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Abstract In this work, we apply machine learning regression and classification algorithms to the 
problem of equalization and detection in high-speed fiber optic communication systems.

Introduction 
Conventional linear feed forward equalizers 
(FFEs) are widely used in fiber optic 
communication systems to mitigate inter-symbol 
interference resulting from a limited bandwidth 
of electro-optic components, as well as fiber 
chromatic dispersion [1]. However, linear 
equalization techniques (analogous to linear 
regression in machine learning) provide only a 
limited benefit for the low-cost direct detection 
receivers used in Ethernet applications [2,3]. 
Chromatic dispersion is a major transmission 
impairment in these systems. Dispersion acts on 
the electric field while the square law direct 
detection receivers detect intensity; all optical 
phase information is lost during the direct 
detection process. Moreover, optical amplifiers 
generate additive white Gaussian noise (AWGN) 
in the optical field, but after going through 
square law detection, the noise is no longer 
AWGN. When significant chromatic dispersion is 
combined with optical noise, the electrical 
waveform after photo-detection can be so 
distorted that a linear FFE is not sufficient to 

provide an acceptable symbol error rate. In this 
work, we investigate and compare several 
machine learning algorithms for applications in 
digital equalization and detection, with the goal 

of discovering new techniques which are more 
robust to non-Gaussian noise statistics, and the 
nonlinear distortions due to interaction of 
chromatic dispersion and square law detection. 
As with a linear FFE, the input features are 
taken from N consecutive samples of the 
received waveform (sampling rate is 2x the baud 
rate), with N ~ 5 to 40.  At the high speeds of 
interest to fiber optic communication systems, 
the equalizer complexity and memory 
requirements put a major constraint on the 
system design.  Hence, we focus on regression 
and classification algorithms with an eye toward 
practical implementation in DSP ASICs.  

System Model  
Figure 1 shows the system model and 
simulation setup. We simulate a 4-ary pulse 
amplitude modulation (PAM4) fiber optic 
communication system. The symbol rate is 56 
Gbaud for a bitrate of 112 Gb/s; this bit rate 
includes native 103 GbE and overhead for FEC. 
The PAM4 optical modulator is driven by 2 
binary electrical data streams, with each pair of 
bits corresponding to a PAM4 symbol taken 

from the alphabet {-3, -1, 1, 3}. We employ 
pseudo-random bit patterns (PRBS) with length 
of 216-1 symbols to drive the modulator. Training 
and test data are generated using different 

 
 

 
 

 
 
 
 

Fig. 1: System simulation block diagram. The highlighted block for equalizer and decision device is the focus of this paper. 



PRBS polynomials, and different random seeds 
for the noise generators. The output of the 
modulator propagates through a fiber optic link; 
the main optical channel impairments are due to 
fiber loss and chromatic dispersion. At the 
receiver, an optical amplifier boosts the signal to 
compensate the loss, while also adding white 
Gaussian noise to the optical field. An optical 
filter is used to reduce the optical noise entering 
the receiver. A photo-diode converts the optical 
signal to an electrical current through square law 
detection. The electrical signal is then sampled 
by an analog-to-digital converter (assumed 
ideal) at 2 samples per symbol. Finally, the 
samples are processed by a digital equalizer 
and a decision circuit. The equalizer and 
decision circuit block is the main focus of this 
work. The optical system simulations are 
performed using the commercial software 
package OptSim, with simulation in Matlab for 
the receiver digital signal processing.  
    Figure 2 shows some simulated eye diagrams 
at the receiver. An eye diagram displays all the 
waveform symbols simultaneously by overlaying 
in the same plot.  An ideal PAM4 eye diagram 
would show wide open “eyes,” as in Fig. 2 a). for 
the case of no noise and no dispersion. The 
PAM4 eyes close up after adding noise from the 

optical amplifier as shown in Fig. 2 b). We also 
observe more noise on the higher PAM4 levels; 
this is due to the action of square law detection 
on the optical field as discussed above. When 
both noise and significant chromatic dispersion 
are included in the simulation, the eyes 
completely close, as shown in Fig. 2 c). where 
we included chromatic dispersion corresponding 
to ~ 4km of standard single mode fiber. 
Although it’s hard to discern a pattern in the 
noise-like waveform of Fig. 2 c)., a powerful 
machine learning algorithms is able to detect the 

pattern of transmitted symbols, as shown below. 

Features 
Figure 3 a). shows the block diagram for a 
conventional linear equalizer based on an FIR 
filter structure. We can also think of the linear 
equalizer as a linear predictor (or linear 
regression), where the features are N input 
samples, and the linear predictive model is 
defined by N+1 parameters learned during 
training by minimizing the MSE. The output of 
FIR filter goes to a decision device, which 
makes hard decisions based on minimum 
Euclidean distance to the nearest PAM4 symbol. 
We generalize the linear equalizer to the 
structure shown in Figure 3 b)., where the FIR 
filter processing is replaced with a more general 
machine learning algorithm for predicting the 
output symbol. The input features of the 
machine learning algorithm are the same N 
samples but the algorithm may be based on 
either regression (followed by hard decision) or 
classification giving the predicted PAM4 
symbols directly.  
     Figure 4 shows a feature correlation heat 
map of 9 samples for a). no dispersion and b). 
with dispersion. The correlation heat map shows 
that neighbouring samples are strongly 
correlated due to the pulse spreading in time 

caused by dispersion. Hence, algorithms which 
rely on a statistical independence of the 
features, such as Naive Bayes, may not be 
suitable for this problem.  Figure 4 c). and d). 
show pairwise scatter diagrams for 5 samples 
for the case of no dispersion, and with 
dispersion, respectively. The points are labelled 
by different colors corresponding to the received 
PAM4 symbols. Note the output PAM4 symbols 
are time aligned with the center sample.  As 
revealed in Fig. 4 c). and d)., without dispersion, 
it should be easy to separate the classes; 

 
 
 
 

 
Fig. 2: Simulated eye diagrams for a). no noise, no dispersion; b). including optical noise but without chromatic dispersion; c). 
including both optical noise and chromatic dispersion. 



however, fiber dispersion tends to mix the 
different colored clouds together, making the 
regression and/or classification problem very 
challenging. A nonlinear regression or 
classification algorithm is required to separate 
the classes in this case.  

Machine Learning Algorithms 
All algorithms are implemented in Matlab using 
the Statistics and Machine Learning Toolbox, 
and Neural Network Toolbox. Linear regression 
is the baseline algorithm for comparison, as this 
is the simplest and most popular approach in 
digital equalization. The strait forward 
generalization of linear regression to nonlinear 
systems is polynomial regression, also called 
Volterra equalization in the communications 
literature [4].  For simplicity, we consider only 
second order Volterra equalization, where the 
output of the equalizer is given by 
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The parameters {θ,β} are learned during training 
by minimizing MSE. We use the Matlab fitlm 
function for linear and polynomial regression. 
Perhaps one of the most powerful algorithms for 
nonlinear regression is based on Neural 
Networks. We used the Matlab feedforwardnet 
function to model a Neural Network. A network 
design based on 2 hidden layers, with N 
neurons per layer, was found to work well by 
experimentation on a separate validation data 
set. The parameters of the Neural Network are 

learned in training using the Levenberg-
Marquardt version of the back-propagation 
algorithm [5].  
    Classification algorithms offer a different 
approach to this problem by combining the 
functions of “equalization” and “detection” 
together to output the predicted received 
symbols directly. For classification algorithms, 
we tried softmax regression using the Matlab 
function mnrfit, with logit link function. In 
softmax regression [6], the output is a probability 
for each PAM4 symbol, and decision is made in 
favor of the highest probability symbol. Finally, 
we tried a K nearest neighbors (KNN) 
classification scheme [7] using the Matlab 
function fitcknn. For a given input vector X, the 
KNN classification algorithm estimates the 
probability P(m|X), where m is the PAM4 class 
label, from the K nearest neighbors to X in the 
training set based on the plurality of the K 
observations. K = 5 was found to be an optimum 
choice on a separate validation data set. 

Results and Discussion 
Figure 5 shows the simulation results on the test 
data set symbol error rate (SER) versus number 
of features (or samples) for the case where both 
noise and dispersion are included. Increasing 
the number of sample inputs generally improves 
algorithm SER performance as the span of the 
samples includes more of the pulse spreading 
due to dispersion. Once all the pulse spreading 
is included in the span of the N samples, 
increasing the number of samples further does 
not provide any additional benefit and SER 
saturates. KNN is an exception; it achieves 
optimum performance at N ~ 9 samples and 
then SER performance degrades rapidly due to 

 

 

 

Fig. 3: Block diagram of a). conventional linear equalizer, and b). generalized equalizer based on machine learning. 



the well known problem called the “curse of 
dimensionality,” i.e. the K neighboring points are 
spread further apart in higher dimensions [7].  
    As expected, the simple linear equalizer gives 
the worst SER performance. Softmax regression 
yields only a small improvement over linear 
regression. For softmax regression, the logodds 
for each class is linear in the features, so one 
may expect similar results as in linear 
regression. The small improvement of softmax 
regression may come from improved robustness 
to non-Guassian noise statistics. The scatter 
diagrams in Figure 4 d). clearly show the need 
for nonlinear regression techniques. Indeed, the 
nonlinear Volterra equalizer significantly 
improves the SER over linear regression and 
softmax regression. We found by the process of 
backward selection [7] that good performance 
with Volterra equalization can be achieved with 
only the Xj*Xi nonlinear interaction terms added 
to the linear terms; this simplifies the hardware 
implementation considerably. The Neural 
Network equalizer also achieves good 
performance but at the expense of higher 
complexity. Interestingly, the simple KNN 
classification algorithm with K=5 achieves the 
best performance at small N (but not best 
overall). KNN may provide an interesting option 

if it can be implemented efficiently in DSP 
hardware using a lookup table.  
 
Conclusion and Future work 
Machine learning regression and classification 
algorithms offer a wealth of new ideas to explore 
for digital equalization and detection. In this 
paper, we’ve considered linear and polynomial 
regression, softmax regression, neural 
networks, and KNN classification. Extensions of 
this work may involve a more detailed study of 
optimum Neural Network architectures, including 
classification schemes. The time series nature 
of the equalization problem also offers the 
possibility of using feedback; for example, so-
called decision feedback equalization provides 
the previously decided symbol (which may be in 
error) as an additional feature to the input 
samples. Finally, one may explore other 
powerful regression and classification 
techniques, such as based on support vector 
machines [6] or boosted regression trees [7]. 
Any machine learning algorithm developed for 
high-speed digital equalization must be simple 
enough to implement in a real-time DSP ASIC; 
this is a unique aspect of the equalization 
problem that makes it particularly challenging 
but also exciting.  

 
 
 
 

 
 

Fig. 4: Correlation heat maps for a). no dispersion, b). with dispersion, and pairwise scatter plots for c). no dispersion, d). with 
dispersion.  The received PAM4 symbols (4 classes) are labeled by color in c). and d). 
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Fig. 5: Simulated symbol error rate (SER) versus number of features (or samples). 


