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Aims

This lecture will enable you to describe and reproduce machine learning
approaches to the problem of numerical prediction. Following it you should
be able to:

• define linear regression

• reproduce the basic method of implementing linear regression

• describe least mean squares

• define the problem of non-linear regression

• define neural network learning in terms of non-linear regression

• reproduce the method of back-propagation with sigmoid function and
hidden layers

• reproduce the regression and model tree approaches for non-linear
regression
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Recommended reading: Mitchell, Chapter 4 (6.4);
Witten & Frank, pp. 119–126, 223-233.

Suggested exercises: Mitchell, 4.1-4.3, 4.5, 4.7 (4.11)

Relevant WEKA programs:
Linear Regression, Logistic, Multi-Layer Perceptron, M5P
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Introduction

So far we have considered mainly discrete representations for data and
hypotheses in Machine Learning . . .

. . . however, often find tasks where the most natural representation is that
of prediction of numeric values
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Introduction

For this class of representations, machine learning is viewed as:

searching a space of functions . . .
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Introduction

Some methods:

• linear regression (statistics) the process of computing an expression
that predicts a numeric quantity

• perceptron (machine learning) a biologically-inspired linear prediction
method
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Introduction

• multi-layer neural networks (machine learning) learning non-linear
predictors via hidden nodes between input and output

• regression trees (statistics / machine learning) tree where each leaf
predicts a numeric quantity

– the average value of training instances that reach the leaf
– internal nodes test discrete or continuous attributes

• model trees (statistics / machine learning) regression tree with linear
regression models at the leaf nodes

– can fit with non-axis-orthogonal slopes
– smoothing at internal nodes to approximate continuous function
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Dataset: predicting CPU performance

Examples: 209 different computer configurations
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Linear Regression for CPU dataset

PRP =
- 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.46 CHMAX

Regression equation
Outcome: linear sum of attribute values with appropriate weights.

Regression
The process of determining the weights for the regression equation.
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Linear Regression

Linear regression assumes that the expected value of the output given an
input, E[y|x], is linear.
Simplest case: Out(x) = wx for some unknown w.
Given the data, we can estimate w.
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Linear Regression

• Numeric attributes and numeric prediction

• Linear models, i.e. outcome is linear combination of attributes

y = w0 + w1x1 + w2x2 + . . . + wmxm

• Weights are calculated from the training data

• Predicted value for first training instance ~x(1) is:

w0x
(1)
0 + w1x

(1)
1 + w2x

(1)
2 + . . . + wmx(1)

m =
m∑

j=0

wjx
(1)
j
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Minimizing Squared Error

• Difference between predicted and actual values is the error !

m+1 coefficients are chosen so that sum of squared error on all instances
in training data is minimized

Squared error:
n∑

i=1

y(i) −
m∑

j=0

wjx
(i)
j

2

Coefficients can be derived using standard matrix operations

Can be done if there are more instances than attributes (roughly speaking).

“Ordinary Least Squares” (OLS) regression – minimizing the sum of
squared distances of data points to the estimated regression line.
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Multiple Regression

Linear least squares fitting with 2 input variables.
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Regression for Classification

• Any regression technique can be used for classification

– Training: perform a regression for each class, setting the output to 1
for training instances that belong to class, and 0 for those that don’t

– Prediction: predict class corresponding to model with largest output
value (membership value)

• For linear regression this is known as multiresponse linear regression
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Pairwise regression

• Another way of using regression for classification:

– A regression function for every pair of classes, using only instances
from these two classes

– An output of +1 is assigned to one member of the pair, an output
of -1 to the other

• Prediction is done by voting

– Class that receives most votes is predicted
– Alternative: “don’t know” if there is no agreement

• More likely to be accurate but more expensive

How many regressions for k classes ?
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Logistic regression

• Problem: some assumptions violated when linear regression is applied
to classification problems (not really fitting a line)

• Alternative: logistic regression

– Designed for classification problems
– Tries to estimate class probabilities directly using maximum likelihood

method
– Uses the linear model to predict the log of the odds of the class

probability P

log(P/(1− P )) = w0x0 + w1x1 + . . . + wkxk
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Discussion of linear models

• Not appropriate if data exhibits non-linear dependencies

• But: can serve as building blocks for more complex schemes (i.e. model
trees)

• Example: multi-response linear regression defines a separating
hyperplane for any two given classes:

w
(1)
0 +w

(1)
1 x1+w

(1)
2 x2+. . .+w(1)

m xm > w
(2)
0 +w

(2)
1 x1+w

(2)
2 x2+. . .+w(2)

m xm

which can be rewritten as

(w(1)
0 − w

(2)
0 ) + (w(1)

1 − w
(2)
1 )x1 + . . . + (w(1)

m − w(2)
m )xm > 0

where ~w(1) and ~w(2) are the weight vectors for the two classes.
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Discussion of linear models

Think of the hyperplane as separating all the positives on one side from
the negatives on the other.

For pairwise linear regression this also applies – the only difference is that
only the instances in each of the two classes is considered

However, sometimes it is not possible to define a separating hyperplane,
even for some very simple functions . . .
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Discussion of linear models

Filled circle – output one; hollow circle – output zero.

AND – divide 1’s from 0’s with single line; XOR – not possible.
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Discussion of linear models

Dealing with noise – robust regression

• Statistical methods that address problem of outliers are called robust

• Possible way of making regression more robust:

– Minimize absolute error instead of squared error
– Remove outliers (i.e. 10% of points farthest from the regression

plane)
– Minimize median of squares instead of mean of squares (copes with

outliers in x and y direction)
∗ Geometric interpretation: finds narrowest strip covering half the

observations (see figure)
∗ Thickness measured in vertical direction
∗ Least median of squares lies in centre of fuzzy grey band in figure
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Discussion of linear models
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Artificial Neural Networks

• Threshold units

• Gradient descent

• Multilayer networks

• Backpropagation

• Hidden layer representations

• Advanced topics
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Connectionist Models

Consider humans:

• Neuron switching time ≈ .001 second

• Number of neurons ≈ 1010

• Connections per neuron ≈ 104−5

• Scene recognition time ≈ .1 second

• 100 inference steps doesn’t seem like enough

→ much parallel computation

COMP9417: April 1, 2009 Machine Learning for Numeric Prediction: Slide 22



Connectionist Models

Properties of artificial neural nets (ANN’s):

• Many neuron-like threshold switching units

• Many weighted interconnections among units

• Highly parallel, distributed process

• Emphasis on tuning weights automatically
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When to Consider Neural Networks

• Input is high-dimensional discrete or real-valued (e.g. raw sensor input)

• Output is discrete or real valued

• Output is a vector of values

• Possibly noisy data

• Form of target function is unknown

• Human readability of result is unimportant

Examples:

• Speech phoneme recognition (NetTalk)

• Image classification (see face recognition data)

• many others . . .
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ALVINN drives 70 mph on highways
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ALVINN

Sharp
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Perceptron

w1

w2

wn

w0

x1

x2

xn

x0=1

.

.

.
Σ

Σ wi xi
n

i=0 1 if                > 0

-1 otherwise{o = S wi xi
n

i=0

o(x1, . . . , xn) =
{

1 if w0 + w1x1 + · · ·+ wnxn > 0
−1 otherwise.
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Perceptron

Sometimes simpler vector notation used:

o(~x) =
{

1 if ~w · ~x > 0
−1 otherwise.
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Decision Surface of a Perceptron

x1
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+

+
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Represents some useful functions

• What weights represent g(x1, x2) = AND(x1, x2)?
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Decision Surface of a Perceptron

But some functions not representable

• e.g., not linearly separable

• Therefore, we’ll want networks of these...
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Perceptron training rule

wi ← wi + ∆wi

where
∆wi = η(t− o)xi

Where:

• t = c(~x) is target value

• o is perceptron output

• η is small constant (e.g., .1) called learning rate
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Perceptron training rule

Can prove it will converge

• If training data is linearly separable

• and η sufficiently small
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Gradient Descent

To understand, consider simpler linear unit, where

o = w0 + w1x1 + · · ·+ wnxn

Let’s learn wi’s that minimize the squared error

E[~w] ≡ 1
2

∑
d∈D

(td − od)2

Where D is set of training examples
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Gradient Descent
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Gradient Descent

Gradient

∇E[~w] ≡
[

∂E

∂w0
,

∂E

∂w1
, · · · ∂E

∂wn

]
Training rule:

∆~w = −η∇E[~w]

i.e.,

∆wi = −η
∂E

∂wi
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Gradient Descent

∂E

∂wi
=

∂

∂wi

1
2

∑
d

(td − od)2

=
1
2

∑
d

∂

∂wi
(td − od)2

=
1
2

∑
d

2(td − od)
∂

∂wi
(td − od)

=
∑

d

(td − od)
∂

∂wi
(td − ~w · ~xd)

∂E

∂wi
=

∑
d

(td − od)(−xi,d)
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Gradient Descent

Gradient-Descent(training examples, η)

Each training example is a pair 〈~x, t〉, where ~x is the vector of input
values, and t is the target output value. η is the learning rate (e.g., .05).

Initialize each wi to some small random value

Until the termination condition is met, Do
Initialize each ∆wi to zero
For each 〈~x, t〉 in training examples, Do

Input the instance ~x to the unit and compute the output o
For each linear unit weight wi

∆wi ← ∆wi + η(t− o)xi

For each linear unit weight wi

wi ← wi + ∆wi
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Training Perceptron vs. Linear unit

Perceptron training rule guaranteed to succeed if

• Training examples are linearly separable

• Sufficiently small learning rate η

Linear unit training rule uses gradient descent

• Guaranteed to converge to hypothesis with minimum squared error

• Given sufficiently small learning rate η

• Even when training data contains noise

• Even when training data not separable by H
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Incremental (Stochastic) Gradient Descent
Batch mode Gradient Descent:

Do until satisfied

1. Compute the gradient ∇ED[~w]

2. ~w ← ~w − η∇ED[~w]

Incremental mode Gradient Descent:

Do until satisfied

• For each training example d in D

1. Compute the gradient ∇Ed[~w]
2. ~w ← ~w − η∇Ed[~w]
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Incremental (Stochastic) Gradient Descent

ED[~w] ≡ 1
2

∑
d∈D

(td − od)2

Ed[~w] ≡ 1
2
(td − od)2

Incremental Gradient Descent can approximate Batch Gradient Descent
arbitrarily closely if η made small enough
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Multilayer Networks of Sigmoid Units

F1 F2

head hid who’d hood
... ...
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Multilayer Networks of Sigmoid Units
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Sigmoid Unit

w1

w2

wn

w0

x1

x2

xn

x0 = 1

.

.

.
Σ

net = S wi xii=0

n
1

1 + e
-neto = s (net) = 

σ(x) is the sigmoid function

1
1 + e−x
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Sigmoid Unit

Nice property: dσ(x)
dx = σ(x)(1− σ(x))

We can derive gradient descent rules to train

• One sigmoid unit

• Multilayer networks of sigmoid units → Backpropagation
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Error Gradient for a Sigmoid Unit

∂E

∂wi
=

∂

∂wi

1
2

∑
d∈D

(td − od)2

=
1
2

∑
d

∂

∂wi
(td − od)2

=
1
2

∑
d

2(td − od)
∂

∂wi
(td − od)

=
∑

d

(td − od)
(
−∂od

∂wi

)
= −

∑
d

(td − od)
∂od

∂netd

∂netd
∂wi
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Error Gradient for a Sigmoid Unit

But we know:
∂od

∂netd
=

∂σ(netd)
∂netd

= od(1− od)

∂netd
∂wi

=
∂(~w · ~xd)

∂wi
= xi,d

So:

∂E

∂wi
= −

∑
d∈D

(td − od)od(1− od)xi,d
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Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

For each training example, Do

Input the training example to the network and
compute the network outputs

For each output unit k
δk ← ok(1− ok)(tk − ok)

For each hidden unit h
δh ← oh(1− oh)

∑
k∈outputs wh,kδk

Update each network weight wi,j

wi,j ← wi,j + ∆wi,j

where
∆wi,j = ηδjxi,j
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More on Backpropagation

• Gradient descent over entire network weight vector

• Easily generalized to arbitrary directed graphs

• Will find a local, not necessarily global error minimum

– In practice, often works well (can run multiple times)

• Often include weight momentum α

∆wi,j(n) = ηδjxi,j + α∆wi,j(n− 1)

• Minimizes error over training examples

– Will it generalize well to subsequent examples?

• Training can take thousands of iterations → slow!

• Using network after training is very fast
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Learning Hidden Layer Representations

Inputs Outputs
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Learning Hidden Layer Representations

A target function:

Input Output
10000000 → 10000000
01000000 → 01000000
00100000 → 00100000
00010000 → 00010000
00001000 → 00001000
00000100 → 00000100
00000010 → 00000010
00000001 → 00000001

Can this be learned??
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Learning Hidden Layer Representations

An autoassociator network:

Inputs Outputs
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Learning Hidden Layer Representations

Learned hidden layer representation:

Input Hidden Output
Values

10000000 → .89 .04 .08 → 10000000
01000000 → .01 .11 .88 → 01000000
00100000 → .01 .97 .27 → 00100000
00010000 → .99 .97 .71 → 00010000
00001000 → .03 .05 .02 → 00001000
00000100 → .22 .99 .99 → 00000100
00000010 → .80 .01 .98 → 00000010
00000001 → .60 .94 .01 → 00000001
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Training
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Training the network
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Training the network
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Convergence of Backpropagation

Gradient descent to some local minimum

• Perhaps not global minimum...

• Add momentum

• Stochastic gradient descent

• Train multiple nets with different initial weights

Nature of convergence

• Initialize weights near zero

• Therefore, initial networks near-linear

• Increasingly non-linear functions possible as training progresses
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Expressive Capabilities of ANNs

Boolean functions:

• Every Boolean function can be represented by network with single
hidden layer

• but might require exponential (in number of inputs) hidden units

Continuous functions:

• Every bounded continuous function can be approximated with arbitrarily
small error, by network with one hidden layer [Cybenko 1989; Hornik
et al. 1989]

• Any function can be approximated to arbitrary accuracy by a network
with two hidden layers [Cybenko 1988].
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Overfitting in ANNs
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Overfitting in ANNs
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Alternative Error Functions

Penalize large weights:

E(~w) ≡ 1
2

∑
d∈D

∑
k∈outputs

(tkd − okd)2 + γ
∑
i,j

w2
ji

Train on target slopes as well as values:

E(~w) ≡ 1
2

∑
d∈D

∑
k∈outputs

(tkd − okd)2 + µ
∑

j∈inputs

(
∂tkd

∂xj
d

− ∂okd

∂xj
d

)2


Tie together weights, e.g., in phoneme recognition network
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Recurrent Networks
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Evaluating numeric prediction

• Same strategies: independent test set, crossvalidation, significance
tests, etc.

• Difference: error measures

• Actual target values: a1, a2, . . . , an

• Predicted target values: p1, p2, . . . , pn

• Most popular measure: mean-squared error

(p1 − a1)2 + . . . + (pn − an)2

n
Easy to manipulate mathematically.
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Other measures

The root mean-squared error:√
(p1 − a1)2 + . . . + (pn − an)2

n
The average (mean) absolute error is less sensitive to outliers than the
mean-squared error:

|p1 − a1|+ . . . + |pn − an|
n

Sometimes relative error values are more appropriate (e.g. 10% for an
error of 50 when predicting 500)
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Non-linear Regression with Trees

Despite some nice properties of ANNs, such as generalization to deal
sensibly with unseen input patterns and robustness to losing neurons
(prediction performance can degrade gracefully), they still have some
problems:

• Back-propagation does not appear to scale well – large nets may have to
be partitioned into separate modules that can be trained independently,
e.g. NetTalk

• ANNs are not very transparent – hard to understand the representation
of what has been learned

Possible solution: exploit success of tree-structured approaches in ML
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Example: Regression Tree
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Regression trees

• Differences to decision trees:

– Splitting criterion: minimizing intra-subset variation
– Pruning criterion: based on numeric error measure
– Leaf node predicts average class values of training instances reaching

that node

• Can approximate piecewise constant functions

• Easy to interpret

• More sophisticated version: model trees
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Regression Tree on CPU dataset
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Model Tree
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Model trees

• Like regression trees but with linear regression functions at each node

• Linear regression applied to instances that reach a node after full tree
has been built

• Only a subset of the attributes is used for LR

– Attributes occurring in subtree (+maybe attributes occurring in path
to the root)

• Fast: overhead for Linear Regression (LR) not large because usually
only a small subset of attributes is used in tree
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Model Tree on CPU dataset
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Smoothing

• Näıve prediction method – output value of LR model at corresponding
leaf node

• Improve performance by smoothing predictions with internal LR models

– Predicted value is weighted average of LR models along path from
root to leaf

• Smoothing formula: p′ = np+kq
n+k where

– p′ prediction passed up to next higher node
– p prediction passed to this node from below
– q value predicted by model at this node
– n number of instances that reach node below
– k smoothing constant

• Same effect can be achieved by incorporating the internal models into
the leaf nodes
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Building the tree

• Splitting criterion: standard deviation reduction

SDR = sd(T )−
∑

i

|Ti|
|T |
× sd(Ti)

where T1, T2, . . . are the sets from splits of data at node.

• Termination criteria (important when building trees for numeric
prediction):

– Standard deviation becomes smaller than certain fraction of sd for
full training set (e.g. 5%)

– Too few instances remain (e.g. less than four)
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Pruning the tree

• Pruning is based on estimated absolute error of LR models

• Heuristic estimate:

n + v

n− v
× average absolute error

where n is number of training instances that reach the node, and v is
the number of parameters in the linear model

• LR models are pruned by greedily removing terms to minimize the
estimated error

• Model trees allow for heavy pruning: often a single LR model can
replace a whole subtree

• Pruning proceeds bottom up: error for LR model at internal node is
compared to error for subtree
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Discrete (nominal) attributes

• Nominal attributes converted to binary attributes and treated as
numeric

– Nominal values sorted using average class value for each one
– For k-values, k − 1 binary attributes are generated
∗ the ith binary attribute is 0 if an instance’s value is one of the first

i in the ordering, 1 otherwise

• Best binary split with original attribute provably equivalent to a split
on one of the new attributes
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Pseudo-code for M5prime

• Four methods:

– Main method: MakeModelTree()
– Method for splitting: split()
– Method for pruning: prune()
– Method that computes error: subtreeError()

• Note: linear regression method is assumed to perform attribute subset
selection based on error
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MakeModelTree()

MakeModelTree(instances)
{

SD = sd(instances)
for each k-valued nominal attribute

convert into k-1 synthetic binary attributes
root = newNode
root.instances = instances
split(root)
prune(root)
printTree(root)

}

COMP9417: April 1, 2009 Machine Learning for Numeric Prediction: Slide 76

split()

split(node)
{

if sizeof(node.instances) < 4 or
sd(node.instances) < 0.05*SD

node.type = LEAF
else

node.type = INTERIOR
for each attribute

for all possible split positions of the attribute
calculate the attribute’s SDR

node.attribute = attribute with maximum SDR
split(node.left)
split(node.right)

}
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prune()

prune(node)
{

if node = INTERIOR then
prune(node.leftChild)
prune(node.rightChild)
node.model = linearRegression(node)
if subtreeError(node) > error(node) then

node.type = LEAF
}
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subtreeError()

subtreeError(node)
{

l = node.left; r = node.right
if node = INTERIOR then

return (sizeof(l.instances)*subtreeError(l)
+ sizeof(r.instances)*subtreeError(r))
/ sizeof(node.instances)

else return error(node)
}
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Summary

• ANNs since 1940s; popular in 1980s, 1990s

• Regression trees were introduced in CART

• Quinlan proposed the M5 model tree inducer

• M5′: slightly improved version that is publicly available

• Quinlan also investigated combining instance-based learning with M5

• CUBIST: Quinlan’s commercial rule learner for numeric prediction
www.rulequest.com

• Interesting comparison: Neural nets vs. M5 – both do non-linear
regression
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