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Abstract

We compare machine learning methods applied to a difficaltwerld problem: predicting com-
puter hard-drive failure using attributes monitored intdly by individual drives. The problem is
one of detecting rare events in a time series of noisy andarangetrically-distributed data. We
develop a new algorithm based on the multiple-instancaiegiframework and the naive Bayesian
classifier (mi-NB) which is specifically designed for the ltalse-alarm case, and is shown to have
promising performance. Other methods compared are sup@cidr machines (SVMs), unsuper-
vised clustering, and non-parametric statistical testekisum and reverse arrangements). The
failure-prediction performance of the SVM, rank-sum andNBi algorithm is considerably bet-
ter than the threshold method currently implemented inediiwhile maintaining low false alarm
rates. Our results suggest that nonparametric statiséstd should be considered for learning
problems involving detecting rare events in time series.d&n appendix details the calculation
of rank-sum significance probabilities in the case of disgréed observations, and we give new
recommendations about when the exact calculation shoulség instead of the commonly-used
normal approximation. These normal approximations mayasgqularly inaccurate for rare event
problems like hard drive failures.

Keywords: hard drive failure prediction, rank-sum test, support eeachachines (SVM), exact
nonparametric statistics, multiple instance naive-Bayes

1. Introduction

We present a comparison of learning methods applied to a difficult reddiyattern recognition

problem: predicting impending failure in hard disk drives. Modern hangedrare reliable devices,
yet failures can be costly to users and many would benefit from a wadfipgtential problems

that would give them enough time to backup their data. The problem carab&ctérized as one of
detecting rare events from a time series of noisy and nonparametricalljpalistt attributes.
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Hard drive manufacturers have been developing self-monitoring teapnaiotheir products
since 1994, in an effort to predict failures early enough to allow usdrad&up their data (Hughes
et al., 2002). This Self-Monitoring and Reporting Technology (SMARJStem uses attributes
collected during normal operation (and during off-line tests) to set a éajoediction flag. The
SMART flag is a one-bit signal that can be read by operating systems mdeptrty software to
warn users of impending drive failure. Some of the attributes used to maKailime prediction
include counts of track-seek retries, read errors, write faults, regdldcsectors, head fly height
too low or high, and high temperature. Most internally-monitored attributegsraoe count data,
implying positive integer data values, and a pattern of increasing attributesvédu their rates of
change) over time is indicative of impending failure. Each manufactureridles and uses its own
set of attributes and algorithm for failure prediction. Every time a failurenimgris triggered the
drive can be returned to the factory for warranty replacement, so metouérs are very concerned
with reducing the false alarm rates of their algorithms. Currently, all maturas use a threshold
algorithm which triggers a SMART flag when any single attribute exceedsdefined value. These
thresholds are set conservatively to avoid false alarms at the expepssdtive accuracy, with
an acceptable false alarm rate on the order of 0.1% per year (that islriwaen 1000). For the
SMART algorithm currently implemented in drives, manufacturers estimate tlueefaletection
rate to be 3-10%. Our previous work has shown that by using nonpararsitistical tests, the
accuracy of correctly detected failures can be improved to as much @8%@vhile maintaining
acceptably low false alarm rates (Hughes et al., 2002; Hamerly and E@8#).

In addition to providing a systematic comparison of prediction algorithms, thereva main
novel algorithmic contributions of the present work. First, we cast thd Heve failure predic-
tion problem as a multiple-instance (MI) learning problem (Dietterich et al.718fd develop a
new algorithm termed multiple-instance naive Bayes (mi-NB). The mi-NB algoralheres to
the strict MI assumption (Xu, 2003) and is specifically designed with the Itsefalarm case in
mind. Our second contribution is to highlight the effectiveness and compughdiiciency of
nonparametric statistical tests in failure prediction problems, even when cednwith powerful
modern learning methods. We show that the rank-sum test provides gdodnpance in terms of
achieving a high failure detection rate with low false alarms at a low computatiosal #hile
the rank-sum test is not a fully general learning method, it may proveilisafther problems that
involve finding outliers from a known class. Other methods compared apogwector machines
(SVMs), unsupervised clustering using the Autoclass software of<géinesn and Stutz (1995) and
the reverse-arrangements test (another nonparametric statistical tast),(1845). The best per-
formance overall was achieved with SVMs, although computational times nvaecd longer and
there were many more parameters to set.

The methods described here can be used in other applications where dessargy to detect
rare events in time series including medical diagnosis of rare diseasegdéBml Sawilowsky,
1999; Rothman and Greenland, 2000), financial forecasting sudledisting business failures and
personal bankruptcies (Theodossiou, 1993), and predicting mieahand electronic device failure
(Preusser and Hadley, 1991; Weiss and Hirsh, 1998).

1.1 Previous Work in Hard Drive Failure Prediction

In our previous work (Hughes et al., 2002) we studied the SMART fapuediction problem, com-
paring the manufacturer-selected decision thresholds to the rank-stisticsthtest. The data set
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used was from the Quantum Corporation, and contained data from twerdddels. The data set
used in the present paper is from a different manufacturer, and gxlméiny more attributes (61
vs. 14), which is indicative of the improvements in SMART monitoring that haeioed since
the original paper. An important observations made by Hughes et al. \2@¥that many of the
SMART attributes arenonparametrically distributedthat is, their distributions cannot be easily
characterized by standard parametric statistical model (such as nornilallW&hi-squared, etc.).
This observation led us to investigate nonparametric statistical tests for domgse distribution
of a test drive attribute to the known distribution of good drives. Hughed. €2002) compared
single-variate and multivariate rank-sum tests with simple thresholds. Thie-siagate test was
combined for multiple attributes using a logical OR operation, that is, if any ofitigde attribute
tests indicated that the drive was not from the good population, then e wlas labeled failed.
The OR-ed test performed slightly better than the multivariate for most of tfi@ref interest (low
false alarms). In the present paper we use only the single-variatestamkest (OR-ed decisions)
and compare additional machine learning methods, Autoclass and supptot machines. An-
other method for SMART failure prediction, calledive Bayes EMexpectation-maximization),
using the original Quantum data was developed by Hamerly and Elkan)(200& naive Bayes
EM is closely related to the Autoclass unsupervised clustering method useel pnebent work.
Using a small subset of the features provided better performance timgralishe attributes. Some
preliminary results with the current SMART data were presented in Mutraly £003).

1.2 Organization

This paper is organized as follows: In Section 2, we describe the SMART st used here, how it
differs from previous SMART data and the notation used for drivefepes, samples, etc. In Sec-
tion 3, we discuss feature selection using statistical tests such as ravarggeaents and z-scores.
In Section 4, we describe the multiple instance framework, our new algorithitipfatinstance
naive-Bayes (mi-NB), the failure prediction algorithms, including suppector machines, unsu-
pervised clustering and the rank-sum test. Section 5 presents the exgatinesults comparing
the classifiers used for failure prediction and the methods of prepingesA& discussion of our
results is given in Section 6 and conclusions are presented in SectionAppemdix describes the
calculation of rank-sum significance levels for the discrete case in tisemqee of tied values, and
new recommendations are given as to when the exact test should be sisedi iof the standard
approximate calculation.

2. Data Description

The data set consists of time series of SMART attributes from a single drideland is a different
data set than that used in Hughes et al. (2002); Hamerly and Elkan)(2@xta from 369 drives
were collected, and each drive was labejgad or failed, with 178 drives in the good class and
191 drives in the failed class. Drives labeled as good were from a itégyiabst, run in a controlled
environment by the manufacturer. Drives labeled as failed were retwonte manufacturer from
users after a failure. It should be noted that since the good drive daacsllected in a controlled
uniform environment and the failed data come from drives that wereatgbby users, it is rea-
sonable to expect that there will be differences between the two popdatisnto the different

1. The SMART data set used in this paper is available aip: // cnrr. ucsd. edu/ smart .
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Hours Temp1 ReadErr18 Servo10

1927 58 6 2944

1929 57 13 2688

1931 58 36 5184

1933 56 0 3776

Pattern 1935 57 0 4032
of n=5 1937 58 0 4480
samples 1941 56 0 8384
— 3 1943 57 2 7808
1945 57 3 2176

1947 56 14 3328

1949 57 3 2176

1951 56 8 2752

2534 56 4 2176

Ntotal 2536 59 8 2752

Figure 1: Selected attributes from a single good drive. Each row of thergiresents a sample (all
attributes recorded for a single time interval). The box showsithelected consecutive
samples in each pattery used to make a failure prediction at the time pointed at by the
arrow. The first sample available in the data set for this drive is from $leut927, as
only the most recent 300 samples are stored in drives of this model.

manner of operation. Algorithms that attempt to learn the difference betweeagotid and failed
populations may in fact be learning this difference and not the desirezteliifte between good and
nearly-failing drive samples. We highlight this point to emphasize the import@noederstanding
the populations in the data and considering alternative reasons foediffes between classes.

A sampleis all the attributes for a single drive for a single time interval. Each SMART sam-
ple was taken at two hour intervals in the operating drives, and the masitrd@0 samples are
saved on the disk. The number of available valid samples for eachiddveenoted\;, andN;
may be less than 300 for those drives that did not survive 600 hourpeyhtion. Each sample
contains the drive’s serial number, the total power-on-hours, aradt&® performance-monitoring
attributes. Not all attributes are monitored in every drive, and the unmodigdtebutes are set to
a constant, non-informative value. Note that there is no fundamentalreasy only 300 samples
were collected; this was a design choice made by the drive manufactuetinoli$ exist by which
all samples over the course of the drive’s life can be recorded ford#nalysis. Figure 1 shows
some selected attributes from a single good drive, and examples of saegibg¢w) and patterns
(the boxed area). When making a failure predictigatternx; € R™@ (wherea is the number of
attributes) is composed of theconsecutive samples and used as input to a classifier. In our exper-
imentsn was a design parameter which varied between 1 and 100. Thé&pal) represents the
data in each drive, where the set of patterns is [x1,...,Xy;] and the classification 3 € { 0,1}.

For drives labeled good); = 0 and for failed driveg); = 1.

Hughes et al. (2002) used a data set from a different manufacttiehwontained many more
drives (3744 vs. 369) but with fewer failed drives (36 vs. 191).e Harlier data set contained
fewer attributes (14 vs. 61), some of which are found in the new datausetith different names
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and possibly different methods of measurement. Also, all good and failesidhta were collected
during a single reliability test (whereas in the current set, the failed dviies returns from the
field).

A preliminary examination of the current set of SMART data was done by pipttie his-
tograms of attributes from good and failed drives. Figure 2 shows h@stogypf some representa-
tive attributes. As was found with earlier SMART data, for many of the attréotite distributions
are difficult to describe parametrically as they may be multimodal (such as thedTattribute) or
very heavy tailed. Also noteworthy, many attributes have large numberrofvalues, and these
zero-count bins are truncated in the plots. These highly non-Gausstaibutions initially lead
us to investigate nonparametric statistical tests as a method of failure preditioather pattern
recognition methods, special attention should be paid to scaling and otpeogessing.

3. Feature Selection

The process of feature selection includes not only deciding which attsiboitese in the classifier,
but also the number of time samples,used to make each decision, and whether to perform a
preprocessing transformation on these input time series. Of course,dheises depend strongly
on which type of classifier is being used, and issues of feature seledti@isa be discussed in the
following sections.

As will be demonstrated below, some attributes are not strongly correlatedfusutte drive
failure and including these attributes can have a negative impact on ciagsifiermance. Because
it is computationally expensive to try all combinations of attribute values, wéhaskast nonpara-
metric reverse-arrangements test and attribute z-scores to identify pibargéeful attributes. If an
attribute appeared promising with either method it was considered for use failtive detection
algorithms (see Section 4).

3.1 Reverse Arrangements Test

Thereverse arrangements tasta nonparametric test for trend which is applied to each attribute in
the data set (Mann, 1945; Bendat and Piersol, 2000). It is usedhseel on the idea that a pattern
of increasing drive errors is indicative of failure. Suppose we haim@sequence of observations
of a random variableg,i = 1...N. In our casex could be, for example, the seek error count of
the most recent sample. The test statistics zi'\‘:*llAi, is the sum of alfreverse arrangements
where a reverse arrangement is defined as an occurrerce af wheni < j. To find Awe use the
intermediate sum4; and the indicator functiohyj,
N
A= Z hij where hj =1(x>X) .
j=1+1
We now give an example of calculatidgfor the case oN = 10. With datax (which is assumed to
be a permutation of the ranks of the measurements),

X = [Xl,...,X]_o] = [1,4,3,7,2,8,6,10,9,5],

the values of fori =1...9 are found,

10 10 10
A= hlj:O, A= h2j:2, ... Ag= hgj:].,
2 2 2

787



MURRAY, HUGHES AND KREUTZ-DELGADO

Temp4 —— Good Failed
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Figure 2: Histograms of representative attributes from good and failegsglillustrating the non-
parametric nature of many of the attributes. Axis scales are differentafdr plot to
emphasize features of their distributions. Zero-count bins are muctr tdxae plotted
and the count-axis is shortened accordingly.
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with the valuegA] = [0,2,1,3,0,2,1,2,1]. The test statistié\ is the sum of these value&—= 12.

For large values oN, the test statisti@ is normally distributed under the null hypothesis of
no trend (all measurements are random with the same distribution) with meaargstce (Mann,
1945),

N(N—1) ,  2N3+3N?-5N

Wa=—7—> Oa 72

For small values oN, the distribution can be calculated exactly by a recursion (Mann, 194%).eq
First, we find the couny (A) of permutations of 1,2, ..., N} with A reverse arrangements,

A
Cn(A) = Cn-1(i),
i=A—N+1

whereCy(A) =0 for A< 0 andCy(A) = 0. Since every permutation is equally likely with probability
% under the null hypothesis, the probabilityA&fs CNn(!A).
Tables of the exact significance levelsfohave been made. For significance lewgAppendix

Table A.6 of Bendat and Piersol (2000) gives the acceptance regions

Anit-a/2 <A< Ana/2,

for the null hypothesis of no trend in the sequeradghat is, that; are independent observations of
the same underlying random variable).

The testis formulated assuming that the measurements are drawn from acostilistribution,
so that the ranksg are distinct (no ties). SMART error count data values are discretelvdtae
possibility of ties. It is conventional in rank-based methods to add randuse o break the ties,
or to use thenidrankmethod described in Section 4.6.

3.2 Z-scores

The z-scorecompares the mean values of each attribute in either class (good or failesdyalcu-
lated over all samples,
ms — My
Orf for3

_r 9
nf+

Ng

7=

)

wherem; ando% are the mean and variance of the attribute in failed drivgsandos are the mean
and variance in good drives; andng are the total number of samples of failed and good drives.
Large positive z-scores indicate the attribute is higher in the populatioled f@rive samples, and
that there is likely a significant difference in the means between good ded $amples. However,

it should be noted that the z-score was developed in the context of i@aussatistics, and may be
less applicable to nonparametric data (such as the error count attribliéesexbby hard drives).

3.3 Feature Selection for SMART Data

To apply the reverse arrangements test to the SMART data for the pwpfesture extraction, the
test is performed on a set of 100 samples taken at the end of the time sailablav To break
ties, uniform random noise within the range0.1,0.1] is added to each value (which are initially
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non-negative integers). The percentage of drives for which théappéthesis of no trend is rejected
is calculated for good and failed drives. Table 3.3 lists attributes and thengesf drives that have
significant trends for the good and failed populations. The null hypsliies trend) was accepted
for 1968 < A < 2981, for a significance level higher than 99%. We are interested in a#sibu
that have both a high percentage of failed drives with significant trendsadow percentage of
good drives with trends, in the belief that an attribute that increases oveirtif@éed drives while
remaining constant in good drives is likely to be informative in predicting impenigilure.

From Table 3.3 we can see that attributes such as Servo2, ReadEarat rvo10 could be
useful predictors. Note that these results are reported for a teseajronp of 100 samples from
each drive using a predefined significance level, and no learningseals This is in contrast to the
way a failure prediction algorithm must work, which must test each of masyallyN) consecutive
series of samples, and if any fail, then the drive is predicted to fail (seto8el.1 for details).

Some attributes (for example CSS) ameémulative meaning that they report the number of
occurrences since the beginning of the drive’s life. All cumulative atteibweither will have no
trend (nothing happens) or have a positive trend. Spin-ups is the nuhtieres the drive motors
start the platters spinning, which happens every time the drive is turneat @rhen it reawakens
from a low-power state. It is expected that most drives will be turnechdnoéf repeatedly, so it is
unsurprising that both good and failed drives show increasing trenigble 1. Most attributes (for
example ReadErrorl8) report the number of occurrences during thedwr sample period.

Table 3.3 lists selected attributes sorted by descending z-score. Attriledeshe top are
initially more interesting because of more significant differences in the méaeisis, the mean
value of an attribute (over all samples) for failed drives was higher thiagdod drives. Only a few
of the attributes had negative z-scores, and of these even fewersigaificant. Some attributes
with negative z-scores also appeared to be measured improperly foidsives

From the results of the reverse arrangements and z-score testsf 25sattdbutes was selected
by hand from those attributes which appear to be promising due to increatsiiite trends in
failed drives and large z-score values. The tests also help eliminate aribateire not measured
correctly, such as those with zero or very high variah@is set of attributes was used in the SVM,
mi-NB and clustering algorithms (see the next section). Individual attribntégs set were tried
one at a time with the rank-sum test. Attributes that provided good failuretaetedith low false
alarms in the classifiers were then used together (see Section 5).

We note that the feature selection process is not a black-box automatic metttbckquired
trial-and-error testing of attributes and combinations of attributes in the ctssifMany of the
attributes that appeared promising from the z-score and reversegamants tests did not actually
work well for failure prediction, while other attributes (such as Read&&pwere known to be im-
portant from our previous work and from engineering and physicsiedge of the problem gained
from discussions with the manufacturers. While an automatic feature seleatitrod would be
ideal, it would likely involve a combinatorial optimization problem which would bepatationally
expensive.

2. Attributes in the set of 25 are: GListl, PList, Servol, Servo2, Sefse/o5, ReadErrorl, ReadError2, ReadError3,
FlyHeight5, FlyHeight6, FlyHeight7, FlyHeight8, FlyHeight9, FlyHeight10, Héghtll, FlyHeightl2, ReadEr-
rorl8, ReadErrorl9, Servo7, Servo8, ReadError20, GList25t3LServol0.

3. Attributes that were not used because all measurements wergeefemp2, Servo4, ReadErr13-16. Also excluded
are other attributes that appear to be measured improperly for ceritags dre FlyHeight13-16, Temp5, and Temp6.
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Attribute % Good| % Failed

Templ 11.8% 48.2%
Temp3 34.8% 42.9%
Temp4 8.4% 58.9%
GListl 0.6% 10.7%
PList 0.6% 3.6%
Servol 0.0% 0.0%
Servo2 0.6% 30.4%
Servo3 0.6% 0.0%
CSS 97.2% 92.9%

ReadErrorl 0.0% 0.0%
ReadErrorl 0.6% 5.4%
ReadError3 0.0% 0.0%
WriteError 1.1% 0.0%
ReadErrorl8 0.0% 41.1%
ReadError19 0.0% 0.0%

Servo7 0.6% 0.0%
ReadError20 0.0% 0.0%
GList3 0.0% 8.9%
Servol0 1.7% 39.3%

Table 1: Percent of drives with significant trends by the reversegeraents test for selected at-
tributes, which indicates potentially useful attributes. Note that this test isrpeetl only
on the lasin = 100 samples of each drive, while a true failure prediction algorithm must
test each pattern efsamples taken throughout the drives’ history. Therefore, thesksesu
typically represent an upper bound on the performance of a reaeraegements classi-
fier. CSS are cumulative and are reported over the life of the drive,isaitsurprising
that most good and failed drives show increasing trends (which simplyatedtbat the
drive has been turned on and off).

The z-scores for each attribute were calculated using the entire datdgdt,may lead to ques-
tions about training on the test set. (The reverse-arrangements testhsalgted using only about
1/3 of the data). In practical terms, z-scores obtained using randosetsudre similar and lead
to the same conclusions about attribute selection. Conceptually, howevésstle remains: is it
correct to use data that has been used in the feature selection pratestest sets used for estimat-
ing performance? ldeally, the reuse of data should be avoided, ambtiide-resamplingnethod
should be used to estimate performance (Cherkassky and Mulier, 1838)uble-resampling, the
data is divided into draining set and grediction set, with the prediction set used only once to
measure error, and the training set further divided leéoningandvalidationsets that are used for
feature selection and parameter tuning (by way of cross-validation)blBaasampling produces
an unbiased estimate of error, but for finite data sets the estimate can be degklydent on the
initial choice of training and prediction sets, leading to high variance estimiateshe hard-drive
failure problem, the number of drives is limited, and the variance of the cleetsifin error (see Sec-
tion 5) is already quite high. Further reducing the data available by creasegarate prediction
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set would likely lead to high-variance error estimates (the variance of vdaichot be estimated).
We note that for all the classification error results in Section 5, the testasehet seen during the
training process. The issue just discussed relates to the question oewivethave biased the re-
sults by having performed statistical tests on the complete data set and usedethalts to inform
our (mostly manual) feature and attribute selection process. The best satutio collect more
data from drives to validate the false alarm and detection rates, whickeardanufacturer would
do in any case to test the method and set the operating curve level betioakienplementation of
improved SMART algorithms in drives.

Attribute Z-score
Servob 45.4
Servol0 29.5
Writes 28.1

FlyHeight6 24.8
FlyHeight8 23.7
FlyHeight9 22.7
FlyHeight7 225
Reads 22.3
FlyHeight10 21.3
FlyHeight11 19.8
FlyHeight13 19.8
FlyHeight12 19.6
Servo2 16.2
ReadErrorl8 15.1
FlyHeightl 12.4
ReadErrorl 11.2
ReadError3 10.2
ReadErrorl 9.5
PList 8.3

Table 2: Attributes with large positive z-score values.

4. Failure Detection Algorithms

We describe how the pattern recognition algorithms and statistical tests diedappghe SMART
data set for failure prediction. First, we discuss the preprocessingstitiine before the data
is presented to some of the pattern recognition algorithms (SVM and Autgctassjank-sum
and reverse-arrangements test require no preprocessing. Nedével®p a new algorithm called
multiple-instance naive-Bayes (mi-NB) based on the multiple-instance frarkeamal especially
suited to low-false alarm detection. We then describe how the SVM and enssgd clustering
(Autoclass) algorithms are applied. Finally we discuss the nonparametritisstissts, rank-sum
and reverse-arrangements.

Some notation and methods are common among all the pattern recognition algoAithecsor
x of n consecutive samples (out of thetotal samples from each drive) of each selected attribute
is used to make the classification, and every vectar obnsecutive samples in the history of the
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drive is used (see Figure 1). The lengthxab (n x a) wherea is the number of attributes. There
areN vectorsx created, with zeros prepended to thase the early history of the drive. Results
are not significantly different if the early samples are omitted (th&t isn vectors are created) and
this method allows us to make SMART predictions in the very early history of ikie.df anyx is
classified as failed, then the drive is predicted to fail. Since the classifippi®d repeatedly to all
N vectors from the same drive, each test must be very resistant to falsesala

4.1 Preprocessing: Scaling and Binning

Because of the nonparametric nature of the SMART data, two types abpessing were consid-
ered: binning and scaling. Performance comparison of the prepiogésgiven in Section 5.

The first type of preprocessing nning (or discretization), which takes one of two forms:
equal-frequencyr equal-width(Dougherty et al., 1995). In equal-frequency binning, an attributes’
values are converted into discrete levels such that the number of cowgdstatevel is the same
(the discrete levels are percentile groups). In equal-width binning, &#dbute’s range is divided
into a fixed number of equal magnitude bins and values are converted intwivibers. In both
cases, the levels are set based on the training set. In both the equal-addégaal-frequency
cases, the rank-order with respect to bin is preserved (as opposeduerting the attribute into
multiple binary nominal attributes, one for each bin). Because there argearlamber of zeros for
some attributes in the SMART data (see Figure 2), a special zero-coustusad with both equal-
width and equal-frequency binning. The two types of binning were coagpasing the Autoclass
and SVM classifiers. For the SVM, the default attribute scaling in the algoritiyplementation
(MySVM) was also compared to binning (see 4.4).

Binning (as a form of discretization) is a common type of preprocessing imimadearning
and can provide certain advantages in performance, generalizatiocoamultational efficiency
(Frank and Witten, 1999; Dougherty et al., 1995; Catlett, 1991). As sHmwDougherty et al.
(1995), discretization can provide performance improvements for cerfggsifiers (such as naive
Bayes), and that while more complex discretization methods (such as thosegrig\ventropy) did
provide improvement over binning, the difference in performance betweeing and the other
methods was much smaller than that between discretization and no discreti2dimrbinning can
reduce overfitting resulting in a simpler classifier which may generalize b&ttanK and Witten,
1999). Preserving the rank-order of the bins so that the classifier ikejnt@a account the ordering
information (which we do) has been shown to be an improvement over bimmimgndependent
nominal bins (Frank and Witten, 1999). Finally, for many algorithms, it is moraputationally
efficient to train using binned or discretized attributes rather than numeabads. Equal-width
binning into five bins (including the zero-count bin) was used succiys$fiyiHamerly and Elkan
(2001) on the earlier SMART data set, and no significant differencefouasl using up to 20 bins.

4.2 The Multiple-Instance Framework

The hard drive failure prediction problem can be castmsitiple-instance learningroblem, which

is a two-class semi-supervised problem. In multiple-instance (Ml) learningawe a set of objects
which generate manpstancef data. All the data from one object is known abay Each bag
has a single labe{ 0,1}, which is assumed to be known (and given during training), while each
instance also has a true lab@, 1} which is hidden. The label of a bag is related to the correct
labeling of the instances as follows: if the label of each instance is 0, thérathiabel is 0; ifany
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of the instances is labeled 1, then the bag label is 1. This method of classiffiag as 1 if any of
its instances is labeled 1 is known as Meassumption Because the instance labels are unknown,
the goal is to learn the labels, knowing that at least one of the instanceshridzg has label 1,
and all the instance labels in each 0 bag should be 0.

The hard drive problem can be fit naturally into the MI framework. Eaatepnx (composed
of n samples) is an instance, and the set of all patterns for a disvéhe bagxX;. The termsbag
label anddrive labelare interchangeable, with failed drives labef$d-= 1 and good drives labeled
97 = 0. The hidden instance (pattern) labels gygf = 1...N; for the N; instances in each bag
(drive). Figure 3 show a schematic of the Ml problem.

The multiple-instance framework was originally proposed by Dietterich e1897) and applied
to a drug activity prediction problem; that of discovering which moleculesh(eawhich may exist
in a number of different shapes, the group of all shapes for a spewifiecule comprising a bag)
bind to certain receptors, specifically that of smell receptors for thet eéenusk. The instances
consist of 166 attributes that represent the shape of one possiblguwatitin of a molecule from X-
ray crystallography, and the class of each molecule (bag) is 1 if the mol@nyenstance) smells
like musk as determined by experts. The so-called “musk” data sets hasmédbe standard
benchmark for multiple-instance learning.

The algorithm developed by Dietterich et al. (1997) is called axis-para@tg&ngles, and other
algorithms were subsequently developed based on many of the paradignshineraarning such
as support vector machines (Andrews et al., 2003), neural netwexk®ctation-maximization,
nearest-neighbor (Wang and Zucker, 2000), as well as specipbgrialgorithms like the diverse-
density algorithm. An extended discussion of many of these is given by B@3J2 who makes
the important distinction between two classes of Ml algorithms: those whichradbehe Mi
assumption (as described above) and those which make other assumpiiehsommonly that
the label for each positive bag is determined by some other method than simpéyiiisiance has
a positive label. Algorithms that violate the Ml assumption usually assume that thdrda all
instances in a bag is available to make a decision about the class. Such algaithdifficult to
apply to the hard drive problem, as we are interested in construction ooldisgifiers that make a
decision based on each instance (pattern) as it arrives. Algorithmsidietevthe MI-assumption
include Citation-k-Nearest-Neighbors (Wang and Zucker, 2000), S\ith polynomial minimax
kernel, and the statistical and wrapper methods of Xu (2003), and thédseotvbe considered
further for hard drive failure prediction.

4.3 Multiple Instance Naive Bayes (mi-NB)

We now develop a new multiple instance learning algorithm using naive BajsssKnown as the
simple Bayesian classifleand specifically designed to allow control of the false alarm rate. We
call this algorithm mi-NB (multiple instance-naive Bayes) because of its relttidhe mi-SVM
algorithm of Andrews et al. (2003). The mi-SVM algorithm does adhere éoMh assumption
and so could be used for the hard drive task, but since it requiresitegprelearning of an SVM,

it is presently too computationally intensive. By using the fast naive Bagesithm as the base
classifier, we can create an efficient multiple-instance learning algorithm.

The mi-NB algorithm begins by assigning a laggto each pattern: for good drives, all patterns
are assigned; = 0O, for failed drives, all patterns except for the last one in the time seris a
assigned/; = 0, with the last one assigned to the failed clags~= 1. Using these class labels, a
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Figure 3: Multiple-instance learning. The numbers are bag (drive) nisnbed each circle or
square represents an instance (pattern). Instances from clasiled ¢fives) are squares,
while instances from class 0 are circles. The + or - in each instancesegysethe hidden
underlying class of each instance, 1 or O respectively. The decisitatsuepresents the
classification boundary induced by a classifier. Grayed instancesas® thisclassified
by the decision surface. Bag 1: All - instances are classified corrextty,the bag is
correctly classified as 0 (good drive). Bag 2: One instance is clasasiegso the bag is
correctly classified as 1 (failed drive). Bag 3: One instance of the fdilied is classified
as -, but another is classified as +, so the bag is correctly classifiediffaBag 4: An
instance with true class - is labeled +, so the bag is misclassified as 1 (falsg. dbag
5: All instances of the + bag (failed drive) are classified as -, so thesasclassified
as 0 (missed detection).

naive Bayes model is trained (see below). Using the NB model, each pittéma training set is
assignedto aclags € {0,1}. Because nearly all patterns are assigned to the goodyglass, this
initial condition insures that the algorithm will start with a low false alarm rateedch iteration of
the mi-NB algorithm, for every failed drivg; = 1 that was misclassified (that is, all patterns were
classified as goodj; = 0), the patternj« (with current labely; = 0) that is most likely to be from

the failed classjx = argmax fy(X;), is relabeled to the failed clags. = 1, wherefi(x) is the
je{1...Nilyj=0}

log-posterior of class 1 (see Equation 1 below). The NB model is updated the new class labels

(which can be done very efficiently). Iterations continue until the falserafate on the training
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set increases to over the target leweh > FAqget The mi-NB algorithm is detailed in Algorithm
1. The procedure given in Algorithm 1 may be applied with different bdassifiers other than
naive Bayes, although the resulting algorithm may be computationally expamndiess there is an
efficient way to update the model without retraining from scratch. Oth@pgstg conditions could
also be used, such as detection rate greater than a certain value or fiftdrations.

Algorithm 1 mi-NB Train (for SMART failure prediction)
Input: X, 7", FAgesirea(desired false alarm rate)
Initialize:
Good drives: For drives with; = O initializey; =0for j=1...N
Failed drives: For drives with; = 1 initializey; =0for j=1...N;—1, andyy, =1
Learn NB model
Vj= argcer?oaé fc(xj)  Classify each pattern using the NB model

Find FA andDET rate
while FA < FAgqrget do
forall Misclassified failed drivesj; =0V j=1...N; do

j*= argmax fi(xj) Find pattern closest to decision surface with lagek 0
je{1..Nily;=0}
yj« <+ 1 Reclassify the pattern as failed
Update NB model
end for
yj = arg moalx fc(xj) Reclassify each pattern using the NB model
ceV,

Find FA andDET rate
end while
Return: NB model

In Bayesian pattern recognition, theaximum a posteriofMAP) method is used to estimate
the class/ of a patterrx,

y=arg ma =C
y gce{oﬁp(y X)

= argcen{}% p(xly=c)p(y=c).

The “naive” assumption in naive Bayes is that the class-conditional distibp(x|y = ¢) is fac-
torial (independent componentg)(x|y = ¢) = [Tm1 P(Xmly = ¢) wheren-a is the size o (see
Section 2). The class estimate becomes,

n-a
fe(x) = 3 logp(xmly = c)+logp(y =c)
m=1

y= f 1
y argcer?(% (), (1)

where we have used estimatg®f the probabilities. Naive Bayes has been found to work well
in practice even in cases where the componggtare not independent, and a discussion of this
is given by Domingos and Pazzani (1997). Assuming discrete distribufitong,, counts of the
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number elements{#} can be found. Training a naive Bayes classifier is then a matter of findéng th
smoothed empirical estimates,

#{xm=Kky=c}+/

ﬁ(xm:k|y:C): #{y:C}+2€
o #Hy=ci+/
Ply=c) = #{patterng +2¢ "’ @

where/ is a smoothing parameter, which we set/te- 1 corresponding to Laplace smoothing
(Orlitsky et al. (2003), who also discuss more recent methods for estinatbgbilities, including
those based on the Good-Turing estimator). Ng and Jordan (2002)tehowaive Bayes has a
higher asymptotic error rate (as the amount of training data increase#)abut approaches this
rate more quickly than other classifiers and so may be preferred in smallesproplems. Since
each time we have to switch a pattern in the mi-NB iteration, we only have to chaegedd the
counts in (2), updating the model after relabeling certain patterns is v&try fa

Next, we show that the mi-NB algorithm has non-decreasing detection saldarm rates
over the iterations.

Lemma 1 At each iteration t, the mi-NB algorithm does not decrease the detectiofabsedalarm
rates (as measured on the training set) over the previous iteratioh t

1Y0) < 19 (xj)
fo V)= ') Vi=1..N. ©

Proof At iterationt — 1 the probability estimates for a certdirare,
~ b+/¢
P-1(Xm=ky=1) = dr20°

whereb = #{xn = k,y = c},d = #{y = c}, and of coursé < d. Since class estimates are always
switched fromy; =0 to 1, for somek

A b+/+1
Plm=ky=1)= 4 o1

(and for otheik it will remain constant). It is now shown that the conditional probability estimates
are non-decreasing,

Po1(xm=Kky=1) < p(xm=Kky=1)
(b+0)(d+20+1) < (d+20)(b+/4+1)
b<d+/,

with equality only in the case df = d,/ = 0. Similarly, the prior estimate is also non-decreasing,
B_1(y=1) < pi(y=1). From (1) this implies that\" " (x) < Y (x).
For classy = 0, it can similarly be shown theh_1(Xm = kly = 0) > pi(Xm = kly = 0) and

Pi—1(y=0) > p(y=0), implying fét_l) (xj) > fét)(xj) and completing the proof. |
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Note that Algorithm 1 never relabels a failed pattern as a good pattern, awitfis reduce
the detection rate (and invalidate the proof of Lemma 1 in Section 4.3). The irotiditeons of
the algorithm ensure a low false alarm rate, and the algorithm proceedgjfeedy fashion) to
pick patterns that are mostly likely representatives of the failed class witbawaluating previous
choices. A more sophisticated algorithm could be designed that moves pditark to the good
class as they become less likely failed candidates, but this requires a commalbatexpensive
combinatorial search.

4.4 Support Vector Machines (SVMSs)

The support vector machine (SVM) is a popular modern pattern recogmitidimregression algo-
rithm. First developed by Vapnik (1995), the principle of the SVM classifido project the data
into a higher dimensional space where the classes are separated by dyipegriane which is
defined by a small set of support vectors. For an introduction to SVMgdtiern recognition, see
Burges (1998). The hyperplane is found by a quadratic optimizatioriggrplwhich can be for-
mulated for either the case where the patterns are linearly separable, mumtfieearly separable
case which requires the use of slack varial§lefor each pattern and a paramefthat penalizes
the slack. We use the non-linearly separable case and in addition usertiffenalties.*, L~ for
incorrectly labeling each class. The hyperplane is found by solving,

1
min —HWH2+C< LTE + LEi)
whg 2 Vi|in:+1 Vi|yi2:71
subject to: yi(wT@(x;) +b) >1-§;

& >0

wherew andb are the parameters of the hyperplane w'@(x) +b andq(-) is the mapping to
the high-dimensional space implicit in the kerkéx;,xk) = @(xj)T@(xx) (Burges, 1998). In the
hard-drive failure problend,™ penalizes false alarms, ahd penalizes missed detections. Sifite
is multiplied by bothL™ andL~, there are only two independent parameters and weset 1 and
adjustC,L™ when doing a grid search for parameters.

To apply the SVM to the SMART data set, drives are randomly assigned imtingaand test
sets for a single trial. For validation, means and standard deviations otidetaad false alarm
rates are found over 10 trials, each with different training and test &stsh pattern is assigned
to the same label as the drive (all patterns in a failed dpive 1 are assigned to the failed class,
y; = +1, and all patterns in good drives = 0 are set to; = —1). Multiple instance learning
algorithms like mi-SVM (Andrews et al., 2003) could be used to find a better afassigning
pattern classes, but these add substantial extra computation to the akpadgiee SVM training.

We use the MySVM package developed by Ruping (2000). Parameters for the MySVM soft-
ware are set as followse psilon= 1072, maxiterations= 10000, convergenceepsilon= 103,
When equal-width or equal-frequency binning is used (see Sectiomé. s} aleis set; otherwise,
the default attribute scaling in MySVM is used. The paramefeasdL™* (with L~ = 1) are var-
ied to adjust the tradeoff between detection and false alarms. Kernels irestede dot product,
polynomials of degree 2 and 3, and radial kernels with width parangeter

4. MySVM is available atht t p: / / ww ai . ¢s. uni - dor t nund. de/ SOFTWARE/ MYSVM
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4.5 Clustering (Autoclass)

Unsupervised clustering algorithms can be used for anomaly detectios, Weuse the Autoclass
package (Cheeseman and Stutz, 1995) to learn a probabilistic model ditliegrdata from only
good drives. If any pattern is an anomaly (outlier) from the learned statistiodel of good drives,
then that drive is predicted to fail. Thexpectation maximization (EMilgorithm is used to find
the highest-likelihood mixture model that fits the data. A number of forms of tbiegtnility den-
sity function (pdf) are available, including Gaussian, Poisson (for integent data) and nominal
(unordered discrete, either independent or covariant). For thednae problem, they are all set
to independent nominal to avoid assuming a parametric form for any attshiisfibution. This
choice results in an algorithm very closely related torthése Bayes EMilgorithm (Hamerly and
Elkan, 2001), which was found to perform well on earlier SMART data.

Before being presented to Autoclass the attribute values are discretizezitivdo equal-freq-
uency bins or equal-width bins (Section 4.1), where the bin range is detmrhinthe maximum
range of the attribute in the training set (of only good drives). An additibimawas used for zero-
valued attributes. The training procedure attempts to find the most likely mixturelrnwodccount
for the good drive data. The number of clusters can also be determinkdtbglass, but here we
have restricted it to a small fixed number from 2 to 10. Hamerly and ElkanljZoQnd that for
the naive Bayes EM algorithm, 2 clusters with 5 bins (as above) worked Desing testing, the
estimated probability of each pattern under the mixture model is calculated. Aefaitadiction
warning is triggered for a drive if the probability of any of its samples is belatweshold (which is
a parameter of the algorithm). To increase robustness, the input patt¢éameoibetween 1 and 15
consecutive samplasof each attribute (as described above for the SVM). The Autoclasshitbices
parameter was varied to adjust tradeoff between detection and falseratasm

4.6 Rank-sum Test

The Wilcoxon-Mann-Whitney rank-sum test is used to determine if the twdorardata sets arise
from the same probability distribution (Lehmann and D’Abrera, 1998, pg.Cne sefl comes
from the drive under test and the otlers areference setomposed of samples from good drives.
The use of this test requires some assumptions to be made about the dissilutitemlying the
attribute values and the process of failure. Each attribute bas@distribution Gand anabout-to-

fail distribution F. For most of the life of the drive, each attribute value is chosen frontthend
then at some time before failure, the values begin to be choserHradrhis model posits an abrupt
change fronG to F, however, the test should still be expected to work if the distribution clgange
gradually over time, and only give a warning when it has changed sigmiffjciiom the reference
set.

The test statisti¥\s is calculated by ranking the elementshofof sizem) andT (of sizen) such
that each element &8 andT has a raniS< [1,n+ m] with the smallest element assignge: 1. The
rank-sumi\s is the sum of the rankS of the test set.

The rank-sum test is often presented assuming continuous data. Thetastiipthe SMART
data are discrete which creates the possibility of ties. Tied values aredrbplassigning identical
values to theimidrank (Lehmann and D’Abrera, 1998, pg. 18), which is the average rank tha
the values would have if they were not tied. For example, if there were #ieesents tied at the
smallest value, they would each be assigned the midié%ﬁé =2.
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If the set sizes are large enough (usually, if the smallensefl0 orm+ n > 20), the rank-sum
statisticWs is normally distributed under the null hypothesisgndR are from the same population)
due to the central limit theorem, with mean and variance:

1
EWs) = én(m+n+1)
mnim+n+1
Var(WS) - %—CT,

whereCst is the ties correction, defined as

mny (d®—d)

Cr — i=1
T~ 12m+n)(m+n—1)’

wheree is the number of distinct values Rand T, andd; is the number of tied elements at each
value (see Appendix A for more details). The probability of a particdlacan be found using the
standard normal distribution, and a critical vatuean be set at which to reject the null hypothesis.
In cases of smaller sets where the central limit theorem does not applyéoethere are many tied
values), an exact method of calculating the probability of the test statisticdysse Appendix A,
which also gives examples of calculating the test statistic).

For application to the SMART data, the referenceR&ir each attribute (sizen= 50 for most
experiments) is chosen at random from the samples of good drivege3theefT (sizen = 15 for
most experiments) is chosen from consecutive samples of the drivetestdf the test set for any
attribute over the history of the drive is found to be significantly differeatrf the reference set
R then the drive is predicted to fail. The significance lewds adjusted in the rangd0~",1071]
to vary the tradeoff between false alarms and correct detections. Wiheisme-sided test of
coming from a larger distribution tha® against the hypothesis of identical distributions.

Multivariate nonparametric rank-based tests that exploit correlationsebatattribute values
have been developed (Hettmansperger, 1984; Dietz and Killeen, 198an& et al., 2002). A
different multivariate rank-sum test was successfully applied to earlfSMdata (Hughes et al.,
2002). It exploits the fact that error counts are always positive.eHee use a simple OR test
to use two or more attributes: if the univariate rank-sum test for any attribdieates a different
distribution from the reference set, then that pattern is labeled failed. 3d@futhe OR test is
motivated by the fact that very different significance level rangesgptern) for each attribute
were needed to achieve low false alarm rates (per-drive).

4.7 Reverse Arrangements Tests

The reverse arrangements test described above for feature selemtiariso be used for failure
prediction. No training set is required, as the test is used to determine ifithegnificant trend

in the time series of an attribute. For use with the SMART data, 100 samplesasiéusach test,

and every consecutive sequence of samples is used. For eachfdmyetest of any attribute shows
a significant trend, then the drive is predicted to fail. As with the rank-ssty tiee significance

level a controls the tradeoff between detection and false alarm rates.
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5. Results

In this section we present results from a representative set of expasimenducted with the
SMART data. Due to the large nhumber of possible combinations of attributeslassifier pa-
rameters, we could not exhaustively search this space, but we hoped@iovided some insight
into the hard drive failure prediction problem and a general picture aflwddgorithms and prepro-
cessing methods are most promising. We also can clearly see that some naethsigmificantly
better than the current industry-used SMART thresholds implemented inlheed (which provide
only an estimated 3-10% detection rate with 0.1% false alarms).

5.1 Failure Prediction Using 25 Attributes

Figure 4 shows the failure prediction results in the form of a Receiverdiipg Characteristic
(ROC) curve using the SVM, mi-NB, and Autoclass classifiers with the 25 até#oselected be-
cause of promising reverse arrangements test or z-score valueSegian 3.3). One sample per
pattern was used, and all patterns in the history of each test drive vetee.t§Using more than
one sample per pattern with 25 attributes proved too computationally expdosite SVM and
Autoclass implementations, and did not significantly improve the mi-NB results.) d&textion
and false alarm rates were measured per drive: if any pattern in thesdhnigtory was classified
as failed, the drive was classified as failed. The curves were cregtpdribrming a grid search
over the parameters of the algorithms to adjust the trade-off between faisgsaand detection.
For the SVM, the radial kernel was used with the parameters adjustetiaxestokernel widthy €
[0.01,0.1,1], capacityC € [0.001,0.01,0.1,1], the cost penalty™ € [1,10,100. Table 5.3 shows
the parameters used in all SVM experiments. For Autoclass, the threshraltgtar was adjusted
in [99.99,99.90, 99.5,99.0,98.5] and the number of clusters was adjuste@ir3, 5,10].

Although all three classifiers appear to have learned some aspects obbienp, the SVM is
superior in the low false-alarm region, with 50.6% detection and no meafalsedalarms. For all
the classifiers, it was difficult to find parameters that yielded low enough fdarm rates compared
with the low 0.3-1.0% annual failure rate of hard drives. For mi-NB, evaha initial condition
(which includes only the last sample from each failed drive in the failed)cthsse is a relatively
high false alarm rate of 1.0% at 34.5% detection.

For the 25 attributes selected, the SVM with the radial kernel and defalihggrovided the
best results. Results using the linear kernel with the binning and scalist@ne in Figure 5. The
best results with the linear kernel were achieved with the default scalihgugh it was not possible
to adjust to false alarm rate to 0%. Equal-width binning results in better peafore than equal-
frequency binning for SVM and Autoclass. The superiority of equaltdwmidnning is consistent with
other experiments (not shown) and so only equal-width binning will beideredd in the remaining
sections. Using more bins (10 vs. 5) for the discretization did not improdferpgance, confirming
the results of Hamerly and Elkan (2001).

The good performance of the SVM comes at a high computational priceoassh Figure 6.
The bars represent the average time needed to train each algorithmif@nasgt of parameters.
The total training time includes the time needed for the grid search to find theohesheters.
For SVMs with the radial kernel (Figure 4), training took 497 minutes faheset of parameters,
and 17893 minutes to search all 36 points on the parameter grid. The mi-N@lalgavas much
quicker, and only had one parameter to explore, taking 17 minutes pergmur266 minutes for
the grid search.
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Figure 4: Failure prediction performance of SVM, mi-NB and Autoclassgu@i attributes (one
sample per pattern) measured per drive. For mi-NB, the results showoraggual-
width binning. Autoclass is tested using both equal-width (EW) and equailiérecy
(EF) binning (results with 5 bins shown). Error bars &k standard error in this and all

subsequent figures.
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Figure 5: Comparison of preprocessing with the SVM using 25 attributesgample per pattern).
Alinear kernel is used, and the default attribute scaling is compared witi-aqdth and

equal-frequency binning.
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Also of interest is how far in advance we are able to predict an imminent dail&igure 7
shows a histogram of the time before actual failure that the drives arectlgrpredicted as failing,
plotted for SVM at the point 56% detection, M% false alarms. The majority of detected failures
are predicted within 100 hours (about 4 days) before failure, whicHas@ enough period to be
reasonable for most users to backup their data. A substantial numlzéiuoé$ were detected over
100 hours before failure, which is one of the motivations for initially labelihgatterns from failed
drives as being examples of the failed class (remembering that our datancliges the last 600
hours of SMART samples from each drive).

5.2 Single-attribute Experiments

In an effort to understand which attributes are most useful in predicting iemhhrard-drive failure,
we tested the attributes individually using the non-parametric statistical mettaodtsgum and re-
verse arrangements). The results of the reverse arrangements tegdivatual attributes (Section
3 and Table 3.3) indicate that attributes such as ReadErrorl8 and SewioZhave high sensitiv-
ity. The ReadErrorl8 attribute appears promising withil4d of failed drives and 0 good drives
showing significant increasing trends. Figure 8 shows the failure girediesults using only the
ReadErrorl8 attribute with the rank-sum, reverse arrangements, actlaysifiers. Reducing the
number of attributes from 25 to 1 increases the speed of all classifiershignncrease is enough
so that more samples can be used per pattern, with 5 samples per pattein Bggde 8. The
rank-sum test provided the best performance, witl82#detection with false alarms too low to
measure, and 33% detection with (% false alarms. The mi-NB and Autoclass algorithms using
the ReadErrorl8 (not shown in Figure 8 for clarity) perform better tharreverse-arrangements
test and slightly worse than the SVM.

Single attribute tests using rank-sum were run on all 25 attributes selectedtior§3.3 with
15 samples per pattern. Of these 25, only 8 attributes (Figure 9) were at#¢et failures at suf-
ficiently low false alarm rates: ReadErrorl, ReadError2, ReadErReadErrorl8, ReadErrorl9,
Servo7, GList3 and Servol0. Confirming the observations of the fesdlegetion process, ReadEr-
rorl8 was the best attribute, with 27.6% detection at 0.06% false alarms.

For the rank-sum test, the number of samples to use in the referencarsgids from good
drives) is an adjustable parameter. Figure 10 shows the effects of ne$@rgnce set sizes 25, 50
and 100 samples, with no significant improvement for 100 samples oveob@llether rank-sum
test results 50 samples were used in the reference set.

5.3 Combinations of Attributes

Using combinations of attributes in the rank-sum test can lead to improvelisreser single-
attribute classifiers (Figure 11). The best single attributes from Figurer® ReadErrorl, Read-
Error3, ReadErrorl8 and ReadErrorl9. Using these four attritartdsl5 samples per pattern,
the rank-sum test detected.2%b6 of the failures, with no measured false alarms. Higher detection
rates (52.8%) can be had if more false alarms are allowed (0.7%). Thasatfiobutes were also
tested with the SVM classifier (using default scaling). Interestingly, therdkerael provided better
performance than the radial, illustrating the need to evaluate differer¢lkdfor each data set.

All the ROC curves plotted in this section include error barstatstandard error. We also
note that the number of good drives is relatively small (178) and with up%e afthese used in the
training set, measuring low false alarm rates is imprecise. When resultpargetwith false alarm
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Figure 6: Training times (in minutes) for each of the algorithms used in Figuaad 41. The train-
ing times shown are averaged over a set of parameters. The total trainingd¢iodes a
search over multiple parameters. For example, the SVM used in Figure idectquorid
search over 36 points which took a total of 17893 minutes for training witarpater se-
lection. For the rank-sum test, only one parameter needs to be adjusidtiearaining
time for each parameter value was 2.2 minutes, and 21 minutes for the searajhthil

parameters.
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100}

# of drives

50

0 100 200 300 400 500 600
Hours before failure

Figure 7: Histogram of time (hours) before failure that a correct faifpnediction was made.
Counts are summed over ten trials of the SVM algorithm (radial kernel witlit2buges)
from the point in Figure 4 at 50.6% detection, no false alarms.
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Figure 8: Failure prediction performance of classifiers using a singlewt#riReadErrorl8, with 5
input samples per pattern. For rank-sum and reverse arrangenrenitfiags are smaller
than line markers. For this attribute, the SVM performed best using the faliz| and
default attribute scaling (no binning).

rates of< 1%, this means that some of the trials had no false alarm drives while otherh@dls
very few (1 or 2). Because some drives are inherently more likely to édiqied as false alarms,
whether these drives are included in the test or training sets can leadriarzceafrom trial to trial,
causing large error bars at some of the points.

6. Discussion

We discuss the results of our findings and their implications for hard-dail@re prediction and
machine learning in general.

While the SVM provided the best overall performance (50.6% detection witheasured false-
alarms, see Figure 4), a few caveats should be noted. Using the radial, kibhree parameters
must be searched to find the optimum performance (kernel widtlapacityC and cost penalty
L+) which was very computationally expensive and provides no guarasteeaptimality. After
examining the SVM classifiers, it was found that a large number of the tragiagples were
chosen as support vectors. For example, in a typical experiment usimadral kernel with 25
attributes, over 26% of the training examples were support vectors (@ 7Z#558). This indicates
that the classifier is likely overfitting the data and using outliers as suppzidrgepossibly causing
errors on unseen data. Other researchers have noticed this prop8ijvis and have developed
algorithms that create smaller sets of support vectors, such as the oeleemtor machine (Tipping,
2001), kernel matching pursuit (Vincent and Bengio, 2002) and Slageneural networks (Liang,
2003). The SMART failure prediction algorithms (as currently implementediid-teves) run on
the internal CPU'’s of the drive and have rather limited memory and procgissifevote to SMART.
To implement the SVM classifiers learned here, they would have to evaluakerthel with each
support vector for every new sample, which may be prohibitive.
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Figure 9: Failure prediction performance of rank-sum using the begesattributes. The number
of samples per pattern is 15, with 50 samples used in the reference set.

The rank-sum test provided the second-best detection rate (on B4sattabutes, Figure 11),
28.1% with no measured false-alarms, and while lower than the best SVM, riesustill much
higher than the currently implemented SMART threshold algorithms. At highes &arm rates,
the rank-sum detection rate is 52.8% with 0.7% false alarms, which means (thesstoall number
of good drives) that only 1 drive at most triggered a false alarm in thesets A larger sample
of good drives would be desirable for a more accurate measure oflteeafarm rate. The rank-
sum test has a number of advantages over the SVM: faster training timat (EQ® times), faster
testing of new samples, fewer parameters, and lower memory requirembate ddvantages may
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Figure 10: Rank-sum test with reference set sizes 25, 50 and 10§ RsadErrorl8 attribute and
15 test samples. There is no improvement in performance using 100 sampies in
reference set instead of 50 (as in all other rank-sum experiments).
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Figure 11: Failure prediction performance of rank-sum and SVM classifising four attributes:
ReadErrorl, ReadError3, ReadErrorl8 and ReadErrorl9.

make it more suitable for implementation in hard drive firmware. For offline sitaatichere more
processing power is available (such as when the failure prediction algorithrun on the host
CPU), the SVM may be practical. For some machine learning problems, thesuamkest may be
superior to SVMs as shown in Figure 11. In this case the four attributes sedected because of
good performance in the rank-sum test, and so of course it is not aeleritir comparison but
in some situations the only attributes available may be those that favor rankfsum a drive
reliability perspective, the rank-sum test indicates that attributes that neegesad errors (in this
case, ReadErrorl, ReadError3, ReadErrorl8 and ReadBymete the most useful in predicting
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Figure 4

Point Detection False Alarm Kernel gamma C L+ L-
1 50.60 0.00 radial 0.100 0.010 100.0 1.0
2 64.18 421 radial 0.010 0.100 1000 1.0
3 70.38 6.20 radial 0.010 1.000 1000 1.0
Figure 5

Point Detection False Alarm  Kernel C L+ L-
1 default scaling 54.73 0.78 linear 0.001 1000.0 1.0
2 60.97 3.09 linear 0.100 50 1.0
3 63.17 7.75 linear 0.010 50 1.0
1 EW bins 11.18 0.00 linear 0.001 100.0 1.0
2 41.40 0.46 linear 0.001 50 1.0
3 48.05 1.72  linear 0.001 1.0 1.0
4 51.83 8.68 linear 0.001 05 1.0
1 EF bins 17.54 2.34  linear 0.001 50 1.0
2 42.90 11.09 linear 0.100 50 1.0
3 (off graph) 70.22 35.40 linear 0.100 100 1.0
Figure 8

Point Detection False Alarm Kernel gamma C L+ L-
1 8.28 0.00 radial 0.010 0.010 100.0 1.0
2 17.01 0.96 radial 0.100 0.010 1.0 1.0
3 30.29 3.45 radial 1.000 0.010 1.0 10
Figure 11

Point Detection False Alarm Kernel gamma C L+ L-
1 linear 5.43 0.17  linear 0.001 1000.0 1.0
2 15.82 0.35 linear 0.010 1000.0 1.0
3 32.92 0.51 linear 0.010 1.0 1.0
4 52.23 0.96 linear 0.100 1.0 1.0
1 radial 1.68 0.09 radial 0.100 0.001 100.0 1.0
2 9.29 0.53 radial 0.001 0.010 100.0 1.0
3 17.79 0.69 radial 1.000 1.000 1000.0 1.0
4 27.13 1.73  radial 0.100 0.100 1000 1.0

Table 3: Parameters for SVM experiments in Figures 4, 5, 8 and 11.

imminent failure. Also of interest, although with less selectivity, are attributdsnieasure seek

errors.

Our new mi-NB algorithm demonstrated promising initial performance, which adfhdess
successful than the SVM was considerably better than the unsupeftisaciass algorithm which
was also based on naive Bayesian models (Figure 4). The multiple instanoework addresses
the problem of which patterns in the time series should be labeled as failed) de@iming. In
order to reduce false alarms, our algorithm begins with the assumption tlgaherast pattern in
each failed drive’s history should be labeled failed, and during sulesgdgerations, it switches the
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labels of those good samples mostly likely to be from the failed distribution. Thissepervised
approach can be contrasted with the unsupervised Autoclass and theufodivised SVM, where
all patterns from failed drives were labeled failed.

The reverse-arrangements test performed more poorly than expestes, lzelieved that the
assumption of increasing trend made by this test was well suited for harel altributes (like
read-error counts) that would presumably increase before a failheerank-sum test makes no as-
sumptions about trends in the sets, and in fact all time-order information isveshio the ranking
process. The success of the rank-sum method led us to speculate thetibwal of time-order over
the sample interval was important for failure prediction. There are pHysiaaons in drive tech-
nology why impending failure need not be associated with an increasingjitrestror counts. The
simplest example is sudden stress from a failing drive component whigesausudden increase
in errors, followed by drive failure.

It was also found that a small number of samples (from 1 to 15) in the inpterpa was suf-
ficient to predict failure accurately, this indicates that the drive’s perémce can degrade quickly,
and only a small window of samples is needed to make an accurate predictaver€ely, using
too many samples may dilute the weight of an important event that occurs withortdisne frame.

One of the difficulties in conducting this research was the need to try manyications of
attributes and classifier parameters in order to construct ROC curveS. cB@es are necessary
to compare algorithm performance because the cost of misclassifyindasse(in this case, false
alarms) is much higher than for the other classes. In many other real waplitations such as
the examples cited in Section 1, there will also be varying costs for misclagsifferent classes.
Therefore, we believe it is important that the machine learning community qestémdardized
methods and software for the systematic comparison of learning algorithmim¢hate cycling
through ranges of parameters, combinations of attributes and numbenplesato use (for time
series problems). An exhaustive search may be prohibitive even with paieameters, so we envi-
sion an intelligent method that attempts to find the broad outline of the ROC cumsplyring the
limits of the parameter space, and gradually refines the curve estimate agatomalitime allows.
Another important reason to create ROC curves is that some algorithmgéongtarizations) may
perform better in certain regions of the curve than others, with the bexithly dependent on the
actual costs involved (which part of the curve we wish to operate in).

7. Conclusions

We have shown that both nonparametric statistical tests and machine learnimggsmean signifi-
cantly improve over the performance of the hard drive failure-predi@ligarithms which are cur-
rently implemented. The SVM achieved the best performance of 50.6% dei@étidalse alarms,
compared with the 3-10% detection/0.1-0.3% false alarms of the algorithmsityireplemented
in hard drives. However, the SVM is computationally expensive for troblem and has many free
parameters, requiring a time-consuming and non-optimal grid search.

We developed a new algorithm (mi-NB) in the multiple-instance framework thed naive
Bayesian learning as its base classifier. The new algorithm can be seemiasupervised in that it
adapts the class label for each pattern based on whether it is likely to come fiailed drive. The
mi-NB algorithm performed considerably better than an unsupervised Ghgst@gorithm (Au-
toclass) that also makes the naive Bayes assumption. Further incregseformance might be
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achieved with base classifiers other than naive Bayes, for example, t8&Mialgorithm (An-
drews et al., 2003) could be suitably adapted but probably remains compatbtiorohibitive.

We also showed that the nonparametric rank-sum test can be usefditfern recognition
and that it can have higher performance than SVMs for certain combisatibattributes. The
best performance was achieved using a small set of attributes: thewamtest with four attributes
predicted 28.1% of failures with no false alarms (and 52.8% detection/0.7&w@falsns). Attributes
useful for failure prediction were selected by using z-scores ancetlegse arrangements test for
increasing trend.

Improving the performance of hard drive failure prediction will have mamagctical benefits. In-
creased accuracy of detection will benefit users by giving them aortyppty to backup their data.
Very low false alarms (in the range of 0.1%) will reduce the number of retugood drives, thus
lowering costs to manufacturers of implementing improved SMART algorithms. Wiilbelieve
the algorithms presented here are of high enough quality (relative to trentaommercially-used
algorithms) to be implemented in drives, it is still important to test them on larger euafllrives
(on the order of thousands) to measure accuracy to the desired pnaxfifia%. We also note that
each classifier has many free parameters and it is computationally prohibiéxbaustively search
the entire parameter space. We choose many parameters by non-exhgrdtsearches; finding
more principled methods of exploring the parameter space is an important tdptaref research.

We hope that the insights we have gained in employing the rank-sum test, mulStdeda
framework and other learning methods to hard drive failure prediction witiftuse in other prob-
lems where rare events must be forecast from noisy, nonparametric tireg, seich as in the pre-
diction of rare diseases, electronic and mechanical device failuredaaniduptcies and business
failures (see references in Section 1).
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Appendix A: Exact and Approximate Calculation of the Wilcoxon-Mann-Whitney
Significance Probabilities

The Wilcoxon-Mann-Whitney test is a widely used statistical proceduredoparing two sets of
single-variate data (Wilcoxon, 1945; Mann and Whitney, 1947). Thentaées no assumptions
about the parametric form of the distributions each set is drawn from @helengs to the class
of nonparametric or distribution-free tests. It tests the null hypothesishibadivo distributions are
equal against the alternative that one is stochastically larger than the(Bibkel and Doksum,
1977, pg. 345). For example, two populations identical except for aishifiean is sufficient but
not necessary for one to be stochastically larger than the other.

Following Klotz (1966), suppose we have two s&ts= [X1,X2,...,%n] , Y = [Y1,Y2,--,Ym),
n < m, drawn from distribution§ andG. The sets are concatenated and sorted, and>eacity;
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X 74 59 63 64 n=4
Y 65 55 58 67 53 71 m=6

[X,Y]sorted 53 55 58 59 63 64 65 67 71 74

Ranks 1 2 3 4 5 6 7 8 9 10
X ranks 10 4 5 6 Wy =25
Y ranks 7 2 3 8 1 9 Wy =30

Table 4: Calculating the Wilcoxon statistigc andWy without ties

is assigned a rank according to its place in the sorted list. The Wilcoxon stasii calculated
by summing the ranks of easty hence the term rank-sum test. Table 7 gives a simple example of
how to calculatéVk andW . If the two distributions are discrete, some elements may be tied at the
same value. In most practical situations the distributions are either inheresuiete or effectively
so due to the finite precision of a measuring instrument. The tied observateogyan the rank of
the average of the ranks that they would have taken, callethitieank Table 7 gives an example
of calculating the Wilcoxon statistic in the discrete case with ties. There areléineeats with the
value ‘0’ which are all assigned the average of their raifks: 2+ 3+4+5) /5= 3.

To test the null hypothesidg that the distributiong and G are equal against the alternative
Ha thatF(x) < G(X) VX, F # G we must find the probabilitpy = P(Wx > wy) that undeHy the
true value of the statistic is greater than the observed value, now egligethmann and D’Abrera,
1998, pg. 11). If we were interested in the alternative EhatG or F > G, a two-sided test would be
needed. The generalization to the two-sided case is straightforwardihindtvoe considered here,
see Lehmann and D’Abrera (1998, pg. 23). Before computers wigledynavailable, values o
(the significance probability) were found in tables if the set sizes were énsailhllymandn < 10)
or calculated from a normal approximation if the set sizes were large.uBeaz the number of
possible combinations of tied elements, the tables and normal approximatioceated for the
simplest case, namely continuous distributions (no tied elements).

X 0 0 O 1 3 n=5
Y 0 O 1 2 2 3 4 m=7
X ranks 3 3 3 65 105 Wy =26
Y ranks 3 3 65 85 85 105 12 W=52
L L 23 24 Z5
Discrete values: 0 1 2 3 4
11 to i3 71 ts
Ties configuration: 5 2 2 2 1

Table 5: Calculating the Wilcoxon statisiiéc andW, with ties
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Lehman (1961) and Klotz (1966) report on the discrepancies betweeextict value ofyg
and its normal approximation, which can be over 50%, clearly large entoughd to an incorrect
decision. Unfortunately, many introductory texts do not discuss thesesaror give algorithms for
computing the exact probabilities. Here we outline how to calculate the eXaet @Bpy but keep
in mind there are other more efficient (but more complicated) algorithms (Melata, €988a,b;
Pagano and Tritchler, 1983). Each elemenXiandY can take one of values,z; < z < --- < Z.
The probability thak; will take on a value is px:

Px=z)=p i=1.n k=1.c.
Similarly fory;,
Pyj=z)=r« j=1.m k=1.c.

UnderHg, px = rk vk. The count of elements X that take on a valug is given byuy and the count
of elements irY that are equal ta is given byvg so that

ux = #H{X =z} vk =#HY =z}

Cc Cc

> Uc=n Y Vik=m.

k=1 k=1
The vectord) = [ug, Uy, ...,uc] andV = [v1,Va,..., V| give the ties configuration of X and Y. The
vectorT = [t,tp,...,t] = U +V gives the ties configuration of the concatenated set. See Table 7
for an example of how to calculate Under the null hypothesidp, the probability of observing
ties configuratiotd is given by (Klotz, 1966),

P(UIT) = ( . )< : >( ‘t’) |

n4+m
n

To find pg, we must find all th&J such that; > W, whereW is the rank sum of a set with ties
configurationJ,

Po = EU P(Ui|T) Exact significance probability
Uie [o]

Uy = {UML >Wk} . 4
Equation (4) gives us the exact probability of observing a set with a sankW greater than
W. Because of the number bf to be enumerated, each requiring many factorial calculations, the
algorithm is computationally expensive but still possible for sets as large-aS0 andn = 20. We
can compare the exapp to the widely-used normal approximation and find the conditions when
the approximation is valid and when the exact algorithm is needed.

The normal approximation to the distribution of the Wilcoxon statigfican also be used to
find pg. Becaus&V is the sum of identical, independent random variables, the central limiteimeor
states that its distribution will be normal asymptotically. The mean and variaitkané given by
Lehmann and D’Abrera (1998),

E(W) = %n(m+n+1)
¢ 3 .
Comnmenen 0 MEEW
Varw) - = 12 - 12m+n)(m+n—1)° ®)
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m (Large)
10 15 20 25 30 35 40 45 50
5 | 12.298 5.332 6.615 8.480 2.212 0.947 1.188 0.527 0.630
n(Small) 10| 4.057 3.482 2.693 0595 0.224 0.14 0.064 0.091 0.042
15 1.648 0.306 0.069 0.081 0.026 0.019 0.010 0.009
20 0.082 0.048 0.016 0.014 0.006 0.005 0.006

Table 6: Mean-square error between exact and normal approximaie désthibution ofw. All z
are equally likely. Averages are over 20 trials at each set size

m (Large)
10 15 20 25 30 35 40 45 50
5 131883 25386 28.300 26.548 14516 16.654 19.593 9.277 8Q21.3
n(Small) 10| 3.959 4.695 3594 1.884 1058 1.657 0.427 0.735 0.369
15 1984 0.733 0311 0.336 0.230 0.245 0.317 0.205
20 0.303 0.146 0.123 0.059 0.045 0.071 0.034

Table 7: Mean-square error between exact and normal approximate tisthibution ofW. One
discrete valuez; is much more likely than the othey. Averages are over 20 trials at each
set size

Using the results of (5) we can firg by using a table of normal curve area or common statistical
software. Note that V@) takes into account the configuration of ti€s= [ty,to,...,t;] defined
above. The second term on the right in the expression foj\Wais known as the ties correction
factor.

The exact and approximate distributionsvdfwere compared for set sizes ranging from<10
m < 50 and 5< n < 20 with tied observations. For each choicemofand n the average error
between the exact and normal distributions is computed forgg < 0.20 which is the range that
most critical values will fall into. The mean-square error (mse) is computed2D trials for each
set size. Table 7 gives the results of this comparison for the case wihehalescrete valug is
equally likely, px = rx = constantyk. As expected, the accuracy improves as the set size increases,
but it should be noted that these are only averages; that accurpgyafany particular experiment
may be worse than suggested by Table 7. To illustrate this, Table 7 compardisttibutions in
the case when the first valagis much more likely p; = 60%) than the othezg which are equally
likely. Whenn < 10, the normal approximation is too inaccurate to be useful even wherb0.
This is the situation when using the Wilcoxon test with the hard drive failueéiption data, and
motivated our investigation into the exact calculatiompgf Again, Tables 7 and 7 should be used
only to observe the relative accuracies of the normal approximation wadeus set sizes and
distributions; the accuracy in any particular problem will depend on th&gumation of tiesT, the
actual value opg, and the set size. The inaccuracies of normal approximations in small sdatale
size situations is a known aspect of the central limit theorem. It is particulazdkvor statistics
dependent on extreme values (Kendall, 1969).
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Recommendations Based on the results of the comparisons between the exact calculafign of
and the normal approximation (Tables 7 and 7), we offer recommendationeveto perform the
Wilcoxon-Mann-Whitney test in the presence of tied observations:

1. If n< 10 andm < 50, the exact calculation should always be used.

2. The normal approximation loses accuracy if one of the values is muchlikelsethan the
others. If this is the case, valuesrof 15 will require the exact calculation.

3. The exact calculation is no longer prohibitively slow fox 20 andm < 50, and should be
considered if the significance probabilipg is close to the desired critical value.

These recommendations are stronger than those given in Emerson agsl (#@35). A number
of software packages can perform the exact test, including StatXapt/flsww.cytel.com), the
SAS System (http://www.sas.com) and SPSS Exact Tests (http://www.spss.cerhppé/that an
increased awareness of exact procedures will lead to higher quatististd results.
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