Machine Learning for Data Streams

Albert Bifet (@abifet)

Cisco-Ecole Polytechnique Symposium 2018, 10 April 2018

Machine Learning

- Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.
- Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data.

Machine Learning

Data

Imperative Programming

The programmer specifies an explicit sequences of steps to follow to produce a result.

Decision: +, -

Machine Learning

AI Systems

- According to **Nikola Kasabov**, AI systems should exhibit the following characteristics:
 - Accommodate new problem solving rules **incrementally**
 - Adapt online and in real time
 - Are able to analyze itself in terms of behavior, error and success.
 - Learn and improve through interaction with the environment (embodiment)
 - Learn quickly from large amounts of data (Big Data)
 - Have memory-based exemplar storage and retrieval capacities
 - Have parameters to represent short and long term memory, age, forgetting, etc.

Data Streams

- Maintain models online
 - Incorporate data on the fly
 - Unbounded training sets
 - Resource efficient
 - Detect changes and adapts
 - Dynamic models

Analytic Standard Approach

Finite training sets Static models

Data Stream Approach

Infinite training sets Dynamic models

Adversarial Learning

- Need to **retrain!**
 - Things change over time
 - How often?
- Data unused until next update!
 - Value of data wasted

Al Challenges

Cédric Villani and Marc Shoenauer

CÉDRIC VILLANI

Mathematician and Member of the French Parliament

FOR A MEANINGFUL ARTIFICIAL INTELLIGENCE

TOWARDS A FRENCH AND EUROPEAN STRATEGY

1. Green Al

Part 4 — Using Artificial Intelligence to Help Create a More Ecological Economy

More than ever before, the revolution triggered by the development of digital technologies and their widespread adoption tends to obscure its impact on the environment¹. Nevertheless, there is an urgent need to take this on board. Two years

By 2040 the energy required for computation will equally have exceeded world energy production

ago, the American Association of Semi-Conductor Manufacturers predicted that by 2040, the global demand for data storage capacity, which grows at the pace of the progress of AI, will exceed the available world production of silicon².

Furthermore, by 2040 the energy required for computation will equally have exceeded world energy production; the progress of the blockchain may also cause our energy requirements to rocket. It is vital to educate as many people as possible about

these issues and to act promptly to avoid shortages. At a time when global warming is a scientific certainty, it is no longer possible to pursue technological and societal developments if those are completely detached from the need to preserve our environment.

Green Al

- One pass over the data
- Approximation algorithms: small error ε with high probability 1-δ
 - True hypothesis H, and learned hypothesis Ĥ
 - $Pr[|H \hat{H}| < \epsilon |H|] > 1-\delta$

2. Explainable Al

relations and reinforce solidarity. Diversity should also figure within these priorities. In this respect, the situation in the digital sector is alarming, with women very poorly

represented. Their under-representation may lead to the spread of nurture gender-biased algorithms.

Finally, our digital society could not be governed by black box algorithms: artificial intelligence is going to play a decisive role in

Our digital society cannot be governed by black box algorithms

critical domains for human flourishing (health, banking, housing, etc) and there is currently a high risk of embedding existing discrimination into AI algorithms or creating new areas where it might occur. Further, we also run the risk that normalization may spread attitudes that could lead to the general development of algorithms within artificial intelligence. It should be possible to open these black boxes, but equally to think ahead about the ethical issues that may be raised by algorithms within artificial intelligence.

A meaningful AI finally implies that AI should be explainable: explaining this technology to the public so as to demystify it—and the role of the media is vital from this point of view—but also explaining artificial intelligence by extending research into explicability itself. AI specialists themselves frequently maintain that significant advances could be made on this subject.

Decision Tree

- Each node tests a features
- Each branch represents a value
- Each leaf assigns a class
- Greedy recursive induction
 - Sort all examples through tree
 - x_i = most discriminative attribute
 - New node for x_i, new branch for each value, leaf assigns majority class
 - Stop if no error | limit on #instances

Car deal?

P. Domingos and G. Hulten, "Mining High-Speed Data Streams," KDD '00

HOEFFDINGTREE

- Sample of stream enough for near optimal decision
- Estimate merit of alternatives from prefix of stream
- Choose sample size based on statistical principles
- When to expand a leaf?
 - Let x_1 be the most informative attribute, x_2 the second most informative one
 - Hoeffding bound: split if G(x₁) G(x₂) > $\epsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2m}}$

TensorForest: Scalable Random Forests on TensorFlow

Thomas Colthurst, Gilbert Hendry, Zachary Nado, D. Sculley Google Inc. {thomaswc, gilberth, znado, dsculley}@google.com

Abstract

We present TensorForest, a highly scalable open-sourced system built on top of TensorFlow for the training and evaluation of random forests. TensorForest achieves scalability by combining a variant of the online Hoeffding Tree algorithm with the extremely randomized approach, and by using TensorFlow's native support for distributed computation. This paper describes TensorForest's architecture, analyzes several alternatives to the Hoeffding bound for per-node split determination, reports performance on a selection of large and small public datasets, and demonstrates the benefit of tight integration with the larger TensorFlow platform.

Rules

- Problem: very large decision trees have context that is complex and hard to understand
- Rules: self-contained, modular, easier to interpret, no need to cover universe
- *L* keeps sufficient statistics to:
 - make predictions
 - expand the rule
 - detect changes and anomalies

Adaptive Model Rules

E. Almeida, C. Ferreira, J. Gama. "Adaptive Model Rules from Data Streams." ECML-PKDD '13

- Ruleset: ensemble of rules
- Rule prediction: mean, linear model
- Ruleset prediction
 - Weighted avg. of predictions of rules covering instance x
 - Weights inversely proportional to error
 - Default rule covers uncovered instances

Adaptive Random Forest

- Why Random Forests?
 - Off-the-shelf learner
 - Good learning performance

Adaptive random forests for evolving data stream classification.

Gomes, H M; Bifet, A; Read, J; Barddal, J P; Enembreck, F; Pfharinger, B; Holmes, G; Abdessalem, T.

Machine Learning, Springer, 2017.

• Based on the original Random Forest by Breiman

3. Ethical Issues

The use of deep learning algorithms, which feed off data for the purposes of personalization and assistance with decision-making, has given rise to the fear that social inequalities are being embedded in decision algorithms. In fact, much of the recent controversy surrounding this issue concerns discrimination towards certain

minorities or based on gender (particularly black people, women and people living in deprived areas). American experience has also brought us several similar examples of the effects of discrimination in the field of crime prevention.

Because systems that incorporate Al technology are invading our daily lives, we legitimately expect them to act in accordance with our laws and social standards. It is therefore essential that legislation and ethics Because systems that incorporate AI technology are invading our daily lives, we legitimately expect them to act in accordance with our laws and social standards

control the performance of AI systems. Since we are currently unable to guarantee *a priori* the performance of a machine learning system (the formal certification of machine learning is still currently a subject of research), compliance with this requirement necessitates the development of procedures, tools and methods which will allow us to audit these systems in order to evaluate their conformity to our legal and ethical frameworks. This is also vital in case of litigation between different parties who are objecting to decisions taken by AI systems.

Should data have an expiration date?

Other AI Challenges

1. Open Al

M()A

- {M}assive {O}nline {A}nalysis is a framework for online learning from data streams.
- It is closely related to WEKA
- It includes a collection of offline and online as well as tools for evaluation:
 - classification, regression
 - clustering, frequent pattern mining
- Easy to extend, design and run experiments

Albert Bifet Ricard Gavaldà Geoffrey Holmes Bernhard Pfahringer MACHINE LEARNING FOR DATA STREAMS

with Practical Examples in MOA

NETWORKED SCIENCE AND MACHINE LEARNING

2. Distributed Data Stream Mining

Vision

http://samoa-project.net

APACHE SAMOA

G. De Francisci Morales, A. Bifet: "SAMOA: Scalable Advanced Massive Online Analysis". JMLR (2014)

SAMOA ARCHITECTURE

Vertical Partitioning

N. Kourtellis, G. De Francisci Morales, A. Bifet, A. Murdopo: "VHT: Vertical Hoeffding Tree", 2016

Big Data Conference 2016

THINKING, FASTAND SLOW DANIEL KAHNEMAN WINNER OF THE HOREL PRIZE IN ECONOMICS

Table 1: The Fast and Slow systems for Machine Learning.

FAST SYSTEM	SLOW SYSTEM
Cheap (mem., time)	Expensive (mem., time)
Always ready	Trains on large batches
Robust to drifts, adapts	Complex and robust models
Focus on the present	Generalize the larger scheme

Figure 2: FSC operation modes.

Figure 2: FSC operation modes.

scikit-multiflow

A multi-output/multi-label and stream data framework. Inspired by MOA and MEKA, following scikit-learn philosophy.

① Github Repository

Photo credit: freepik

Mainly supported by: TELECOM Parts Technique

O GITHUB

© 2018 scikit-multiflow. Website powered by Jekvll & Minimal Mistakes.

scikit-multiflow

from skmultiflow.data.generators.waveform_generator import Wave
from skmultiflow.classification.trees.hoeffding_tree import Hoe
from skmultiflow.evaluation.evaluate_prequential import Evaluat

1. Create a stream
stream = WaveformGenerator()
stream.prepare_for_use()

2. Instantiate the HoeffdingTree classifier
ht = HoeffdingTree()

3. Setup the evaluator
eval = EvaluatePrequential(show_plot=True, pretrain_size=1000,

4. Run evaluation
eval.eval(stream=stream, classifier=ht)

scikit-multiflow

Summary

- Green Al
- Explainable AI
- Ethical Issues
- Open Al
- Distributed Data Stream Mining
- Learning Fast and Slow

Albert Bifet Ricard Gavaldà Geoffrey Holmes Bernhard Pfahringer MACHINE LEARNING FOR DATA STREAMS

with Practical Examples in MOA

Thanks!

Machine Learning for Data Streams

Albert Bifet (@abifet)

Cisco-Ecole Polytechnique Symposium 2018, 10 April 2018

