations.

(a) Time = Os (b) Time = 0.2s
(c) Time = 0.4s (d) Time = 0.6s

Figure 4 Simulation snapshots of virtual spreading with roller having U = 100mm/s and w = 0
on a flat substrate. Particles are colored by values of their velocity magnitude.
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(a) ( ©
Figure 5 Sampling region of the spread layer: (a) U = 100mm/s and w = -20rad/s,
(b) U =100mm/s and w = Orad/s, (¢) U = 100mm/s and w = 20rad/s

Machine-learning-based Spreading Predictions

The physics-based simulation results, as seen in the previous section, are highly non-linear
and the simulation time, per spreading simulation, is quite high to perform a parametric study
covering the entire range of spreader translation and rotation speeds, thereby resulting in a better
understanding of the effect of these speeds on the spread layer parameters Vs and Rq. This problem
is well suited to be solved using machine learning techniques to regress between the data obtained
via design of spreading simulations from the previous section. Authors of this paper have chosen
neural network to perform the regression over the datasets since neural networks (Basheer et al.
2000) can generate an unbiased fit over a dataset than other regression techniques which require
assumptions about the function of the surface to be regressed over the dataset (Asadi-Eydivand et
al. 2016; Chen et al. 2015; Jiang et al. 2014; Tourloukis et al. 2016;).

Back Propagation Neural Network (BP-NN) (Bishop 2006)

A neural network is a mathematical model of a biological neuron. In biological neurons,
the dendrite receives electrical signals from the axons of other neurons; in the artificial neural
network these electrical signals are represented as numerical values (Basheer et al. 2000).
Generally, there are three kinds of layers in a neural network, namely the input layer, hidden
layer(s) and output layer, see Fig. 6. The input layer is a vector of values which are given as
conditions in the problem. Similarly, the output layer is also a vector of values which are the target
solutions for the problem. In the case of studying the effect of spreader speeds on the spread layer,
the input layer vector is spreader translation speed U and spreader rotation speed ® and the output
layer vector is made of spread layer parameters Vs and Rgq, as defined in the previous section.
There may be a single hidden layer or multiple hidden layers in the network based on how the
constructor defines the network. For this study, the neural network comprises of a single hidden
layer. Within each hidden layer, a vector of values is calculated using the data from the previous
layer and these values are generated by the network to represent some feature of the data. Each
layer is connected with the next layer using weights. These weights form a matrix of linear factors.
The product of the vector from a certain layer and the weights matrix is the vector of the next layer.
This means that each node in the next layer is a linear combination of nodes from the previous
layer. However, this network has only linear functions. Many real problems often have complex
nonlinear
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Figure 6 Schematic of a general neural network (NN) with multiple hidden layers with each
hidden layer having multiple hidden nodes

relationships between input and output. So, a nonlinear activation function is commonly used to
make the network nonlinear and allow for the learning of rather complicated problems.

—orf(x) = tan~1(x), is
used as an activation function. As the structure of the neural network has been defined, a useful

way to train the network is back propagation (BP). In this training method, the target is the loss
function which is commonly written as:

1 N 5
T -l “

In the present study, a sigmoid function, defined as f(x) =

where N is the total number of training data. Y; is the actual output vector for the i training data.
0; is the target output vector for the i" training data. The loss function is implemented to find the
difference between the real output and the target output. Therefore the training process is actually
finding the minimum of the loss function. Here, gradient descent algorithm is implemented to
minimize the loss function. The loss function can be regarded as a complex nonlinear function. A
random initial point can be defined and the direction where the function has the fastest decreasing
speed can be found by calculating the derivative on that point. Then a step along the function is
taken with a fixed step size and the new point is acquired. Iterating many times in this fashion, the
point will get closer and closer to the minimum point.

For the training of the neural network, first, the weights are randomly generated. Then
outputs are calculated from the inputs and the random weights. Finally, the loss function value can
be obtained and used as the updates for the weight:

W@ = W™ — gAW
(6)

where
oL

AW = —
ow

(7)
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In the above equations, « is the learning rate which will control the step size of gradient
descent in each iteration. If a is too small, it may take a large number of iterations for the loss
function to come to convergence. However, if « is too large the learning process may crash when
the network is training. Oscillations will occur on the loss function value for each iteration.

Another main challenge of training the network is overfitting where the training error is
decreasing but test error is increasing. Usually the reason is that the complexity of the network
becomes much higher than the data itself and the weights have large magnitude. Hence L-2
regularization is implemented in the loss function to avoid overfitting:

1 N 2 2
L=— E Y, — 0|12 + A|W
N2, M odlF + A )

In the new loss function, the norm of all the weight is put into the loss function and A is the
parameter to control the level of regularization. In this way, as the loss function decreases, the
magnitude of all the weights is secured to be small.

The parameters used for back propagation neural network (BP-NN) used to regress
between the spreader speeds and spread layer parameters are listed in Table 2. Number of hidden
nodes was decided by conducting a parametric study involving BP-NNs with increasing number
of hidden nodes and 200 was chosen as a tradeoff between accuracy and computational efficiency.
The learning rate and L2-regularization parameter were also decided by conducting numerical
experiments but for the brevity of the paper these analyses are not presented. Regression results
from the final BP-NN with parameters listed in Table 3 are shown in Fig. 7 and Fig. 8 for spreading
simulations over a flat substrate. The surfaces predicted by this BP-NN, refer Fig. 7a and Fig. 8a,
nicely blanket the simulation data points, both training and test data points, generated via the
Design of Simulations. Also shown is the correlation coefficient R between simulation results and
predicted results in Fig. 7b, 7¢ and Fig. 8b, 8c. The near unity value of R for both training and test
data points for each of the layer parameters Vs and Rg, suggests a near perfect regression. The
error values and R values for the three substrates are listed in Table IV. BP-NN trained for
spreading of Ti-6Al-4V powder on flat substrate is able to predict results with at least 97.5%
accuracy. The normalized RMS error reported in the Table IV refers to the root mean square of
the error in predicted spread layer parameters by BP-NN with respect to the ground truth generated
using P-STAC and normalized by the range of the corresponding value.

Table 3: BP-NN parameters for spreading simulations over a particular substrate

Parameter Value Parameter Value
Number of training 35 Activation function Siemoid
samples for hidden layer &
Number of test Activation function .

10 Linear
samples for output layer
{\Iumber Sl 1 Learning rate o 0.0001

ayers
Number of hidden L2-regularization
200 0.1

nodes parameter A
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Table 4: BP-NN performance matrix

Vs
Normalized RMS error (%) Correlation coefficient
Substrate Rq
(km) For training For test For training For test
sample samples samples samples
0 1.74 2.21 0.9938 0.98463
Rq
Normalized RMS error (%) Correlation coefficient
Substrate Rq
(km) For training For test For training For test
sample samples samples samples
0 1.99 2.27 0.98264 0.98175
Vs for training data (mm?s)
e Correlation coefficient R = 0.9938
20
H o 3"
25 -!E
=
; 10
20 G =
s T
Es
= 0 - v ’ .
0 5 10 15 20
10 P-STAC generated ground truth
(b)
Vs for test data (mm?/s)
5 . Correlation coefficient R = 0.98463
110 )
100
30 0
60 g *
5 x
Translation Speed 3074 25 20 T° *
() ’ Rotation Speed '§
(rad/s) 2
;: 10
(a) '4

5 10 15 20
P-STAC generated ground truth

(©)

Figure 7 BP-NN regressed surface for Vs
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Spreading process map

A spreading process map is shown in Fig. 9. This process map relates the 3D printer
spreader parameters of translation U and rotational o speeds to the spread layer parameters of Vs
and Rq. The Rq of the spread layer increases as the rotation of spreader changes from anticlockwise
(+) to clockwise (-) direction. This is due to the clockwise spreader rotation forcing spread of
multiple layers as opposed to only one to two layers in the cases of no and anticlockwise rotational
motion. For a constant rotational speed , the efficiency of spread increases at the translational
speed increases. Conversely, the most efficient way to spread a layer, which is indicated by a larger
Vs, of known roughness is to obtain the rightmost U-® pair on the process map.

Rq for training data (mm)
Correlation coefficient R = 0.98264

0.13

012
@
=
=011
2
]
81
3
0.13 'g 0.1
=
0.12 §
B & 0.09
=8
£ 0.11
£ 0.08
g 0.1 ]
0.07
0.09 007 008 009 0.1 0.11 012 013
Y P-STAC generated ground truth
0.08
! Rq for test data (mm)
Correlation coefficient R = 0.98175
0.07 EL
110
100
90 0.1
80
70 20 25 30,
§ =& =
60 ) s -10 -15 FONf
50 5 - %
NP 0 s 10 - 3
Translation Speed u 30 s 20 1O 2
(mm/s) - 30 = ) g (L
Rotation Speed a
z
(rad/s) Z
B 0.09F
=
(a)
008+

.07 . . . . -
0.07 0.08 0.09 0.1 0.11 0.12 0.13

P-STAC generated ground truth

©
Figure 8 BP-NN regressed surface for Rg

Conclusions

To conclude, a synergistic framework based on DEM modeling and machine learning is
presented to provide spreading predictions in powder-bed AM techniques. DEM was successfully
applied to simulate spreading of virtual Ti-6Al-4V powder, which is modeled as 235,000 smooth
spherical, cohesionless particles, on a smooth substrate. Back propagation neural network is used
to regress between the highly non-linear spread layer parameters as a function of spreader speeds.
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The spreading process maps thus developed can be made available to a 3D printer operator to
efficiently print parts at desired roughness values within the intervals of contours on spreading
process maps. These maps can also serve to aid with other factors such as thermal performance.
For example, these maps can be used to introduce roughness in the spread layer to offset the uneven
temperature distribution which is often encountered in the electron beam or laser based binding
processes, thereby resulting in a smooth and uniform build or 3D printed layer. Further
investigations will involve the incorporation of surface roughness of the preceding spread layers.

0.125

100 ~

0.12+

0.115F

0.105

Roughness of layer (mm)

0.095 -

0.09 = U (mm/s)

® (rad/s)

0.085 X " . ' : 1
5 10 15 20 25 30 35 40 45 50
Vol. of powder spread

2
per unit time per unit width of spreader (mm~/s)

Figure 9 Spreading process map relating the Vs and Rq of the spread layer to the translation
speed U and rotation speed ® of the spreader
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