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Abstract
We compare machine learning methods applied to a difficult real-world problem: predicting com-
puter hard-drive failure using attributes monitored internally by individual drives. The problem is
one of detecting rare events in a time series of noisy and nonparametrically-distributed data. We
develop a new algorithm based on the multiple-instance learning framework and the naive Bayesian
classifier (mi-NB) which is specifically designed for the lowfalse-alarm case, and is shown to have
promising performance. Other methods compared are supportvector machines (SVMs), unsuper-
vised clustering, and non-parametric statistical tests (rank-sum and reverse arrangements). The
failure-prediction performance of the SVM, rank-sum and mi-NB algorithm is considerably bet-
ter than the threshold method currently implemented in drives, while maintaining low false alarm
rates. Our results suggest that nonparametric statisticaltests should be considered for learning
problems involving detecting rare events in time series data. An appendix details the calculation
of rank-sum significance probabilities in the case of discrete, tied observations, and we give new
recommendations about when the exact calculation should beused instead of the commonly-used
normal approximation. These normal approximations may be particularly inaccurate for rare event
problems like hard drive failures.

Keywords: hard drive failure prediction, rank-sum test, support vector machines (SVM), exact
nonparametric statistics, multiple instance naive-Bayes

1. Introduction

We present a comparison of learning methods applied to a difficult real-world pattern recognition
problem: predicting impending failure in hard disk drives. Modern hard drives are reliable devices,
yet failures can be costly to users and many would benefit from a warningof potential problems
that would give them enough time to backup their data. The problem can be characterized as one of
detecting rare events from a time series of noisy and nonparametrically-distributed attributes.
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Hard drive manufacturers have been developing self-monitoring technology in their products
since 1994, in an effort to predict failures early enough to allow users tobackup their data (Hughes
et al., 2002). This Self-Monitoring and Reporting Technology (SMART) system uses attributes
collected during normal operation (and during off-line tests) to set a failure prediction flag. The
SMART flag is a one-bit signal that can be read by operating systems and third-party software to
warn users of impending drive failure. Some of the attributes used to make thefailure prediction
include counts of track-seek retries, read errors, write faults, reallocated sectors, head fly height
too low or high, and high temperature. Most internally-monitored attributes areerror count data,
implying positive integer data values, and a pattern of increasing attribute values (or their rates of
change) over time is indicative of impending failure. Each manufacturer develops and uses its own
set of attributes and algorithm for failure prediction. Every time a failure warning is triggered the
drive can be returned to the factory for warranty replacement, so manufacturers are very concerned
with reducing the false alarm rates of their algorithms. Currently, all manufacturers use a threshold
algorithm which triggers a SMART flag when any single attribute exceeds a predefined value. These
thresholds are set conservatively to avoid false alarms at the expense of predictive accuracy, with
an acceptable false alarm rate on the order of 0.1% per year (that is, onedrive in 1000). For the
SMART algorithm currently implemented in drives, manufacturers estimate the failure detection
rate to be 3-10%. Our previous work has shown that by using nonparametric statistical tests, the
accuracy of correctly detected failures can be improved to as much as 40-60% while maintaining
acceptably low false alarm rates (Hughes et al., 2002; Hamerly and Elkan,2001).

In addition to providing a systematic comparison of prediction algorithms, there are two main
novel algorithmic contributions of the present work. First, we cast the hard drive failure predic-
tion problem as a multiple-instance (MI) learning problem (Dietterich et al., 1997) and develop a
new algorithm termed multiple-instance naive Bayes (mi-NB). The mi-NB algorithmadheres to
the strict MI assumption (Xu, 2003) and is specifically designed with the low false-alarm case in
mind. Our second contribution is to highlight the effectiveness and computational efficiency of
nonparametric statistical tests in failure prediction problems, even when compared with powerful
modern learning methods. We show that the rank-sum test provides good performance in terms of
achieving a high failure detection rate with low false alarms at a low computational cost. While
the rank-sum test is not a fully general learning method, it may prove useful in other problems that
involve finding outliers from a known class. Other methods compared are support vector machines
(SVMs), unsupervised clustering using the Autoclass software of Cheeseman and Stutz (1995) and
the reverse-arrangements test (another nonparametric statistical test) (Mann, 1945). The best per-
formance overall was achieved with SVMs, although computational times weremuch longer and
there were many more parameters to set.

The methods described here can be used in other applications where it is necessary to detect
rare events in time series including medical diagnosis of rare diseases (Bridge and Sawilowsky,
1999; Rothman and Greenland, 2000), financial forecasting such as predicting business failures and
personal bankruptcies (Theodossiou, 1993), and predicting mechanical and electronic device failure
(Preusser and Hadley, 1991; Weiss and Hirsh, 1998).

1.1 Previous Work in Hard Drive Failure Prediction

In our previous work (Hughes et al., 2002) we studied the SMART failureprediction problem, com-
paring the manufacturer-selected decision thresholds to the rank-sum statistical test. The data set
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used was from the Quantum Corporation, and contained data from two drive models. The data set
used in the present paper is from a different manufacturer, and includes many more attributes (61
vs. 14), which is indicative of the improvements in SMART monitoring that have occurred since
the original paper. An important observations made by Hughes et al. (2002) was that many of the
SMART attributes arenonparametrically distributed, that is, their distributions cannot be easily
characterized by standard parametric statistical model (such as normal, Weibull, chi-squared, etc.).
This observation led us to investigate nonparametric statistical tests for comparing the distribution
of a test drive attribute to the known distribution of good drives. Hughes et al. (2002) compared
single-variate and multivariate rank-sum tests with simple thresholds. The single-variate test was
combined for multiple attributes using a logical OR operation, that is, if any of thesingle attribute
tests indicated that the drive was not from the good population, then the drive was labeled failed.
The OR-ed test performed slightly better than the multivariate for most of the region of interest (low
false alarms). In the present paper we use only the single-variate rank-sum test (OR-ed decisions)
and compare additional machine learning methods, Autoclass and support vector machines. An-
other method for SMART failure prediction, callednaive Bayes EM(expectation-maximization),
using the original Quantum data was developed by Hamerly and Elkan (2001). The naive Bayes
EM is closely related to the Autoclass unsupervised clustering method used in the present work.
Using a small subset of the features provided better performance than using all the attributes. Some
preliminary results with the current SMART data were presented in Murray et al. (2003).

1.2 Organization

This paper is organized as follows: In Section 2, we describe the SMART data set used here, how it
differs from previous SMART data and the notation used for drives, patterns, samples, etc. In Sec-
tion 3, we discuss feature selection using statistical tests such as reverse arrangements and z-scores.
In Section 4, we describe the multiple instance framework, our new algorithm multiple-instance
naive-Bayes (mi-NB), the failure prediction algorithms, including supportvector machines, unsu-
pervised clustering and the rank-sum test. Section 5 presents the experimental results comparing
the classifiers used for failure prediction and the methods of preprocessing. A discussion of our
results is given in Section 6 and conclusions are presented in Section 7. AnAppendix describes the
calculation of rank-sum significance levels for the discrete case in the presence of tied values, and
new recommendations are given as to when the exact test should be used instead of the standard
approximate calculation.

2. Data Description

The data set consists of time series of SMART attributes from a single drive model, and is a different
data set than that used in Hughes et al. (2002); Hamerly and Elkan (2001).1 Data from 369 drives
were collected, and each drive was labeledgoodor failed, with 178 drives in the good class and
191 drives in the failed class. Drives labeled as good were from a reliability test, run in a controlled
environment by the manufacturer. Drives labeled as failed were returned to the manufacturer from
users after a failure. It should be noted that since the good drive data were collected in a controlled
uniform environment and the failed data come from drives that were operated by users, it is rea-
sonable to expect that there will be differences between the two populations due to the different

1. The SMART data set used in this paper is available athttp://cmrr.ucsd.edu/smart.
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Figure 1: Selected attributes from a single good drive. Each row of the table represents a sample (all
attributes recorded for a single time interval). The box shows then selected consecutive
samples in each patternx j used to make a failure prediction at the time pointed at by the
arrow. The first sample available in the data set for this drive is from Hours = 1927, as
only the most recent 300 samples are stored in drives of this model.

manner of operation. Algorithms that attempt to learn the difference between the good and failed
populations may in fact be learning this difference and not the desired difference between good and
nearly-failing drive samples. We highlight this point to emphasize the importanceof understanding
the populations in the data and considering alternative reasons for differences between classes.

A sampleis all the attributes for a single drive for a single time interval. Each SMART sam-
ple was taken at two hour intervals in the operating drives, and the most recent 300 samples are
saved on the disk. The number of available valid samples for each drivei is denotedNi , andNi

may be less than 300 for those drives that did not survive 600 hours ofoperation. Each sample
contains the drive’s serial number, the total power-on-hours, and 60other performance-monitoring
attributes. Not all attributes are monitored in every drive, and the unmonitored attributes are set to
a constant, non-informative value. Note that there is no fundamental reason why only 300 samples
were collected; this was a design choice made by the drive manufacturer. Methods exist by which
all samples over the course of the drive’s life can be recorded for future analysis. Figure 1 shows
some selected attributes from a single good drive, and examples of samples (each row) and patterns
(the boxed area). When making a failure prediction apatternx j ∈ R

n·a (wherea is the number of
attributes) is composed of then consecutive samples and used as input to a classifier. In our exper-
imentsn was a design parameter which varied between 1 and 100. The pair(Xi ,Yi) represents the
data in each drive, where the set of patterns isXi = [x1, . . . ,xNi ] and the classification isYi ∈ {0,1}.
For drives labeled good,Yi = 0 and for failed drivesYi = 1.

Hughes et al. (2002) used a data set from a different manufacturer which contained many more
drives (3744 vs. 369) but with fewer failed drives (36 vs. 191). The earlier data set contained
fewer attributes (14 vs. 61), some of which are found in the new data set but with different names
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and possibly different methods of measurement. Also, all good and failed drive data were collected
during a single reliability test (whereas in the current set, the failed driveswere returns from the
field).

A preliminary examination of the current set of SMART data was done by plotting the his-
tograms of attributes from good and failed drives. Figure 2 shows histograms of some representa-
tive attributes. As was found with earlier SMART data, for many of the attributes the distributions
are difficult to describe parametrically as they may be multimodal (such as the Temp4 attribute) or
very heavy tailed. Also noteworthy, many attributes have large numbers of zero values, and these
zero-count bins are truncated in the plots. These highly non-Gaussian distributions initially lead
us to investigate nonparametric statistical tests as a method of failure prediction.For other pattern
recognition methods, special attention should be paid to scaling and other preprocessing.

3. Feature Selection

The process of feature selection includes not only deciding which attributes to use in the classifier,
but also the number of time samples,n, used to make each decision, and whether to perform a
preprocessing transformation on these input time series. Of course, these choices depend strongly
on which type of classifier is being used, and issues of feature selection will also be discussed in the
following sections.

As will be demonstrated below, some attributes are not strongly correlated withfuture drive
failure and including these attributes can have a negative impact on classifier performance. Because
it is computationally expensive to try all combinations of attribute values, we usethe fast nonpara-
metric reverse-arrangements test and attribute z-scores to identify potentially useful attributes. If an
attribute appeared promising with either method it was considered for use in thefailure detection
algorithms (see Section 4).

3.1 Reverse Arrangements Test

Thereverse arrangements testis a nonparametric test for trend which is applied to each attribute in
the data set (Mann, 1945; Bendat and Piersol, 2000). It is used herebased on the idea that a pattern
of increasing drive errors is indicative of failure. Suppose we have atime sequence of observations
of a random variable,xi , i = 1...N. In our casexi could be, for example, the seek error count of
the most recent sample. The test statistic,A = ∑N−1

i=1 Ai , is the sum of allreverse arrangements,
where a reverse arrangement is defined as an occurrence ofxi > x j wheni < j. To findA we use the
intermediate sumsAi and the indicator functionhi j ,

Ai =
N

∑
j=i+1

hi j where hi j = I(xi > x j) .

We now give an example of calculatingA for the case ofN = 10. With datax (which is assumed to
be a permutation of the ranks of the measurements),

x = [x1, . . . ,x10] = [1,4,3,7,2,8,6,10,9,5] ,

the values ofAi for i = 1. . .9 are found,

A1 =
10

∑
j=2

h1 j = 0, A2 =
10

∑
j=3

h2 j = 2, . . . A9 =
10

∑
j=9

h9 j = 1 ,
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Figure 2: Histograms of representative attributes from good and failed drives, illustrating the non-
parametric nature of many of the attributes. Axis scales are different for each plot to
emphasize features of their distributions. Zero-count bins are much larger than plotted
and the count-axis is shortened accordingly.
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with the values[Ai ] = [0,2,1,3,0,2,1,2,1]. The test statisticA is the sum of these values,A = 12.
For large values ofN, the test statisticA is normally distributed under the null hypothesis of

no trend (all measurements are random with the same distribution) with mean and variance (Mann,
1945),

µA =
N(N−1)

4
, σ2

A =
2N3 +3N2−5N

72
.

For small values ofN, the distribution can be calculated exactly by a recursion (Mann, 1945, eq. 1).
First, we find the countCN(A) of permutations of{1,2, . . . ,N} with A reverse arrangements,

CN(A) =
A

∑
i=A−N+1

CN−1(i) ,

whereCN(A) = 0 forA< 0 andC0(A) = 0. Since every permutation is equally likely with probability
1
n! under the null hypothesis, the probability ofA is CN(A)

n! .
Tables of the exact significance levels ofA have been made. For significance levelα, Appendix

Table A.6 of Bendat and Piersol (2000) gives the acceptance regions,

AN;1−α/2 < A≤ AN;α/2 ,

for the null hypothesis of no trend in the sequencexi (that is, thatxi are independent observations of
the same underlying random variable).

The test is formulated assuming that the measurements are drawn from a continuous distribution,
so that the ranksx are distinct (no ties). SMART error count data values are discrete and allow the
possibility of ties. It is conventional in rank-based methods to add random noise to break the ties,
or to use themidrankmethod described in Section 4.6.

3.2 Z-scores

Thez-scorecompares the mean values of each attribute in either class (good or failed). It is calcu-
lated over all samples,

z=
mf −mg√

σ2
f

nf
+

σ2
g

ng

,

wheremf andσ2
f are the mean and variance of the attribute in failed drives,mg andσ2

g are the mean
and variance in good drives,nf andng are the total number of samples of failed and good drives.
Large positive z-scores indicate the attribute is higher in the population of failed drive samples, and
that there is likely a significant difference in the means between good and failed samples. However,
it should be noted that the z-score was developed in the context of Gaussian statistics, and may be
less applicable to nonparametric data (such as the error count attributes collected by hard drives).

3.3 Feature Selection for SMART Data

To apply the reverse arrangements test to the SMART data for the purposeof feature extraction, the
test is performed on a set of 100 samples taken at the end of the time series available. To break
ties, uniform random noise within the range[−0.1,0.1] is added to each value (which are initially
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non-negative integers). The percentage of drives for which the nullhypothesis of no trend is rejected
is calculated for good and failed drives. Table 3.3 lists attributes and the percent of drives that have
significant trends for the good and failed populations. The null hypothesis (no trend) was accepted
for 1968≤ A ≤ 2981, for a significance level higher than 99%. We are interested in attributes
that have both a high percentage of failed drives with significant trends and a low percentage of
good drives with trends, in the belief that an attribute that increases over timein failed drives while
remaining constant in good drives is likely to be informative in predicting impending failure.

From Table 3.3 we can see that attributes such as Servo2, ReadError18and Servo10 could be
useful predictors. Note that these results are reported for a test of one group of 100 samples from
each drive using a predefined significance level, and no learning was used. This is in contrast to the
way a failure prediction algorithm must work, which must test each of many (usuallyN) consecutive
series of samples, and if any fail, then the drive is predicted to fail (see Section 4.1 for details).

Some attributes (for example CSS) arecumulative, meaning that they report the number of
occurrences since the beginning of the drive’s life. All cumulative attributes either will have no
trend (nothing happens) or have a positive trend. Spin-ups is the numberof times the drive motors
start the platters spinning, which happens every time the drive is turned on,or when it reawakens
from a low-power state. It is expected that most drives will be turned on and off repeatedly, so it is
unsurprising that both good and failed drives show increasing trends inTable 1. Most attributes (for
example ReadError18) report the number of occurrences during the two-hour sample period.

Table 3.3 lists selected attributes sorted by descending z-score. Attributes near the top are
initially more interesting because of more significant differences in the means,that is, the mean
value of an attribute (over all samples) for failed drives was higher than for good drives. Only a few
of the attributes had negative z-scores, and of these even fewer weresignificant. Some attributes
with negative z-scores also appeared to be measured improperly for somedrives.

From the results of the reverse arrangements and z-score tests, a set of 25 attributes2 was selected
by hand from those attributes which appear to be promising due to increasingattribute trends in
failed drives and large z-score values. The tests also help eliminate attributes that are not measured
correctly, such as those with zero or very high variance.3 This set of attributes was used in the SVM,
mi-NB and clustering algorithms (see the next section). Individual attributesin this set were tried
one at a time with the rank-sum test. Attributes that provided good failure detection with low false
alarms in the classifiers were then used together (see Section 5).

We note that the feature selection process is not a black-box automatic method, and required
trial-and-error testing of attributes and combinations of attributes in the classifiers. Many of the
attributes that appeared promising from the z-score and reverse-arrangements tests did not actually
work well for failure prediction, while other attributes (such as ReadError19) were known to be im-
portant from our previous work and from engineering and physics knowledge of the problem gained
from discussions with the manufacturers. While an automatic feature selectionmethod would be
ideal, it would likely involve a combinatorial optimization problem which would be computationally
expensive.

2. Attributes in the set of 25 are: GList1, PList, Servo1, Servo2, Servo3, Servo5, ReadError1, ReadError2, ReadError3,
FlyHeight5, FlyHeight6, FlyHeight7, FlyHeight8, FlyHeight9, FlyHeight10, FlyHeight11, FlyHeight12, ReadEr-
ror18, ReadError19, Servo7, Servo8, ReadError20, GList2, GList3, Servo10.

3. Attributes that were not used because all measurements were zero are: Temp2, Servo4, ReadErr13-16. Also excluded
are other attributes that appear to be measured improperly for certain drives are FlyHeight13-16, Temp5, and Temp6.
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Attribute % Good % Failed
Temp1 11.8% 48.2%
Temp3 34.8% 42.9%
Temp4 8.4% 58.9%
GList1 0.6% 10.7%
PList 0.6% 3.6%
Servo1 0.0% 0.0%
Servo2 0.6% 30.4%
Servo3 0.6% 0.0%
CSS 97.2% 92.9%
ReadError1 0.0% 0.0%
ReadError1 0.6% 5.4%
ReadError3 0.0% 0.0%
WriteError 1.1% 0.0%
ReadError18 0.0% 41.1%
ReadError19 0.0% 0.0%
Servo7 0.6% 0.0%
ReadError20 0.0% 0.0%
GList3 0.0% 8.9%
Servo10 1.7% 39.3%

Table 1: Percent of drives with significant trends by the reverse arrangements test for selected at-
tributes, which indicates potentially useful attributes. Note that this test is performed only
on the lastn = 100 samples of each drive, while a true failure prediction algorithm must
test each pattern ofn samples taken throughout the drives’ history. Therefore, these results
typically represent an upper bound on the performance of a reverse-arrangements classi-
fier. CSS are cumulative and are reported over the life of the drive, so itis unsurprising
that most good and failed drives show increasing trends (which simply indicate that the
drive has been turned on and off).

The z-scores for each attribute were calculated using the entire data set, which may lead to ques-
tions about training on the test set. (The reverse-arrangements test wascalculated using only about
1/3 of the data). In practical terms, z-scores obtained using random subsets are similar and lead
to the same conclusions about attribute selection. Conceptually, however, the issue remains: is it
correct to use data that has been used in the feature selection process inthe test sets used for estimat-
ing performance? Ideally, the reuse of data should be avoided, and thedouble-resamplingmethod
should be used to estimate performance (Cherkassky and Mulier, 1998).In double-resampling, the
data is divided into atraining set and apredictionset, with the prediction set used only once to
measure error, and the training set further divided intolearningandvalidationsets that are used for
feature selection and parameter tuning (by way of cross-validation). Double-resampling produces
an unbiased estimate of error, but for finite data sets the estimate can be highlydependent on the
initial choice of training and prediction sets, leading to high variance estimates.For the hard-drive
failure problem, the number of drives is limited, and the variance of the classification error (see Sec-
tion 5) is already quite high. Further reducing the data available by creating aseparate prediction
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set would likely lead to high-variance error estimates (the variance of whichcannot be estimated).
We note that for all the classification error results in Section 5, the test set was not seen during the
training process. The issue just discussed relates to the question of whether we have biased the re-
sults by having performed statistical tests on the complete data set and used those results to inform
our (mostly manual) feature and attribute selection process. The best solution is to collect more
data from drives to validate the false alarm and detection rates, which a drive manufacturer would
do in any case to test the method and set the operating curve level before actual implementation of
improved SMART algorithms in drives.

Attribute z-score
Servo5 45.4
Servo10 29.5
Writes 28.1
FlyHeight6 24.8
FlyHeight8 23.7
FlyHeight9 22.7
FlyHeight7 22.5
Reads 22.3
FlyHeight10 21.3
FlyHeight11 19.8
FlyHeight13 19.8
FlyHeight12 19.6
Servo2 16.2
ReadError18 15.1
FlyHeight1 12.4
ReadError1 11.2
ReadError3 10.2
ReadError1 9.5
PList 8.3

Table 2: Attributes with large positive z-score values.

4. Failure Detection Algorithms

We describe how the pattern recognition algorithms and statistical tests are applied to the SMART
data set for failure prediction. First, we discuss the preprocessing thatis done before the data
is presented to some of the pattern recognition algorithms (SVM and Autoclass); the rank-sum
and reverse-arrangements test require no preprocessing. Next, wedevelop a new algorithm called
multiple-instance naive-Bayes (mi-NB) based on the multiple-instance framework and especially
suited to low-false alarm detection. We then describe how the SVM and unsupervised clustering
(Autoclass) algorithms are applied. Finally we discuss the nonparametric statistical tests, rank-sum
and reverse-arrangements.

Some notation and methods are common among all the pattern recognition algorithms.A vector
x of n consecutive samples (out of theN total samples from each drive) of each selected attribute
is used to make the classification, and every vector ofn consecutive samples in the history of the
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drive is used (see Figure 1). The length ofx is (n×a) wherea is the number of attributes. There
areN vectorsx created, with zeros prepended to thosex in the early history of the drive. Results
are not significantly different if the early samples are omitted (that is,N−n vectors are created) and
this method allows us to make SMART predictions in the very early history of the drive. If anyx is
classified as failed, then the drive is predicted to fail. Since the classifier is applied repeatedly to all
N vectors from the same drive, each test must be very resistant to false alarms.

4.1 Preprocessing: Scaling and Binning

Because of the nonparametric nature of the SMART data, two types of preprocessing were consid-
ered: binning and scaling. Performance comparison of the preprocessing is given in Section 5.

The first type of preprocessing isbinning (or discretization), which takes one of two forms:
equal-frequencyor equal-width(Dougherty et al., 1995). In equal-frequency binning, an attributes’
values are converted into discrete levels such that the number of counts ateach level is the same
(the discrete levels are percentile groups). In equal-width binning, eachattribute’s range is divided
into a fixed number of equal magnitude bins and values are converted into binnumbers. In both
cases, the levels are set based on the training set. In both the equal-width and equal-frequency
cases, the rank-order with respect to bin is preserved (as opposed toconverting the attribute into
multiple binary nominal attributes, one for each bin). Because there are a large number of zeros for
some attributes in the SMART data (see Figure 2), a special zero-count binis used with both equal-
width and equal-frequency binning. The two types of binning were compared using the Autoclass
and SVM classifiers. For the SVM, the default attribute scaling in the algorithmimplementation
(MySVM) was also compared to binning (see 4.4).

Binning (as a form of discretization) is a common type of preprocessing in machine learning
and can provide certain advantages in performance, generalization andcomputational efficiency
(Frank and Witten, 1999; Dougherty et al., 1995; Catlett, 1991). As shown by Dougherty et al.
(1995), discretization can provide performance improvements for certainclassifiers (such as naive
Bayes), and that while more complex discretization methods (such as those involving entropy) did
provide improvement over binning, the difference in performance between binning and the other
methods was much smaller than that between discretization and no discretization.Also, binning can
reduce overfitting resulting in a simpler classifier which may generalize better (Frank and Witten,
1999). Preserving the rank-order of the bins so that the classifier may take into account the ordering
information (which we do) has been shown to be an improvement over binninginto independent
nominal bins (Frank and Witten, 1999). Finally, for many algorithms, it is more computationally
efficient to train using binned or discretized attributes rather than numericalvalues. Equal-width
binning into five bins (including the zero-count bin) was used successfully by Hamerly and Elkan
(2001) on the earlier SMART data set, and no significant difference wasfound using up to 20 bins.

4.2 The Multiple-Instance Framework

The hard drive failure prediction problem can be cast as amultiple-instance learningproblem, which
is a two-class semi-supervised problem. In multiple-instance (MI) learning, wehave a set of objects
which generate manyinstancesof data. All the data from one object is known as abag. Each bag
has a single label{0,1}, which is assumed to be known (and given during training), while each
instance also has a true label{0,1} which is hidden. The label of a bag is related to the correct
labeling of the instances as follows: if the label of each instance is 0, then thebag label is 0; ifany
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of the instances is labeled 1, then the bag label is 1. This method of classifyinga bag as 1 if any of
its instances is labeled 1 is known as theMI assumption. Because the instance labels are unknown,
the goal is to learn the labels, knowing that at least one of the instances in each 1 bag has label 1,
and all the instance labels in each 0 bag should be 0.

The hard drive problem can be fit naturally into the MI framework. Each patternx (composed
of n samples) is an instance, and the set of all patterns for a drivei is the bagXi . The termsbag
label anddrive labelare interchangeable, with failed drives labeledYi = 1 and good drives labeled
Yi = 0. The hidden instance (pattern) labels arey j , j = 1. . .Ni for the Ni instances in each bag
(drive). Figure 3 show a schematic of the MI problem.

The multiple-instance framework was originally proposed by Dietterich et al. (1997) and applied
to a drug activity prediction problem; that of discovering which molecules (each of which may exist
in a number of different shapes, the group of all shapes for a specificmolecule comprising a bag)
bind to certain receptors, specifically that of smell receptors for the scent of musk. The instances
consist of 166 attributes that represent the shape of one possible configuration of a molecule from X-
ray crystallography, and the class of each molecule (bag) is 1 if the molecule(any instance) smells
like musk as determined by experts. The so-called “musk” data sets have become the standard
benchmark for multiple-instance learning.

The algorithm developed by Dietterich et al. (1997) is called axis-parallel-rectangles, and other
algorithms were subsequently developed based on many of the paradigms in machine learning such
as support vector machines (Andrews et al., 2003), neural networks, expectation-maximization,
nearest-neighbor (Wang and Zucker, 2000), as well as special purpose algorithms like the diverse-
density algorithm. An extended discussion of many of these is given by Xu (2003), who makes
the important distinction between two classes of MI algorithms: those which adhere to the MI
assumption (as described above) and those which make other assumptions,most commonly that
the label for each positive bag is determined by some other method than simply if one instance has
a positive label. Algorithms that violate the MI assumption usually assume that the data from all
instances in a bag is available to make a decision about the class. Such algorithms are difficult to
apply to the hard drive problem, as we are interested in construction on-lineclassifiers that make a
decision based on each instance (pattern) as it arrives. Algorithms that violate the MI-assumption
include Citation-k-Nearest-Neighbors (Wang and Zucker, 2000), SVMs with polynomial minimax
kernel, and the statistical and wrapper methods of Xu (2003), and these will not be considered
further for hard drive failure prediction.

4.3 Multiple Instance Naive Bayes (mi-NB)

We now develop a new multiple instance learning algorithm using naive Bayes (also known as the
simple Bayesian classifier) and specifically designed to allow control of the false alarm rate. We
call this algorithm mi-NB (multiple instance-naive Bayes) because of its relationto the mi-SVM
algorithm of Andrews et al. (2003). The mi-SVM algorithm does adhere to the MI assumption
and so could be used for the hard drive task, but since it requires repeated relearning of an SVM,
it is presently too computationally intensive. By using the fast naive Bayes algorithm as the base
classifier, we can create an efficient multiple-instance learning algorithm.

The mi-NB algorithm begins by assigning a labely j to each pattern: for good drives, all patterns
are assignedy j = 0; for failed drives, all patterns except for the last one in the time series are
assignedy j = 0, with the last one assigned to the failed class,yNi = 1. Using these class labels, a
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Figure 3: Multiple-instance learning. The numbers are bag (drive) numbers, and each circle or
square represents an instance (pattern). Instances from class +1 (failed drives) are squares,
while instances from class 0 are circles. The + or - in each instance represents the hidden
underlying class of each instance, 1 or 0 respectively. The decision surface represents the
classification boundary induced by a classifier. Grayed instances are those misclassified
by the decision surface. Bag 1: All - instances are classified correctly,and the bag is
correctly classified as 0 (good drive). Bag 2: One instance is classifiedas +, so the bag is
correctly classified as 1 (failed drive). Bag 3: One instance of the faileddrive is classified
as -, but another is classified as +, so the bag is correctly classified (failed). Bag 4: An
instance with true class - is labeled +, so the bag is misclassified as 1 (false alarm). Bag
5: All instances of the + bag (failed drive) are classified as -, so the bagis misclassified
as 0 (missed detection).

naive Bayes model is trained (see below). Using the NB model, each patternin the training set is
assigned to a clasŝy j ∈ {0,1}. Because nearly all patterns are assigned to the good classy j = 0, this
initial condition insures that the algorithm will start with a low false alarm rate. Ineach iteration of
the mi-NB algorithm, for every failed driveYi = 1 that was misclassified (that is, all patterns were
classified as good,̂y j = 0), the patternj∗ (with current labely j = 0) that is most likely to be from
the failed class,j∗ = argmax

j∈{1...Ni |y j=0}
f1(x j), is relabeled to the failed classy j∗ = 1, wheref1(x) is the

log-posterior of class 1 (see Equation 1 below). The NB model is updated using the new class labels
(which can be done very efficiently). Iterations continue until the false alarm rate on the training
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set increases to over the target level,FA > FAtarget. The mi-NB algorithm is detailed in Algorithm
1. The procedure given in Algorithm 1 may be applied with different base classifiers other than
naive Bayes, although the resulting algorithm may be computationally expensive unless there is an
efficient way to update the model without retraining from scratch. Other stopping conditions could
also be used, such as detection rate greater than a certain value or numberof iterations.

Algorithm 1 mi-NB Train (for SMART failure prediction)
Input: x,Y , FAdesired(desired false alarm rate)
Initialize:

Good drives: For drives withYi = 0 initializey j = 0 for j = 1. . .Ni

Failed drives: For drives withYi = 1 initializey j = 0 for j = 1. . .Ni−1, andyNi = 1
Learn NB model
ŷ j = arg max

c∈{0,1}
fc(x j) Classify each pattern using the NB model

FindFA andDET rate
while FA < FAtarget do

for all Misclassified failed drives,̂y j = 0∀ j = 1. . .Ni do
j∗= argmax

j∈{1...Ni |y j=0}
f1(x j) Find pattern closest to decision surface with labely j = 0

y j∗← 1 Reclassify the pattern as failed
Update NB model

end for
ŷ j = arg max

c∈{0,1}
fc(x j) Reclassify each pattern using the NB model

FindFA andDET rate
end while
Return: NB model

In Bayesian pattern recognition, themaximum a posterior(MAP) method is used to estimate
the clasŝy of a patternx,

ŷ = arg max
c∈{0,1}

p(y = c|x)

= arg max
c∈{0,1}

p(x|y = c)p(y = c) .

The “naive” assumption in naive Bayes is that the class-conditional distribution p(x|y = c) is fac-
torial (independent components),p(x|y = c) = ∏n·a

m=1 p(xm|y = c) wheren ·a is the size ofx (see
Section 2). The class estimate becomes,

fc(x) =
n·a

∑
m=1

log p̂(xm|y = c)+ log p̂(y = c)

ŷ = arg max
c∈{0,1}

fc(x) , (1)

where we have used estimatesp̂ of the probabilities. Naive Bayes has been found to work well
in practice even in cases where the componentsxm are not independent, and a discussion of this
is given by Domingos and Pazzani (1997). Assuming discrete distributionsfor xm, counts of the
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number elements #{·} can be found. Training a naive Bayes classifier is then a matter of finding the
smoothed empirical estimates,

p̂(xm = k|y = c) =
#{xm = k,y = c}+ `

#{y = c}+2`

p̂(y = c) =
#{y = c}+ `

#{patterns}+2`
, (2)

where` is a smoothing parameter, which we set to` = 1 corresponding to Laplace smoothing
(Orlitsky et al. (2003), who also discuss more recent methods for estimatingprobabilities, including
those based on the Good-Turing estimator). Ng and Jordan (2002) showthat naive Bayes has a
higher asymptotic error rate (as the amount of training data increases) butthat it approaches this
rate more quickly than other classifiers and so may be preferred in small-sample problems. Since
each time we have to switch a pattern in the mi-NB iteration, we only have to change afew of the
counts in (2), updating the model after relabeling certain patterns is very fast.

Next, we show that the mi-NB algorithm has non-decreasing detection and false alarm rates
over the iterations.

Lemma 1 At each iteration t, the mi-NB algorithm does not decrease the detection andfalse alarm
rates (as measured on the training set) over the previous iteration t−1,

f (t−1)
1 (x j)≤ f (t)

1 (x j)

f (t−1)
0 (x j)≥ f (t)

0 (x j) ∀ j = 1. . .N . (3)

Proof At iterationt−1 the probability estimates for a certaink are,

p̂t−1(xm = k|y = 1) =
b+ `

d+2`
,

whereb = #{xm = k,y = c},d = #{y = c}, and of courseb≤ d. Since class estimates are always
switched fromy j = 0 to 1, for somek

p̂t(xm = k|y = 1) =
b+ `+1
d+2`+1

(and for otherk it will remain constant). It is now shown that the conditional probability estimates
are non-decreasing,

p̂t−1(xm = k|y = 1) ≤ p̂t(xm = k|y = 1)

(b+ `)(d+2`+1) ≤ (d+2`)(b+ `+1)

b ≤ d+ ` ,

with equality only in the case ofb = d, ` = 0. Similarly, the prior estimate is also non-decreasing,
p̂t−1(y = 1)≤ p̂t(y = 1). From (1) this implies thatf (t−1)

1 (x)≤ f (t)
1 (x).

For classy = 0, it can similarly be shown that̂pt−1(xm = k|y = 0) ≥ p̂t(xm = k|y = 0) and

p̂t−1(y = 0)≥ p̂t(y = 0), implying f (t−1)
0 (x j)≥ f (t)

0 (x j) and completing the proof.
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Note that Algorithm 1 never relabels a failed pattern as a good pattern, as thismight reduce
the detection rate (and invalidate the proof of Lemma 1 in Section 4.3). The initial conditions of
the algorithm ensure a low false alarm rate, and the algorithm proceeds (in agreedy fashion) to
pick patterns that are mostly likely representatives of the failed class withoutre-evaluating previous
choices. A more sophisticated algorithm could be designed that moves patterns back to the good
class as they become less likely failed candidates, but this requires a computationally expensive
combinatorial search.

4.4 Support Vector Machines (SVMs)

The support vector machine (SVM) is a popular modern pattern recognitionand regression algo-
rithm. First developed by Vapnik (1995), the principle of the SVM classifieris to project the data
into a higher dimensional space where the classes are separated by a linearhyperplane which is
defined by a small set of support vectors. For an introduction to SVMs for pattern recognition, see
Burges (1998). The hyperplane is found by a quadratic optimization problem, which can be for-
mulated for either the case where the patterns are linearly separable, or thenon-linearly separable
case which requires the use of slack variablesξi for each pattern and a parameterC that penalizes
the slack. We use the non-linearly separable case and in addition use different penaltiesL+,L− for
incorrectly labeling each class. The hyperplane is found by solving,

min
w,b,ξ

1
2
‖w‖2 +C

(

∑
∀i|yi=+1

L+ξi + ∑
∀i|yi=−1

L−ξi

)

subject to: yi(wTφ(xi)+b)≥ 1−ξi

ξi ≥ 0

wherew andb are the parameters of the hyperplaneŷ = wTφ(x) + b andφ(·) is the mapping to
the high-dimensional space implicit in the kernelk(x j ,xk) = φ(x j)

Tφ(xk) (Burges, 1998). In the
hard-drive failure problem,L+ penalizes false alarms, andL− penalizes missed detections. SinceC
is multiplied by bothL+ andL−, there are only two independent parameters and we setL− = 1 and
adjustC,L+ when doing a grid search for parameters.

To apply the SVM to the SMART data set, drives are randomly assigned into training and test
sets for a single trial. For validation, means and standard deviations of detection and false alarm
rates are found over 10 trials, each with different training and test sets.Each pattern is assigned
to the same label as the drive (all patterns in a failed driveY = 1 are assigned to the failed class,
yi = +1, and all patterns in good drivesY = 0 are set toyi = −1). Multiple instance learning
algorithms like mi-SVM (Andrews et al., 2003) could be used to find a better wayof assigning
pattern classes, but these add substantial extra computation to the already expensive SVM training.

We use the MySVM4 package developed by Ruping (2000). Parameters for the MySVM soft-
ware are set as follows:epsilon= 10−2, max iterations= 10000,convergenceepsilon= 10−3.
When equal-width or equal-frequency binning is used (see Section 4.1),no scaleis set; otherwise,
the default attribute scaling in MySVM is used. The parametersC andL+ (with L− = 1) are var-
ied to adjust the tradeoff between detection and false alarms. Kernels testedinclude dot product,
polynomials of degree 2 and 3, and radial kernels with width parameterγ.

4. MySVM is available at:http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM.
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4.5 Clustering (Autoclass)

Unsupervised clustering algorithms can be used for anomaly detection. Here, we use the Autoclass
package (Cheeseman and Stutz, 1995) to learn a probabilistic model of the training data from only
good drives. If any pattern is an anomaly (outlier) from the learned statistical model of good drives,
then that drive is predicted to fail. Theexpectation maximization (EM)algorithm is used to find
the highest-likelihood mixture model that fits the data. A number of forms of the probability den-
sity function (pdf) are available, including Gaussian, Poisson (for integer count data) and nominal
(unordered discrete, either independent or covariant). For the harddrive problem, they are all set
to independent nominal to avoid assuming a parametric form for any attribute’s distribution. This
choice results in an algorithm very closely related to thenaive Bayes EMalgorithm (Hamerly and
Elkan, 2001), which was found to perform well on earlier SMART data.

Before being presented to Autoclass the attribute values are discretized intoeither equal-freq-
uency bins or equal-width bins (Section 4.1), where the bin range is determined by the maximum
range of the attribute in the training set (of only good drives). An additional bin was used for zero-
valued attributes. The training procedure attempts to find the most likely mixture model to account
for the good drive data. The number of clusters can also be determined byAutoclass, but here we
have restricted it to a small fixed number from 2 to 10. Hamerly and Elkan (2001) found that for
the naive Bayes EM algorithm, 2 clusters with 5 bins (as above) worked best. During testing, the
estimated probability of each pattern under the mixture model is calculated. A failure prediction
warning is triggered for a drive if the probability of any of its samples is belowa threshold (which is
a parameter of the algorithm). To increase robustness, the input pattern contained between 1 and 15
consecutive samplesn of each attribute (as described above for the SVM). The Autoclass threshold
parameter was varied to adjust tradeoff between detection and false alarmrates.

4.6 Rank-sum Test

The Wilcoxon-Mann-Whitney rank-sum test is used to determine if the two random data sets arise
from the same probability distribution (Lehmann and D’Abrera, 1998, pg. 5). One setT comes
from the drive under test and the otherR is areference setcomposed of samples from good drives.
The use of this test requires some assumptions to be made about the distributions underlying the
attribute values and the process of failure. Each attribute has agood distribution Gand anabout-to-
fail distribution F. For most of the life of the drive, each attribute value is chosen from theG, and
then at some time before failure, the values begin to be chosen fromF . This model posits an abrupt
change fromG to F , however, the test should still be expected to work if the distribution changes
gradually over time, and only give a warning when it has changed significantly from the reference
set.

The test statisticWS is calculated by ranking the elements ofR (of sizem) andT (of sizen) such
that each element ofRandT has a rankS∈ [1,n+m] with the smallest element assignedS= 1. The
rank-sumWS is the sum of the ranksSof the test set.

The rank-sum test is often presented assuming continuous data. The attributes in the SMART
data are discrete which creates the possibility of ties. Tied values are ranked by assigning identical
values to theirmidrank (Lehmann and D’Abrera, 1998, pg. 18), which is the average rank that
the values would have if they were not tied. For example, if there were threeelements tied at the
smallest value, they would each be assigned the midrank1+2+3

3 = 2.
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If the set sizes are large enough (usually, if the smaller setn > 10 orm+n > 20), the rank-sum
statisticWS is normally distributed under the null hypothesis (T andRare from the same population)
due to the central limit theorem, with mean and variance:

E(WS) =
1
2

n(m+n+1)

Var(WS) =
mn(m+n+1)

12
−CT ,

whereCT is the ties correction, defined as

CT =

mn
e
∑

i=1
(d3

i
−di)

12(m+n)(m+n−1)
,

wheree is the number of distinct values inR andT, anddi is the number of tied elements at each
value (see Appendix A for more details). The probability of a particularWS can be found using the
standard normal distribution, and a critical valueα can be set at which to reject the null hypothesis.
In cases of smaller sets where the central limit theorem does not apply (or where there are many tied
values), an exact method of calculating the probability of the test statistic is used (see Appendix A,
which also gives examples of calculating the test statistic).

For application to the SMART data, the reference setR for each attribute (sizem= 50 for most
experiments) is chosen at random from the samples of good drives. Thetest setT (sizen = 15 for
most experiments) is chosen from consecutive samples of the drive under test. If the test set for any
attribute over the history of the drive is found to be significantly different from the reference set
R then the drive is predicted to fail. The significance levelα is adjusted in the range[10−7,10−1]
to vary the tradeoff between false alarms and correct detections. We usethe one-sided test ofT
coming from a larger distribution thanR, against the hypothesis of identical distributions.

Multivariate nonparametric rank-based tests that exploit correlations between attribute values
have been developed (Hettmansperger, 1984; Dietz and Killeen, 1981; Brunner et al., 2002). A
different multivariate rank-sum test was successfully applied to early SMART data (Hughes et al.,
2002). It exploits the fact that error counts are always positive. Here, we use a simple OR test
to use two or more attributes: if the univariate rank-sum test for any attributeindicates a different
distribution from the reference set, then that pattern is labeled failed. The use of the OR test is
motivated by the fact that very different significance level ranges (per-pattern) for each attribute
were needed to achieve low false alarm rates (per-drive).

4.7 Reverse Arrangements Tests

The reverse arrangements test described above for feature selectioncan also be used for failure
prediction. No training set is required, as the test is used to determine if thereis a significant trend
in the time series of an attribute. For use with the SMART data, 100 samples are used in each test,
and every consecutive sequence of samples is used. For each drive, if any test of any attribute shows
a significant trend, then the drive is predicted to fail. As with the rank-sum test, the significance
level α controls the tradeoff between detection and false alarm rates.
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5. Results

In this section we present results from a representative set of experiments conducted with the
SMART data. Due to the large number of possible combinations of attributes andclassifier pa-
rameters, we could not exhaustively search this space, but we hope to have provided some insight
into the hard drive failure prediction problem and a general picture of which algorithms and prepro-
cessing methods are most promising. We also can clearly see that some methodsare significantly
better than the current industry-used SMART thresholds implemented in harddrives (which provide
only an estimated 3-10% detection rate with 0.1% false alarms).

5.1 Failure Prediction Using 25 Attributes

Figure 4 shows the failure prediction results in the form of a Receiver Operating Characteristic
(ROC) curve using the SVM, mi-NB, and Autoclass classifiers with the 25 attributes selected be-
cause of promising reverse arrangements test or z-score values (seeSection 3.3). One sample per
pattern was used, and all patterns in the history of each test drive were tested. (Using more than
one sample per pattern with 25 attributes proved too computationally expensivefor the SVM and
Autoclass implementations, and did not significantly improve the mi-NB results.) Thedetection
and false alarm rates were measured per drive: if any pattern in the drive’s history was classified
as failed, the drive was classified as failed. The curves were created by performing a grid search
over the parameters of the algorithms to adjust the trade-off between false alarms and detection.
For the SVM, the radial kernel was used with the parameters adjusted as follows: kernel widthγ ∈
[0.01,0.1,1], capacityC ∈ [0.001,0.01,0.1,1], the cost penaltyL+ ∈ [1,10,100]. Table 5.3 shows
the parameters used in all SVM experiments. For Autoclass, the threshold parameter was adjusted
in [99.99,99.90, 99.5,99.0,98.5] and the number of clusters was adjusted in[2,3,5,10].

Although all three classifiers appear to have learned some aspects of the problem, the SVM is
superior in the low false-alarm region, with 50.6% detection and no measuredfalse alarms. For all
the classifiers, it was difficult to find parameters that yielded low enough false alarm rates compared
with the low 0.3-1.0% annual failure rate of hard drives. For mi-NB, even at the initial condition
(which includes only the last sample from each failed drive in the failed class) there is a relatively
high false alarm rate of 1.0% at 34.5% detection.

For the 25 attributes selected, the SVM with the radial kernel and default scaling provided the
best results. Results using the linear kernel with the binning and scaling areshown in Figure 5. The
best results with the linear kernel were achieved with the default scaling, although it was not possible
to adjust to false alarm rate to 0%. Equal-width binning results in better performance than equal-
frequency binning for SVM and Autoclass. The superiority of equal-width binning is consistent with
other experiments (not shown) and so only equal-width binning will be considered in the remaining
sections. Using more bins (10 vs. 5) for the discretization did not improve performance, confirming
the results of Hamerly and Elkan (2001).

The good performance of the SVM comes at a high computational price as shown in Figure 6.
The bars represent the average time needed to train each algorithm for a given set of parameters.
The total training time includes the time needed for the grid search to find the bestparameters.
For SVMs with the radial kernel (Figure 4), training took 497 minutes for each set of parameters,
and 17893 minutes to search all 36 points on the parameter grid. The mi-NB algorithm was much
quicker, and only had one parameter to explore, taking 17 minutes per pointand 366 minutes for
the grid search.
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Figure 4: Failure prediction performance of SVM, mi-NB and Autoclass using 25 attributes (one
sample per pattern) measured per drive. For mi-NB, the results shown arefor equal-
width binning. Autoclass is tested using both equal-width (EW) and equal-frequency
(EF) binning (results with 5 bins shown). Error bars are±1 standard error in this and all
subsequent figures.
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Figure 5: Comparison of preprocessing with the SVM using 25 attributes (one sample per pattern).
A linear kernel is used, and the default attribute scaling is compared with equal-width and
equal-frequency binning.
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Also of interest is how far in advance we are able to predict an imminent failure. Figure 7
shows a histogram of the time before actual failure that the drives are correctly predicted as failing,
plotted for SVM at the point 50.6% detection, 0.0% false alarms. The majority of detected failures
are predicted within 100 hours (about 4 days) before failure, which is along enough period to be
reasonable for most users to backup their data. A substantial number of failures were detected over
100 hours before failure, which is one of the motivations for initially labeling all patterns from failed
drives as being examples of the failed class (remembering that our data onlyincludes the last 600
hours of SMART samples from each drive).

5.2 Single-attribute Experiments

In an effort to understand which attributes are most useful in predicting imminent hard-drive failure,
we tested the attributes individually using the non-parametric statistical methods (rank-sum and re-
verse arrangements). The results of the reverse arrangements test onindividual attributes (Section
3 and Table 3.3) indicate that attributes such as ReadError18 and Servo2could have high sensitiv-
ity. The ReadError18 attribute appears promising with 41.1% of failed drives and 0 good drives
showing significant increasing trends. Figure 8 shows the failure prediction results using only the
ReadError18 attribute with the rank-sum, reverse arrangements, and SVM classifiers. Reducing the
number of attributes from 25 to 1 increases the speed of all classifiers, and this increase is enough
so that more samples can be used per pattern, with 5 samples per pattern usedin Figure 8. The
rank-sum test provided the best performance, with 24.3% detection with false alarms too low to
measure, and 33.2% detection with 0.5% false alarms. The mi-NB and Autoclass algorithms using
the ReadError18 (not shown in Figure 8 for clarity) perform better thanthe reverse-arrangements
test and slightly worse than the SVM.

Single attribute tests using rank-sum were run on all 25 attributes selected in Section 3.3 with
15 samples per pattern. Of these 25, only 8 attributes (Figure 9) were able todetect failures at suf-
ficiently low false alarm rates: ReadError1, ReadError2, ReadError3, ReadError18, ReadError19,
Servo7, GList3 and Servo10. Confirming the observations of the featureselection process, ReadEr-
ror18 was the best attribute, with 27.6% detection at 0.06% false alarms.

For the rank-sum test, the number of samples to use in the reference set (samples from good
drives) is an adjustable parameter. Figure 10 shows the effects of usingreference set sizes 25, 50
and 100 samples, with no significant improvement for 100 samples over 50. For all other rank-sum
test results 50 samples were used in the reference set.

5.3 Combinations of Attributes

Using combinations of attributes in the rank-sum test can lead to improved results over single-
attribute classifiers (Figure 11). The best single attributes from Figure 9 were ReadError1, Read-
Error3, ReadError18 and ReadError19. Using these four attributesand 15 samples per pattern,
the rank-sum test detected 28.1% of the failures, with no measured false alarms. Higher detection
rates (52.8%) can be had if more false alarms are allowed (0.7%). These four attributes were also
tested with the SVM classifier (using default scaling). Interestingly, the linear kernel provided better
performance than the radial, illustrating the need to evaluate different kernels for each data set.

All the ROC curves plotted in this section include error bars at±1 standard error. We also
note that the number of good drives is relatively small (178) and with up to 40% of these used in the
training set, measuring low false alarm rates is imprecise. When results are reported with false alarm
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Figure 6: Training times (in minutes) for each of the algorithms used in Figures 4and 11. The train-
ing times shown are averaged over a set of parameters. The total training timeincludes a
search over multiple parameters. For example, the SVM used in Figure 4 required a grid
search over 36 points which took a total of 17893 minutes for training with parameter se-
lection. For the rank-sum test, only one parameter needs to be adjusted, and the training
time for each parameter value was 2.2 minutes, and 21 minutes for the search through all
parameters.
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Figure 7: Histogram of time (hours) before failure that a correct failureprediction was made.
Counts are summed over ten trials of the SVM algorithm (radial kernel with 25 attributes)
from the point in Figure 4 at 50.6% detection, no false alarms.
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Figure 8: Failure prediction performance of classifiers using a single attribute, ReadError18, with 5
input samples per pattern. For rank-sum and reverse arrangements, error bars are smaller
than line markers. For this attribute, the SVM performed best using the radialkernel and
default attribute scaling (no binning).

rates of< 1%, this means that some of the trials had no false alarm drives while other trialshad
very few (1 or 2). Because some drives are inherently more likely to be predicted as false alarms,
whether these drives are included in the test or training sets can lead to a variance from trial to trial,
causing large error bars at some of the points.

6. Discussion

We discuss the results of our findings and their implications for hard-drivefailure prediction and
machine learning in general.

While the SVM provided the best overall performance (50.6% detection with no measured false-
alarms, see Figure 4), a few caveats should be noted. Using the radial kernel, three parameters
must be searched to find the optimum performance (kernel widthγ, capacityC and cost penalty
L+) which was very computationally expensive and provides no guarantee as to optimality. After
examining the SVM classifiers, it was found that a large number of the trainingexamples were
chosen as support vectors. For example, in a typical experiment using the radial kernel with 25
attributes, over 26% of the training examples were support vectors (6708of 25658). This indicates
that the classifier is likely overfitting the data and using outliers as support vectors, possibly causing
errors on unseen data. Other researchers have noticed this propertyof SVMs and have developed
algorithms that create smaller sets of support vectors, such as the relevance vector machine (Tipping,
2001), kernel matching pursuit (Vincent and Bengio, 2002) and Bayesian neural networks (Liang,
2003). The SMART failure prediction algorithms (as currently implemented in hard-drives) run on
the internal CPU’s of the drive and have rather limited memory and processing to devote to SMART.
To implement the SVM classifiers learned here, they would have to evaluate thekernel with each
support vector for every new sample, which may be prohibitive.

805



MURRAY, HUGHES AND KREUTZ-DELGADO

0 1 2 3
0

10

20

30

40

50
ReadError1

D
et

ec
tio

n 
(%

) Ranksum

0 1 2 3
0

10

20

30

40

50
ReadError2

0 1 2 3
0

10

20

30

40

50
ReadError3

D
et

ec
tio

n 
(%

)

0 1 2 3
0

10

20

30

40

50
ReadError18

0 1 2 3
0

10

20

30

40

50
ReadError19

D
et

ec
tio

n 
(%

)

0 1 2 3
0

10

20

30

40

50
Servo7

0 1 2 3
0

10

20

30

40

50
GList3

False alarms (%)

D
et

ec
tio

n 
(%

)

0 1 2 3
0

10

20

30

40

50
Servo10

False alarms (%)

Figure 9: Failure prediction performance of rank-sum using the best single attributes. The number
of samples per pattern is 15, with 50 samples used in the reference set.

The rank-sum test provided the second-best detection rate (on a set of 4 attributes, Figure 11),
28.1% with no measured false-alarms, and while lower than the best SVM result, it is still much
higher than the currently implemented SMART threshold algorithms. At higher false alarm rates,
the rank-sum detection rate is 52.8% with 0.7% false alarms, which means (due tothe small number
of good drives) that only 1 drive at most triggered a false alarm in the test set. A larger sample
of good drives would be desirable for a more accurate measure of the false alarm rate. The rank-
sum test has a number of advantages over the SVM: faster training time (about 100 times), faster
testing of new samples, fewer parameters, and lower memory requirements. These advantages may
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Figure 10: Rank-sum test with reference set sizes 25, 50 and 100 using ReadError18 attribute and
15 test samples. There is no improvement in performance using 100 samples inthe
reference set instead of 50 (as in all other rank-sum experiments).
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Figure 11: Failure prediction performance of rank-sum and SVM classifiers using four attributes:
ReadError1, ReadError3, ReadError18 and ReadError19.

make it more suitable for implementation in hard drive firmware. For offline situations where more
processing power is available (such as when the failure prediction algorithm is run on the host
CPU), the SVM may be practical. For some machine learning problems, the rank-sum test may be
superior to SVMs as shown in Figure 11. In this case the four attributes were selected because of
good performance in the rank-sum test, and so of course it is not an entirely fair comparison but
in some situations the only attributes available may be those that favor rank-sum.From a drive
reliability perspective, the rank-sum test indicates that attributes that measure read errors (in this
case, ReadError1, ReadError3, ReadError18 and ReadError19) were the most useful in predicting
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Figure 4
Point Detection False Alarm Kernel gamma C L+ L-
1 50.60 0.00 radial 0.100 0.010 100.0 1.0
2 64.18 4.21 radial 0.010 0.100 100.0 1.0
3 70.38 6.20 radial 0.010 1.000 100.0 1.0

Figure 5
Point Detection False Alarm Kernel C L+ L-
1 default scaling 54.73 0.78 linear 0.001 1000.0 1.0
2 60.97 3.09 linear 0.100 5.0 1.0
3 63.17 7.75 linear 0.010 5.0 1.0
1 EW bins 11.18 0.00 linear 0.001 100.0 1.0
2 41.40 0.46 linear 0.001 5.0 1.0
3 48.05 1.72 linear 0.001 1.0 1.0
4 51.83 8.68 linear 0.001 0.5 1.0
1 EF bins 17.54 2.34 linear 0.001 5.0 1.0
2 42.90 11.09 linear 0.100 5.0 1.0
3 (off graph) 70.22 35.40 linear 0.100 10.0 1.0

Figure 8
Point Detection False Alarm Kernel gamma C L+ L-
1 8.28 0.00 radial 0.010 0.010 100.0 1.0
2 17.01 0.96 radial 0.100 0.010 1.0 1.0
3 30.29 3.45 radial 1.000 0.010 1.0 1.0

Figure 11
Point Detection False Alarm Kernel gamma C L+ L-
1 linear 5.43 0.17 linear 0.001 1000.0 1.0
2 15.82 0.35 linear 0.010 1000.0 1.0
3 32.92 0.51 linear 0.010 1.0 1.0
4 52.23 0.96 linear 0.100 1.0 1.0
1 radial 1.68 0.09 radial 0.100 0.001 100.0 1.0
2 9.29 0.53 radial 0.001 0.010 100.0 1.0
3 17.79 0.69 radial 1.000 1.000 1000.0 1.0
4 27.13 1.73 radial 0.100 0.100 100.0 1.0

Table 3: Parameters for SVM experiments in Figures 4, 5, 8 and 11.

imminent failure. Also of interest, although with less selectivity, are attributes that measure seek
errors.

Our new mi-NB algorithm demonstrated promising initial performance, which although less
successful than the SVM was considerably better than the unsupervisedAutoclass algorithm which
was also based on naive Bayesian models (Figure 4). The multiple instance framework addresses
the problem of which patterns in the time series should be labeled as failed during learning. In
order to reduce false alarms, our algorithm begins with the assumption that only the last pattern in
each failed drive’s history should be labeled failed, and during subsequent iterations, it switches the
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labels of those good samples mostly likely to be from the failed distribution. This semi-supervised
approach can be contrasted with the unsupervised Autoclass and the fullysupervised SVM, where
all patterns from failed drives were labeled failed.

The reverse-arrangements test performed more poorly than expected, as we believed that the
assumption of increasing trend made by this test was well suited for hard drive attributes (like
read-error counts) that would presumably increase before a failure.The rank-sum test makes no as-
sumptions about trends in the sets, and in fact all time-order information is removed in the ranking
process. The success of the rank-sum method led us to speculate that thisremoval of time-order over
the sample interval was important for failure prediction. There are physical reasons in drive tech-
nology why impending failure need not be associated with an increasing trend in error counts. The
simplest example is sudden stress from a failing drive component which causes a sudden increase
in errors, followed by drive failure.

It was also found that a small number of samples (from 1 to 15) in the input patterns was suf-
ficient to predict failure accurately, this indicates that the drive’s performance can degrade quickly,
and only a small window of samples is needed to make an accurate prediction. Conversely, using
too many samples may dilute the weight of an important event that occurs within a short time frame.

One of the difficulties in conducting this research was the need to try many combinations of
attributes and classifier parameters in order to construct ROC curves. ROC curves are necessary
to compare algorithm performance because the cost of misclassifying one class (in this case, false
alarms) is much higher than for the other classes. In many other real world applications such as
the examples cited in Section 1, there will also be varying costs for misclassifying different classes.
Therefore, we believe it is important that the machine learning community develop standardized
methods and software for the systematic comparison of learning algorithms thatinclude cycling
through ranges of parameters, combinations of attributes and number of samples to use (for time
series problems). An exhaustive search may be prohibitive even with a few parameters, so we envi-
sion an intelligent method that attempts to find the broad outline of the ROC curve byexploring the
limits of the parameter space, and gradually refines the curve estimate as computational time allows.
Another important reason to create ROC curves is that some algorithms (or parameterizations) may
perform better in certain regions of the curve than others, with the best algorithm dependent on the
actual costs involved (which part of the curve we wish to operate in).

7. Conclusions

We have shown that both nonparametric statistical tests and machine learning methods can signifi-
cantly improve over the performance of the hard drive failure-predictionalgorithms which are cur-
rently implemented. The SVM achieved the best performance of 50.6% detection/0% false alarms,
compared with the 3-10% detection/0.1-0.3% false alarms of the algorithms currently implemented
in hard drives. However, the SVM is computationally expensive for this problem and has many free
parameters, requiring a time-consuming and non-optimal grid search.

We developed a new algorithm (mi-NB) in the multiple-instance framework that uses naive
Bayesian learning as its base classifier. The new algorithm can be seen assemi-supervised in that it
adapts the class label for each pattern based on whether it is likely to come from a failed drive. The
mi-NB algorithm performed considerably better than an unsupervised clustering algorithm (Au-
toclass) that also makes the naive Bayes assumption. Further increases inperformance might be
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achieved with base classifiers other than naive Bayes, for example, the mi-SVM algorithm (An-
drews et al., 2003) could be suitably adapted but probably remains computationally prohibitive.

We also showed that the nonparametric rank-sum test can be useful forpattern recognition
and that it can have higher performance than SVMs for certain combinations of attributes. The
best performance was achieved using a small set of attributes: the rank-sum test with four attributes
predicted 28.1% of failures with no false alarms (and 52.8% detection/0.7% false alarms). Attributes
useful for failure prediction were selected by using z-scores and the reverse arrangements test for
increasing trend.

Improving the performance of hard drive failure prediction will have manypractical benefits. In-
creased accuracy of detection will benefit users by giving them an opportunity to backup their data.
Very low false alarms (in the range of 0.1%) will reduce the number of returned good drives, thus
lowering costs to manufacturers of implementing improved SMART algorithms. Whilewe believe
the algorithms presented here are of high enough quality (relative to the current commercially-used
algorithms) to be implemented in drives, it is still important to test them on larger number of drives
(on the order of thousands) to measure accuracy to the desired precision of 0.1%. We also note that
each classifier has many free parameters and it is computationally prohibitiveto exhaustively search
the entire parameter space. We choose many parameters by non-exhaustive grid searches; finding
more principled methods of exploring the parameter space is an important topic offuture research.

We hope that the insights we have gained in employing the rank-sum test, multiple-instance
framework and other learning methods to hard drive failure prediction will be of use in other prob-
lems where rare events must be forecast from noisy, nonparametric time series, such as in the pre-
diction of rare diseases, electronic and mechanical device failures, andbankruptcies and business
failures (see references in Section 1).
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Appendix A: Exact and Approximate Calculation of the Wilcoxon-Mann-Whitney
Significance Probabilities

The Wilcoxon-Mann-Whitney test is a widely used statistical procedure forcomparing two sets of
single-variate data (Wilcoxon, 1945; Mann and Whitney, 1947). The testmakes no assumptions
about the parametric form of the distributions each set is drawn from and so belongs to the class
of nonparametric or distribution-free tests. It tests the null hypothesis thatthe two distributions are
equal against the alternative that one is stochastically larger than the other(Bickel and Doksum,
1977, pg. 345). For example, two populations identical except for a shift in mean is sufficient but
not necessary for one to be stochastically larger than the other.

Following Klotz (1966), suppose we have two setsX = [x1,x2, . . . ,xn] , Y = [y1,y2, . . . ,ym],
n≤m, drawn from distributionsF andG. The sets are concatenated and sorted, and eachxi andyi
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X 74 59 63 64 n = 4
Y 65 55 58 67 53 71 m = 6

[X,Y] sorted 53 55 58 59 63 64 65 67 71 74
Ranks 1 2 3 4 5 6 7 8 9 10

X ranks 10 4 5 6 WX = 25
Y ranks 7 2 3 8 1 9 WY = 30

Table 4: Calculating the Wilcoxon statisticWX andWY without ties

is assigned a rank according to its place in the sorted list. The Wilcoxon statisticWX is calculated
by summing the ranks of eachxi , hence the term rank-sum test. Table 7 gives a simple example of
how to calculateWX andWY. If the two distributions are discrete, some elements may be tied at the
same value. In most practical situations the distributions are either inherently discrete or effectively
so due to the finite precision of a measuring instrument. The tied observations are given the rank of
the average of the ranks that they would have taken, called themidrank. Table 7 gives an example
of calculating the Wilcoxon statistic in the discrete case with ties. There are five elements with the
value ‘0’ which are all assigned the average of their ranks:(1+2+3+4+5)/5 = 3.

To test the null hypothesisH0 that the distributionsF andG are equal against the alternative
Ha that F(x) ≤ G(x)∀x, F 6= G we must find the probabilityp0 = P(WX > wx) that underH0 the
true value of the statistic is greater than the observed value, now calledwx (Lehmann and D’Abrera,
1998, pg. 11). If we were interested in the alternative thatF ≤G or F ≥G, a two-sided test would be
needed. The generalization to the two-sided case is straightforward and will not be considered here,
see Lehmann and D’Abrera (1998, pg. 23). Before computers were widely available, values ofp0

(the significance probability) were found in tables if the set sizes were small(usuallymandn< 10)
or calculated from a normal approximation if the set sizes were large. Because of the number of
possible combinations of tied elements, the tables and normal approximation werecreated for the
simplest case, namely continuous distributions (no tied elements).

X 0 0 0 1 3 n = 5
Y 0 0 1 2 2 3 4 m = 7

X ranks 3 3 3 6.5 10.5 WX = 26
Y ranks 3 3 6.5 8.5 8.5 10.5 12 WY = 52

z1 z2 z3 z4 z5

Discrete values: 0 1 2 3 4

t1 t2 t3 t4 t5
Ties configuration: 5 2 2 2 1

Table 5: Calculating the Wilcoxon statisticWX andWY with ties
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Lehman (1961) and Klotz (1966) report on the discrepancies between the exact value ofp0

and its normal approximation, which can be over 50%, clearly large enoughto lead to an incorrect
decision. Unfortunately, many introductory texts do not discuss these errors nor give algorithms for
computing the exact probabilities. Here we outline how to calculate the exact value of p0 but keep
in mind there are other more efficient (but more complicated) algorithms (Mehta et al., 1988a,b;
Pagano and Tritchler, 1983). Each element inX andY can take one ofc values,z1 < z2 < · · ·< zc.
The probability thatxi will take on a valuezk is pk:

P(xi = zk) = pk i = 1..n, k = 1..c .

Similarly for yi ,
P(y j = zk) = rk j = 1..m, k = 1..c .

UnderH0, pk = rk∀k. The count of elements inX that take on a valuezk is given byuk and the count
of elements inY that are equal tozk is given byvk so that

uk = #{X = zk} vk = #{Y = zk}
c
∑

k=1
uk = n

c
∑

k=1
vk = m .

The vectorsU = [u1,u2, . . . ,uc] andV = [v1,v2, . . . ,vc] give the ties configuration of X and Y. The
vectorT = [t1, t2, . . . , tc] = U +V gives the ties configuration of the concatenated set. See Table 7
for an example of how to calculateT. Under the null hypothesisH0, the probability of observing
ties configurationU is given by (Klotz, 1966),

P(U |T) =



 t1
u1







 t2
u2



...



 tc
uc







 n+m
n




.

To find p0, we must find all theU such thatWU > Wx, whereWU is the rank sum of a set with ties
configurationU ,

p0 = ∑
Ui∈Ug

P(Ui |T) Exact significance probability

Ug = {U |WU > WX} . (4)

Equation (4) gives us the exact probability of observing a set with a ranksumW greater than
WX. Because of the number ofU to be enumerated, each requiring many factorial calculations, the
algorithm is computationally expensive but still possible for sets as large asm= 50 andn = 20. We
can compare the exactp0 to the widely-used normal approximation and find the conditions when
the approximation is valid and when the exact algorithm is needed.

The normal approximation to the distribution of the Wilcoxon statisticW can also be used to
find p0. BecauseW is the sum of identical, independent random variables, the central limit theorem
states that its distribution will be normal asymptotically. The mean and variance ofW are given by
Lehmann and D’Abrera (1998),

E(W) =
1
2

n(m+n+1)

Var(W) =
mn(m+n+1)

12
−

mn
c
∑

i=1
(t3

i − ti)

12(m+n)(m+n−1)
. (5)
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m (Large)
10 15 20 25 30 35 40 45 50

5 12.298 5.332 6.615 8.480 2.212 0.947 1.188 0.527 0.630
n (Small) 10 4.057 3.482 2.693 0.595 0.224 0.14 0.064 0.091 0.042

15 1.648 0.306 0.069 0.081 0.026 0.019 0.010 0.009
20 0.082 0.048 0.016 0.014 0.006 0.005 0.006

Table 6: Mean-square error between exact and normal approximate to the distribution ofW. All zk

are equally likely. Averages are over 20 trials at each set size

m (Large)
10 15 20 25 30 35 40 45 50

5 31.883 25.386 28.300 26.548 14.516 16.654 19.593 9.277 11.380
n (Small) 10 3.959 4.695 3.594 1.884 1.058 1.657 0.427 0.735 0.369

15 1.984 0.733 0.311 0.336 0.230 0.245 0.317 0.205
20 0.303 0.146 0.123 0.059 0.045 0.071 0.034

Table 7: Mean-square error between exact and normal approximate to the distribution ofW. One
discrete value,z1 is much more likely than the otherzk. Averages are over 20 trials at each
set size

Using the results of (5) we can findp0 by using a table of normal curve area or common statistical
software. Note that Var(W) takes into account the configuration of tiesT = [t1, t2, . . . , tc] defined
above. The second term on the right in the expression for Var(W) is known as the ties correction
factor.

The exact and approximate distributions ofW were compared for set sizes ranging from 10≤
m≤ 50 and 5≤ n ≤ 20 with tied observations. For each choice ofm and n the average error
between the exact and normal distributions is computed for 0≤ p0 ≤ 0.20 which is the range that
most critical values will fall into. The mean-square error (mse) is computed over 20 trials for each
set size. Table 7 gives the results of this comparison for the case where each discrete valuezk is
equally likely,pk = rk = constant∀k. As expected, the accuracy improves as the set size increases,
but it should be noted that these are only averages; that accuracy ofp0 for any particular experiment
may be worse than suggested by Table 7. To illustrate this, Table 7 compares the distributions in
the case when the first valuez1 is much more likely (p1 = 60%) than the otherzk which are equally
likely. Whenn < 10, the normal approximation is too inaccurate to be useful even whenm= 50.
This is the situation when using the Wilcoxon test with the hard drive failure-prediction data, and
motivated our investigation into the exact calculation ofp0. Again, Tables 7 and 7 should be used
only to observe the relative accuracies of the normal approximation undervarious set sizes and
distributions; the accuracy in any particular problem will depend on the configuration of tiesT, the
actual value ofp0, and the set size. The inaccuracies of normal approximations in small sampledata
size situations is a known aspect of the central limit theorem. It is particularly weak for statistics
dependent on extreme values (Kendall, 1969).
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Recommendations Based on the results of the comparisons between the exact calculation ofp0

and the normal approximation (Tables 7 and 7), we offer recommendations on how to perform the
Wilcoxon-Mann-Whitney test in the presence of tied observations:

1. If n≤ 10 andm≤ 50, the exact calculation should always be used.
2. The normal approximation loses accuracy if one of the values is much morelikely than the

others. If this is the case, values ofn≤ 15 will require the exact calculation.
3. The exact calculation is no longer prohibitively slow forn≤ 20 andm≤ 50, and should be

considered if the significance probabilityp0 is close to the desired critical value.

These recommendations are stronger than those given in Emerson and Moses (1985). A number
of software packages can perform the exact test, including StatXact (http://www.cytel.com), the
SAS System (http://www.sas.com) and SPSS Exact Tests (http://www.spss.com). We hope that an
increased awareness of exact procedures will lead to higher quality statistical results.
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