# Machine Learning for Quantum Mechanics 

Matthias Rupp

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

Hands-on Workshop on Density Functional Theory and Beyond July 31-August 11 2017, Humboldt University, Berlin, Germany

## Outline

1. Rationale quantum mechanics, machine learning
2. Kernel learning kernel trick, kernel ridge regression
3. Model building overfitting, validation, free parameters
4. Property prediction representation, energies of molecules and crystals

Hands-on session property prediction with qmmlpack

Rationale

## Challenges in quantum mechanical simulations

High-throughput screening


Castelli et al, Energy Environ Sci 12, 2013
Long simulations


Liwo et al, Proc Natl Acad Sci USA 102: 2362, 2005

Large systems


Image: Tarini et al, IEEE Trans Visual Comput Graph 2006
Quantum effects


Image: Hiller et al, Nature 476: 236, 2011

## Approximations

Hierarchy of numerical approximations to Schrödinger's equation:

| Abrv. | Method | Runtime |
| :--- | :--- | :--- |
| FCI | Full Configuration Interaction (CISDTQ) | $O\left(N^{10}\right)$ |
| CC | Coupled Cluster (CCSD(T)) | $O\left(N^{7}\right)$ |
| FCI | Full Configuration Interaction (CISD) | $O\left(N^{6}\right)$ |
| MP2 | Møller-Plesset second order perturbation theory | $O\left(N^{5}\right)$ |
| HF | Hartree-Fock | $O\left(N^{4}\right)$ |
| DFT | Density Functional Theory (Kohn-Sham) | $O\left(N^{3-4}\right)$ |
| TB | Tight Binding | $O\left(N^{3}\right)$ |
| MM | Molecular Mechanics | $O\left(N^{2}\right)$ |

$N=$ system size
Is it possible to be both accurate and fast?

## The key idea

- Exploit redundancy in related QM calculations
- Interpolate between QM calculations using ML
- Smoothness assumption (regularization)



## Relationship to other models

| quantum chemistry | force fields | machine learning |
| :---: | :---: | :---: |
| generally applicable no or little fitting form from physics deductive few or no parameters slow small systems | limited domain fitting to one class form from physics mostly deductive some parameters fast large systems | generally applicable refitted to any dataset form from statistics inductive many parameters in between large systems |

## Machine learning

Machine learning (ML) studies algorithms whose performance improves with data ("learning from experience").

$\rightarrow \quad$ Model $\hat{f}$

- widely applied, many problem types and algorithms
- systematic identification of regularity in data for prediction \& analysis
- interpolation in high-dimensional spaces
- inductive, data-driven; empirical in a principled way
- connections to statistics, mathematics, computer science, physics, ... example: information theory


## Problem types

Unsupervised learning: Data do not have labels
Given $\left\{x_{i}\right\}_{i=1}^{n}$, find structure

- dimensionality reduction

Supervised learning: Data have labels Given $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, predict $\tilde{y}$ for new $\tilde{x}$

- novelty detection
- classification
- regression
- structured output learning

Semi-supervised learning: Some data have labels
Given $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ and $\left\{x_{i}\right\}_{i=1}^{m}, m \gg n$, predict $\tilde{y}$ for new $\tilde{x}$
Active learning: Algorithm chooses data to label Choose $n$ data $\left\{x_{i}\right\}_{i=1}^{n}$ to predict $\tilde{y}$ for new $\tilde{x}$

## Artificial neural networks



- parametric model
$f\left(x_{i, j}\right)=h\left(\sum_{k=1}^{n_{i}} w_{i-1, k} f\left(x_{i-1, k}\right)\right)$
- universal function approximator
- training via non-convex optimization

Kernel learning

## The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products

```
    000000000000000000000000000000, x
-2\pi
    Input space \mathcal{X}
```


## The kernel trick

Idea:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm to use only inner products


Input space $\mathcal{X}$
$\xrightarrow{\phi}$
Feature space $\mathcal{H}$

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z)=\langle\phi(x), \phi(z)\rangle
$$

## Kernel functions

Kernels correspond to inner products.
If $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is symmetric positive semi-definite, then $k(x, z)=\langle\phi(x), \phi(z)\rangle$ for some $\phi: \mathcal{X} \rightarrow \mathcal{H}$.

Inner products encode information about lengths and angles: $\|x-z\|^{2}=\langle x, x\rangle-2\langle x, z\rangle+\langle z, z\rangle, \quad \cos \theta=\frac{\langle x, z\rangle}{\|x\|\|z\|}$.


- well characterized function class
- closure properties
- access data only by $\boldsymbol{K}_{i j}=k\left(x_{i}, x_{j}\right)$
- $\mathcal{X}$ can be any non-empty set


## Examples of kernel functions

Linear kernel<br>$k(\boldsymbol{x}, \boldsymbol{z})=\langle\boldsymbol{x}, \boldsymbol{z}\rangle$

Gaussian kernel
$\exp \left(-\|\boldsymbol{x}-\boldsymbol{z}\|^{2} / 2 \sigma^{2}\right)$
Laplacian kernel
$\exp \left(-\|\boldsymbol{x}-\boldsymbol{z}\|_{1} / \sigma\right)$







## Comparison of linear and kernel ridge regression

Ridge regression

$$
\begin{gathered}
\text { Minimizing } \\
\min _{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2}
\end{gathered}
$$

yields

$$
\boldsymbol{\beta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

for models

$$
f(\boldsymbol{x})=\sum_{i=1}^{d} \beta_{i} \boldsymbol{x}_{i}
$$

## Kernel ridge regression

Minimizing
$\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}$
yields
$\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}$.
for models

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}\right)
$$

## The basis function picture



## Representer theorem

Kernel models have form

$$
f(\boldsymbol{z})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{z}\right)
$$

due to the representer theorem:
Any function minimizing a regularized risk functional

$$
\ell\left(\left(\boldsymbol{x}_{\boldsymbol{i}}, y_{i}, f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)_{i=1}^{n}\right)+g(\|f\|)
$$

admits to above representation.

## Intuition:

- model lives in space spanned by training data
- weighted sum of basis functions


## Centering in kernel feature space

Centering $\boldsymbol{X}$ and $\boldsymbol{y}$ is equivalent to having a bias term $b$.
For kernel models, center in kernel feature space:

$$
\begin{array}{r}
\tilde{k}(\boldsymbol{x}, \boldsymbol{z})=\left\langle\phi(\boldsymbol{x})-\frac{1}{n} \sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right), \phi(\boldsymbol{z})-\frac{1}{n} \sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right\rangle \\
\Rightarrow \tilde{\boldsymbol{K}}=\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1}\right) \boldsymbol{K}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1}\right)
\end{array}
$$

Some kernels like Gaussian and Laplacian kernels do not need centering Poggio et al., Tech. Rep., 2001

Model building

How regularization helps against overfitting


## Effect of regularization

Underfitting



Fitting



Overfitting



Rupp, PhD thesis, 2009; Vu et al, Int. J. Quant. Chem., 1115, 2015

## Learning theory


prediction error $=$

$$
\begin{aligned}
& \text { approximation error a } \\
+ & \text { estimation error e } \\
+ & \text { optimization error o }
\end{aligned}
$$

$\mathcal{F}=$ model class, $A=$ true model, $B=$ best model in class, $C=$ best identifiable model (data), $D=$ best identifiable model (optimization)

Changes in size of $\mathcal{F} \Leftrightarrow a$ vs. $e \Leftrightarrow$ bias-variance trade-off

## Validation

## Why?

- assess model performance
- optimize free parameters (hyperparameters)


## Which statistics?

- root mean squared error (RMSE)
- mean absolute error (MAE)
- maximum error
- squared correlation coefficient $\left(R^{2}\right)$

What else can we learn from validation?

- distribution of errors, not only summary statistics
- convergence of error with number of samples


## Validation

Golden rule:

## Never use training data for validation

Violation of this rule leads to overfitting by measuring flexibility in fitting instead of generalization ability rote learner example

If there is sufficient data:

- divide data into two subsets, training and validation
- build model on training subset
- estimate error of trained model on validation subset

Sometimes an external validation set is used in addition.

## Statistical validation

If too few data, statistical re-sampling methods can be used, such as cross-validation, bagging, bootstrapping, jackknifing

## $\boldsymbol{k}$-fold cross-validation:

- divide data into $k$ evenly sized subsets
- for $i=1, \ldots, k$, build model on union of subsets $\{1, \ldots, k\} \backslash\{i\}$ and validate on subset $i$

All model building steps must be repeated for data splits:

- all pre-processing such as feature selection and centering
- optimization of hyperparameters

Hyperparameters: physically motivated choices

## Length scale $\sigma$ :

$\sigma \approx\|\boldsymbol{x}-\boldsymbol{z}\|_{1}$
median nearest neighbor distance
Regularization strength $\lambda$ :
= noise variance (Bayesian)
$\widehat{=}$ leeway around $y_{i}$ for fitting
$\Rightarrow$ target accuracy


## Hyperparameters: statistically motivated choices

- data-driven method for choosing hyperparameters
- optimize using grid search or gradient descent
- use statistical validation to estimate error
- for validation and hyperparameter optimization, use nested data splits



## Nested data splits

- never use data from training in validation
- for performance assessment and hyperparameter optimization, use nested cross-validation or nested hold-out sets
- beware of overfitting

Example 1: plain overfitting
$\times$ train on all data, predict all data
split data, train, predict
Example 2: centering
$\times$ center data, split data, train \& predict split data, center training set, train, center test set, predict

Example 3: cross-validation with feature selection
$\times$ feature selection, cross-validation feature selection for each split of cross-validation

## Property prediction

## Examples

- screening: chemical interpolation

Rupp etal., Phys. Rev. Lett. 108(5): 058301, 2012

- molecular dynamics: potential energy surfaces Behler, Phys. Chem. Chem. Phys. 13(40): 17930, 2011
- dynamics simulations: crack propagation in silicon

Li et al, Phys Rev Lett 114: 096405, 2015.

- crystal structure prediction: (meta)stable states

Ghiringhelli etal., Phys. Rev. Lett. 114(10): 105503, 2015

- density functional theory: kinetic energies Snyder etal., Phys. Rev. Lett. 108(25): 253002, 2012
- transition state theory: dividing surfaces

Pozun etal., J. Chem. Phys. 136(17): 174101, 2012

- amorphous systems: relaxation in glassy liquids

Schoenholz, Cubuk et al, Nat. Phys. 12(5): 469, 2016

- design: stable interface search

Kiyohara, Oda, Tsuda, Mizoguchi, Jpn. J. Appl. Phys. 55(4): 045502, 2016

## The combinatorial nature of chemical/materials space



Gómez-Bombarelli et al, arXiv, 2016

## Learning potential energy surfaces



Chang, von Lilienfeld: CHIMIA 68, 602, 2014
von Lilienfeld, Int. J. Quant. Chem. 113, 1676, 2013.

## Predicting atomization energies

- 7165 small organic molecules (H,C,N,O,S;1-7 non-H atoms)
- DFT PBE0 atomization energies
- kernel ridge regression, Gaussian kernel $k\left(\mathbf{M}, \mathbf{M}^{\prime}\right)=\exp \left(-\frac{d^{2}\left(\mathbf{M}, \mathbf{M}^{\prime}\right)}{2 \sigma^{2}}\right)$




## Coulomb matrix

$$
\mathbf{M}_{i j}= \begin{cases}\frac{1}{2} Z_{i}^{2.4} & \text { for } i=j \\ \frac{Z_{i} Z_{j}}{\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|} & \text { for } i \neq j\end{cases}
$$

- atom positions $\boldsymbol{R}_{\boldsymbol{i}}$ and proton numbers $Z_{i}$
- sort by simultaneously permuting rows and columns
- Frobenius norm, pad with zeros to allow different sizes



## Extension to other properties

Learning the map from molecular structure to molecular properties

- various properties
- various levels of theory
- small organic molecules
- Coulomb matrix representations
- kernel learning, deep neural networks
- for 5k training molecules, errors are comparable to the reference


Montavon et al, New. J. Phys., 2013; Hansen et al, J. Chem. Theor. Comput., 2013.

## Local properties

Local interpolation is global extrapolation.


- linear scaling of computational effort with system size
- size consistent in the limit
- requires partitioning for global properties


## Summary

1. machine learning finds regularity in data for analysis or prediction, improving with more data
2. kernel trick: implicit transformation to high-dimensional spaces, with kernel ridge regression as example
3. for validation, avoid over-fitting by following the golden rule
4. interpolation of electronic structure calculations; example: atomization energies of organic molecules

## Tutorial

Matthias Rupp:
Machine Learning for Quantum Mechanics in a Nutshell International Journal of Quantum Chemistry 15(16): 1058-1073, 2015 http://doi.org/10.1002/qua. 24954

## Links

http://mrupp.info
(Publications)
http://qmml.org
(Datasets)

