
MACHINE LEARNING TECHNIQUES FOR BRAIN-COMPUTER INTERFACES

K.-R. Müller1,2, M. Krauledat1,2, G. Dornhege1, G. Curio3, B. Blankertz1

1 Fraunhofer FIRST.IDA, Kekuléstr. 7, 12 489 Berlin, Germany
2 University of Potsdam, August-Bebel-Str. 89, 14 482 Potsdam, Germany

3 Dept. of Neurology, Campus Benjamin Franklin, Charité University Medicine Berlin,

Hindenburgdamm 30, 12 203 Berlin, Germany

ABSTRACT

This review discusses machine learning methods and their
application to Brain-Computer Interfacing. A particular fo-
cus is placed on feature selection. We also point out com-
mon flaws when validating machine learning methods in the
context of BCI. Finally we provide a brief overview on the
Berlin-Brain Computer Interface (BBCI).

1. INTRODUCTION

Brain-Computer Interfacing is an interesting, active and high-
ly interdisciplinary research topic ([3, 4, 5, 6]) at the inter-
face between medicine, psychology, neurology, rehabilita-
tion engineering, man-machine interaction, machine learn-
ing and signal processing. A BCI could, e.g., allow a par-
alyzed patient to convey her/his intentions to a computer
application. From the perspective of man-machine interac-
tion research, the communication channel from a healthy
human’s brain to a computer has not yet been subject to in-
tensive exploration, however it has potential, e.g., to speed
up reaction times, cf. [7] or to supply a better understanding
of a human operator’s mental states.

Classical BCI technology has been mainly relying on
the adaptability of the human brain to biofeedback, i.e., a
subject learns the mental states required to be understood
by the machines, an endeavour that can take months until it
reliably works [8, 9].

The Berlin Brain-Computer Interface (BBCI) pursues
another objective in this respect, i.e., to impose the main
load of the learning task on the ’learning machine’, which
also holds the potential of adapting to specific tasks and
changing environments given that suitable machine learn-
ing (e.g. [2]) and adaptive signal processing (e.g. [10]) al-
gorithms are used. Short training times, however, imply
the challenge that only few data samples are available for

The studies were partly supported by the Bundesministerium für Bil-
dung und Forschung (BMBF), FKZ 01IBB02A and FKZ 01IBB02B, by
the Deutsche Forschungsgemeinschaft (DFG), FOR 375/B1 and the PAS-
CAL Network of Excellence, EU # 506778. This review is based on [1, 2].

learning to characterize the individual brain states to be dis-
tinguished. In particular when dealing with few samples
of data (trials of the training session) in a high-dimensional
feature space (multi-channel EEG, typically several features
per channel), overfitting needs to be avoided. It is in this
high dimensional – small sample statistics scenario where
modern machine learning can prove its strength.

The present review introduces basic concepts of ma-
chine learning, which includes a discussion of common lin-
ear classification and the idea of classifying in kernel fea-
ture spaces. Classification is linked to the interesting task
of robust feature selection. Finally, we briefly describe our
BBCI activities where some of the discussed machine learn-
ing ideas come to an application and conclude. Note that
we do not attempt a full treatment of all available literature,
rather, we present a somewhat biased point of view illus-
trating the main ideas by drawing mainly from the work of
the authors and providing – to the best of our knowledge –
reference to related work for further reading. We hope that
it nevertheless will be useful for the reader.

2. LEARNING TO CLASSIFY – SOME
THEORETICAL BACKGROUND

Let us start with a general notion of the learning problems
that we consider in this paper. The task of classification is to
find a rule, which, based on external observations, assigns
an object to one of several classes. In the simplest case there
are only two different classes. One possible formalization of
this task is to estimate a function f :

� N → {−1,+1} from
a given function class F, using input-output training data
pairs generated i.i.d. according to an unknown probability
distribution P(x,y)

(x1,y1), . . . ,(xK ,yK) ∈ � N ×{−1,+1}

such that f will correctly classify unseen examples (x,y).
An example is assigned to the class +1 if f (x) ≥ 0 and to
the class −1 otherwise. The test examples are assumed to
be generated from the same probability distribution P(x,y)

as the training data. The best function f that one can obtain
is the one minimizing the expected error (risk)

R[f] =

∫

l(f (x),y)dP(x,y), (1)

where l denotes a suitably chosen loss function, e.g., l(ŷ,y) =
0 for ŷ = y and l(ŷ,y) = 1 otherwise (the so-called 0/1-loss).
The same framework can be applied for regression prob-
lems, where y ∈ �

. Here, the most common loss function
is the squared loss: l(f (x),y) = (f (x)− y)2; see [11] for a
discussion of other loss functions.

Unfortunately the risk cannot be minimized directly, since
the underlying probability distribution P(x,y) is unknown.
Therefore, we have to try to estimate a function that is close
to the optimal one based on the available information, i.e.
the training sample and properties of the function class F
the solution f is chosen from. To this end, we need what is
called an induction principle. A particular simple one con-
sists in approximating the minimum of the risk (1) by the
minimum of the empirical risk

Remp[f] =
1
K

K

∑
k=1

l(f (xk),yk). (2)

It is possible to give conditions on the learning machine
which ensure that asymptotically (as K → ∞), the empirical
risk will converge towards the expected risk. However, for
small sample sizes large deviations are possible and over-
fitting might occur (see Figure 1). Then a small general-

Fig. 1: Illustration of the overfitting dilemma: Given only a small
sample (left) either, the solid or the dashed hypothesis might be
true, the dashed one being more complex, but also having a smaller
training error. Only with a large sample we are able to see which
decision reflects the true distribution more closely. If the dashed
hypothesis is correct the solid would underfit (middle); if the solid
were correct the dashed hypothesis would overfit (right). From [2].

ization error cannot be obtained by simply minimizing the
training error (2). One way to avoid the overfitting dilemma
is to restrict the complexity of the function class F that one
chooses the function f from [12]. The intuition, which will
be formalized in the following is that a “simple” (e.g. lin-
ear) function that explains most of the data is preferable to
a complex one (Occam’s razor). Typically one introduces
a regularization term (e.g. [13]) to limit the complexity of
the function class F from which the learning machine can
choose. This raises the problem of model selection (e.g.
[13]), i.e. how to find the optimal complexity of the func-
tion.

3. LINEAR METHODS FOR CLASSIFICATION
AND BEYOND

In BCI research it is very common to use linear classifiers,
but although linear classification already uses a very simple
model, things can still go terribly wrong if the underlying
assumptions do not hold, e.g. in the presence of outliers or
strong noise which are situations very typically encountered
in BCI data analysis. We will discuss these pitfalls and point
out ways around them.

Let us first fix the notation and introduce the linear hy-
perplane classification model upon which we will rely mostly
in the following (cf. Fig. 2, see e.g. [14]). In a BCI set-up
we measure k = 1 . . .K samples xk, where x are some appro-
priate feature vectors in n dimensional space. In the training
data we have a class label, e.g. yk ∈ {−1,+1} for each sam-
ple point xk. To obtain a linear hyperplane classifier

y = sign
(

w>x+b
)

(3)

we need to estimate the normal vector of the hyperplane w
and a threshold b from the training data by some optimiza-
tion technique [14]. On unseen data x, i.e. in a BCI feedback
session we compute the projection of the new data sample
onto the direction of the normal w via Eq.(3), thus deter-
mining what class label y should be given to x according to
our linear model.

w

Fig. 2: Linear classifier and margins: A linear classifier is defined
by a hyperplane’s normal vector w and an offset b, i.e. the deci-
sion boundary is {x |w>x + b = 0} (thick line). Each of the two
halfspaces defined by this hyperplane corresponds to one class, i.e.
f (x) = sign(w>x+b). The margin of a linear classifier is the min-
imal distance of any training point to the hyperplane. In this case
it is the distance between the dotted lines and the thick line. From
[2].

3.1. Optimal linear classification: large margins versus
Fisher’s discriminant

Linear methods assume a linear separability of the data. We
will see in the following that the optimal separating hyper-
plane from last section maximizes the minimal margin (min-
max). In contrast, Fisher’s discriminant maximizes the av-
erage margin, i.e., the margin between the class means.

3.1.1. Large margin classification

For linearly separable data there is a vast number of pos-
sibilities to determine (w,b), that all classify correctly on
the training set, however that vary in quality on the un-
seen data (test set). An advantage of the simple hyperplane
classifier (in canonical form cf. [12]) is that literature (see
e.g. [14, 12]) tells us how to select the optimal classifier w
for unseen data: it is the classifier with the largest margin
ρ = 1/‖w‖2

2, i.e. of minimal (euclidean) norm ‖w‖2 [12]
(see also Fig. 2). Linear Support Vector Machines (SVMs)
realize the large margin by determining the normal vector w
according to

min
w,b,ξ

1/2 ||w||22 + C/K ||ξ ||1 subject to (4)

yk(w
>xk +b) > 1−ξk and

ξk > 0 for k = 1, . . . ,K,

where ||·||1 denotes the `1-norm: ||ξ ||1 = ∑ |ξk|. Here the
elements of vector ξ are slack variables and parameter C
controls the size of the margin vs. the complexity of the
separation. While the user has not to care about the slack
variables, it is essential to select an approppriate value for
the free parameter C for each specific data set. The process
of choosing C is called model selection, see e.g. [2]. An
issue that is of importance here is discussed in Section 5.
One particular strength of SVMs is that they can be turned
in nonlinear classifiers in an elegant and effective way, see
Section 3.3.

3.1.2. Fisher’s discriminant

Fisher’s discriminant computes the projection w differently.
Under the restrictive assumption that the class distributions
are (identically distributed) Gaussians of equal covariance,
it can be shown to be Bayes optimal. The separability of
the data is measured by two quantities: How far are the pro-
jected class means apart (should be large) and how big is the
variance of the data in this direction (should be small). This
can be achieved by maximizing the so-called Rayleigh co-
efficient of between and within class variance with respect
to w [15, 16]. The slightly stronger assumptions have been
fulfilled in several of our BCI experiments e.g. in [17, 18].
When the optimization to obtain (regularized) Fisher’s dis-
criminant is formulated as a mathematical programm, cf.
[19, 2], it resembles the SVM:

min
w,b,ξ

1/2 ||w||22 + C/K ||ξ ||22 subject to

yk(w
>xk +b) = 1−ξ k for k = 1, . . . ,K.

3.2. Some remarks about regularization and non-robust
classifiers

Linear classifiers are generally more robust than their non-
linear counterparts, since they have only limited flexibility
(less free parameters to tune) and are thus less prone to over-
fitting. Note however that in the presence of strong noise
and outliers even linear systems can fail. In the cartoon
of Fig.3 one can clearly observe that one outlier or strong
noise event can change the decision surface drastically, if
the influence of single data points on learning is not limited.
Although this effect can yield strongly decreased classifica-
tion results for linear learning machines, it can be even more
devastating for nonlinear methods. A more formal way to
control one’s mistrust in the available training data, is to use
regularization (e.g. [13, 20]). Regularization helps to limit
(a) the influence of outliers or strong noise (e.g. to avoid
Fig.3 middle), (b) the complexity of the classifier (e.g. to
avoid Fig.3 right) and (c) the raggedness of the decision sur-
face (e.g. to avoid Fig.3 right). No matter whether linear or
nonlinear methods are used, one should always regularize,
– in particular for BCI data!

Fig. 3: The problem of finding a maximum margin “hyper-plane”
on reliable data (left), data with an outlier (middle) and with a mis-
labeled pattern (right). The solid line shows the resulting decision
line, whereas the dashed line marks the margin area. In the mid-
dle and on the right the original decision line is plotted with dots.
Illustrated is the noise sensitivity: only one strong noise/outlier
pattern can spoil the whole estimation of the decision line. From
[21].

3.3. Beyond linear classifiers

Kernel based learning has taken the step from linear to non-
linear classification in a particularly interesting and efficient1

manner: a linear algorithm is applied in some appropriate
(kernel) feature space. Thus, all beneficial properties (e.g.
optimality) of linear classification are maintained2, but at
the same time the overall classification is nonlinear in input
space, since feature- and input space are nonlinearly related.

Algorithms in feature spaces make use of the following

1By virtue of the so-called ’kernel trick’ [12].
2As we do linear classification in this feature space.

idea: via a nonlinear mapping

Φ :
� N → F

x 7→ Φ(x)

the data x1, . . . ,xn ∈
� N is mapped into a potentially much

higher dimensional feature space F . For a given learning
problem one now considers the same algorithm in F in-
stead of

� N , i.e. one works with the samples

(Φ(x1),y1), . . . ,(Φ(xK),yK) ∈ F ×Y.

Given this mapped representation a simple classification

❍

❍

❍

❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕✕

✕

✕

✕

✕

✕

✕

✕

✕

x1

x2

❍
❍

❍
❍

❍

❍

❍

❍

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

z1

z3

✕

z2

Fig. 4: Two dimensional classification example. Using the sec-
ond order monomials x2

1,
√

2x1x2 and x2
2 as features a separation in

feature space can be found using a linear hyperplane (right). In in-
put space this construction corresponds to a non-linear ellipsoidal
decision boundary (left). From [2].

or regression in F is to be found. This is also implicitly
done for (one hidden layer) neural networks, radial basis
networks (e.g. [22, 23, 24, 20]) or Boosting algorithms [25]
where the input data is mapped to some representation given
by the hidden layer, the RBF bumps or the hypotheses space
respectively.

The so-called curse of dimensionality from statistics says
essentially that the difficulty of an estimation problem in-
creases drastically with the dimension N of the space, since
– in principle – as a function of N one needs exponen-
tially many patterns to sample the space properly. This well
known statement induces some doubts about whether it is
a good idea to go to a high dimensional feature space for
learning.

However, statistical learning theory tells us that the con-
trary can be true: learning in F can be simpler if one uses
a low complexity, i.e. simple class of decision rules (e.g.
linear classifiers). All the variability and richness that one
needs to have a powerful function class is then introduced
by the mapping Φ. In short: not the dimensionality but the
complexity of the function class matters [12]. Intuitively,
this idea can be understood from the toy example in Fig-
ure 4: in two dimensions a rather complicated nonlinear de-
cision surface is necessary to separate the classes, whereas

in a feature space of second order monomials (see e.g. [26])

Φ :
� 2 → � 3

(x1,x2) 7→ (z1,z2,z3) := (x2
1,
√

2x1x2,x
2
2) (5)

all one needs for separation is a linear hyperplane. In this
simple toy example, we can easily control both: the statis-
tical complexity (by using a simple linear hyperplane clas-
sifier) and the algorithmic complexity of the learning ma-
chine, as the feature space is only three dimensional. How-
ever, it becomes rather tricky to control the latter for large
real world problems. For instance, consider 256 dimen-
sional feature vectors from a BCI experiment as patterns and
5th order monomials as mapping Φ – then one would map to
a space that contains all 5th order products of 256 features,

i.e. to a

(

5+256−1
5

)

≈ 1010-dimensional space. So, even

if one could control the statistical complexity of this func-
tion class, one would still run into intractability problems
while executing an algorithm in this space.

Fortunately, for certain feature spaces F and correspond-
ing mappings Φ there is a highly effective trick for comput-
ing scalar products in feature spaces using kernel functions
[27, 28, 29, 12]. Let us come back to the example from
Eq. (5). Here, the computation of a scalar product between
two feature space vectors, can be readily reformulated in
terms of a kernel function k

Φ(x)>Φ(y) = (x2
1,
√

2 x1x2,x
2
2)(y

2
1,
√

2 y1y2,y
2
2)

>

= ((x1,x2)(y1,y2)
>)2

= (x>y)2

=: k(x,y).

This finding generalizes as for x,y ∈ � N , and d ∈ N the
kernel function

k(x,y) = (x>y)d

computes a scalar product in the space of all products of d
vector entries (monomials) of x and y [12, 30]. Note fur-
thermore that using a particular SV kernel corresponds to
an implicit choice of a regularization operator (cf. [33, 34]).
Table 1 lists some of the most widely used kernel functions.
More sophisticated kernels (e.g. kernels generating splines
or Fourier expansions) can be found in [35, 36, 33, 37, 38,
39]. The interesting point about kernel functions is that the
scalar product can be implicitly computed in F , without ex-
plicitly using or even knowing the mapping Φ. So, kernels
allow to compute scalar products in spaces, where one could
otherwise hardly perform any computations. A direct con-
sequence from this finding is [30]: every (linear) algorithm
that only uses scalar products can implicitly be executed in
F by using kernels, i.e. one can very elegantly construct a
nonlinear version of a linear algorithm.3 Examples of such

3Even algorithms that operate on similarity measures k generating pos-

Table 1: Common kernel functions: Gaussian RBF (c ∈ �), poly-
nomial (d ∈ N,θ ∈ �), sigmoidal (κ,θ ∈ �) and inverse multi-
quadric (c ∈ � +) kernel functions are among the most common
ones. While RBF and polynomial are known to fulfill Mercers
condition, this is not strictly the case for sigmoidal kernels [31].
Further valid kernels proposed in the context of regularization net-
works are e.g. multiquadric or spline kernels [13, 32, 33].

Gaussian RBF k(x,y) = exp

(−‖x−y‖2

c

)

Polynomial (x>y+θ)d

Sigmoidal tanh(κ(x>y)+θ)

inv. multiquadric
1

√

‖x−y‖2 + c2

kernel-based learning machines are among others, e.g. Sup-
port Vector Machines (SVMs) [12, 2], Kernel Fisher Dis-
criminant (KFD) [40] or Kernel Principal Component Anal-
ysis (KPCA) [30].

3.4. Discussion

To summarize: a small error on unseen data cannot be ob-
tained by simply minimizing the training error, on the con-
trary, this will in general lead to overfitting and non-robust
behaviour, even for linear methods (cf. Fig.3). One way to
avoid the overfitting dilemma is to restrict the complexity
of the function class, i.e. a “simple” (e.g. linear) function
that explains most of the data is preferable over a complex
one that explains all data (Occam’s razor). This still leaves
the outlier problem which can only be alleviated by an out-
lier removal step and regularization. Note that whenever a
certain linear classifier does not work well, then there are
(at least) two potential reasons for this: (a) either the regu-
larization was not done well or non-robust estimators were
used and a properly chosen linear classifier would have done
well. Alternatively it could as well be that (b) the problem is
intrinsically nonlinear. Then the recommandation is to try a
linear classifier in the appropriate kernel-feature space (e.g.
Support Vector Machines) and regularize well.

Finally, note that if ideal model selection can be done
then the complexity of the learning algorithm is less impor-
tant. In other words, the model selection process can choose
the best method, be it linear or nonlinear. In practice, k-fold
cross validation is quite a useful (although not optimal) ap-
proximation to such an ideal model selection strategy.

itive matrices k(xi,x j)i j can be interpreted as linear algorithms in some
feature space F [35].

4. FEATURE SELECTION TECHNIQUES

After discussing general ideas on classification, regulariza-
tion and model selection it is important to stress that the
ultimate success of a learning machine relies typically on
a proper preprocessing of the data. Here prior knowledge,
e.g. about the frequency content of the signal of interest,
are taken into account. Furthermore and very important in
practice, we can discard non-informative dimensions of the
data and thus select the features of interest for classification
(see e.g. [41]). Straightforward as this may appear, it is in
fact a machine learning art of its own, since we must de-
cide on features that don’t overfit the training samples but
rather generalize to yet unknown test data, even in the pres-
ence of noise. It is furthermore a challenge to make feature
selection and classification an interleaved and integrated al-
gorithmic process. In this light it becomes clear that, e.g.,
PCA-based feature selection is in most cases a bad choice,
since it only takes the total density of all samples into ac-
count, where it should actually consider the class labels, in
order not to discard valuable information for the classifier.
In the following we will briefly review some popular fea-
ture selection techniques that have also been in use in the
BBCI system. Note however that we will not be exhaustive
in our exposition, for further references on feature selec-
tion in general see e.g. [41, 14] or in the context of BCI see
[17, 42].

Suppose for each epoch of recorded brain signals one
has a multi-dimensional vector x. Each dimension of that
vector is called a feature, and the whole vector is called fea-
ture vector. The samples are coming from a controlled mea-
surement such that the underlying mental state is known,
and each sample, resp. feature vector, xk (k = 1, . . . ,K),
has a label yk. The features may be original, raw features,
i.e., potential values at specific times at specific channels
as measured by the EEG device, or they may be the result
of some preprocessing transformations, like spectral power
values in specific frequency bands. The problem of feature
selection is the task to find a small subset of all features that
suffices to represent the information of the whole feature
vector. The objectives of such an enterprise can be many-
fold. (1) When feature vectors are very high-dimensional
with respect to the number of training examples available,
the selection of a suitable smaller subset of features can
make the training of the classifier more robust. Note that
in some representations the relevant information is spread
across all feature dimensions such that a useful selection of
features is not possible. In such a case one has to transform
the data in a clever way to concentrate the discriminative
information. The choice of such a tranformation is often a
crucial step in single-trial EEG analysis. The transformation
may be based on neurophysiological knowledge about the
involved brain functions (frequency filtering, spatial filter-

ing, ...), or one may recruit projection techniques from the
theory of supervised learning, e.g., a common spatial pat-
tern analysis ([16, 43, 44]), or from unsupervised learning,
e.g, independent component analysis ([45, 46, 47]). (2) A
neurophysiological assessment of the selected features may
lead to a better understanding of the involved brain func-
tions, and—as consequence—to further improvements of
the algorithms. (3) One might be interested to reduce the
number of features that have to be measured. In BCI re-
search a typical goal is to reduce the number of channels
needed to operate the BCI. Note that when more than one
feature is derived from each channel, feature selection does
not automatically imply a useful channel selection, as the
selected features may be spread across many channels. Nev-
ertheless a selection of channels can be gained from feature
selection in a straight forward way: define the score of a
channel as the norm of the vector of scores of the features
belonging to that channel.

Most of the feature selection methods discussed below
determine a score (i.e., a real number > 0) for each fea-
ture. The selection of features based on this score can be
obtained by different strategies. When the objective is to
choose the K most informative features, one would choose
the features with the top K scores. Such criterium does not
take into account what loss one has to tolerate when dis-
carding some features. Another strategy could be to select
features in decreasing order of their score until their com-
mon score amounts to a specified percentage of the total
score of all features.

4.1. Data Used to Illustrate the Feature Selection Meth-
ods

To illustrate the feature selection methods we take data from
one BCI experiment that will be explained in more detail in
Section 6.2. Here it suffices to know that the subject per-
formed mental imagery of left hand and foot movements for
140 epochs of 3.5 seconds length for each class. Brain activ-
ity was recorded by 118 EEG channels and spectral power
values were calculated at a 2 Hz resolution in the frequency
range from 6 to 32 Hz using a Kaiser window. Thus the
feature vectors have 13 ·118 = 1534 dimensions.

4.2. Methods from Classical Statistics or Pattern Recog-
nition

Basic methods from statistics quantify “how significant” the
difference between the means of two distributions of inde-
pendent observations is. Such measures can be applied to
each feature separately to get a score of how informative
each feature is with respect to discriminating the two distri-
butions.

The methods in this section determine a score for each
feature by looking at that feature alone (and its labels). Let

r2(left , foot)

0.1

0.2

0.3

0.4

0.5

0.6

0.7 LPM (left , foot)

0.05

0.1

0.15

0.2

0.25

Fig. 5: The left scalp plot depicts the channel selection scores
calculated as r2-coefficients. The scores obtained by t-scaling, r-
coefficients and the Fisher criterion look similar. The scalp plot on
the right shows the weights as obtained by the sparse LPM classi-
fier, see Section 4.3.2.

(x1,y1), . . . ,(xK ,yK) be a sequence of one-dimensional ob-
servations (i.e., a single feature) with labels yk ∈ {+1,−1},
define X+ := 〈xk | yk = +1〉 and X− := 〈xk | yk = −1〉 and
let N+, resp. N− be the number of samples in the positive,
resp. negative class.

4.2.1. Student’s t-Statistics

As well known from the Student’s t-test, one can scale the
difference between the estimated means of two one-dimensional
distributions, such that it obeys the t-statistics. Defining the
estimation of the standard deviation of the difference be-
tween the means of X+ and X− as sxd :=
√

(

1
N+

+
1

N−

)

(N+−1)var(X+)+(N−−1)var(X−)

N+ +N−−2

the t-scaled difference is Xt := mean(X+)−mean(X−)
sxd . Large ab-

solute values of Xt indicate that the difference between the
means of the two distributions is significant. (For the t-test a
threshold is calculated, which depends on the desired level
of significance α and the degree of freedom N+ + N− −
2.) The absolute value of Xt serves as score: scoret(X) =
abs(Xt). Based on this score features can be selected as de-
scribed above.

4.2.2. Bi-serial Correlation Coefficients

Another statistical way to measure how much information
one feature carries about the labels is the bi-serial correla-
tion coefficient r:

Xr :=

√
N+ ·N−

N+ +N−
mean(X−)−mean(X+)

std(X+∪X−)

or the r2-coefficient Xr2 := X2
r , which reflects how much of

the variance in the distribution of all samples is explained
by the class affiliation. Figure 5 shows a scalp plot of the
channel scores that have been derived from the r2 feature
scores as explained above.

CCP6

15

20

25

30

35

40

CCP2 CCP6

7

7.5

8

8.5

9

9.5

10

10.5

C3
CCP2 CCP6

5.5

6

6.5

7

7.5

8

Fig. 6: Series of scalp plots from the incremental channel selection procedure. The first scalp shows the error rates of single channel
classification. The channel with minimum validation error, CCP6, is selected. The next scalp shows the error rates of two channel
classifications where CCP6 is combined with all other channels. The pair CCP6, CCP2 gives the best result here. The last plot shows that
for three channel classification C3 is selected to join the previously chosen channels. Note that the selected channels lie over those cortices
expected to contribute to the discrimination of left hand vs. foot imagery. (In C3 ipsi-lateral activation/deactivation differences for left hand
motor imagery can be observed.)

4.2.3. Fisher Criterion

The Fisher Criterion scores the (squared) distance between
the class means in relation to the intra-class variances:

scoreF(X) =
(mean(X−)−mean(X+))

2

var(X−)+var(X+)

4.3. Methods based on Machine Learning Techniques

In this section we present two methods for feature selection
based on classifiers. One important issue has to be noted
when considering classifier based feature scores. In contrast
to the methods discussed above, a classifier based method
might also score some features very high that only or mainly
consists of noise. A classifier might use such a feature to
cancel the noise in another channel that contains a mixture
of signal and noise. The selected noise channel helps to find
the discriminative information although it actually holds no
such information by itself. Whether this property is wanted
or not, depends on what the feature selection is made for.

4.3.1. Incremental Selection Based on Cross-Validation

This straightforward method comes from the theory of ma-
chine learning. It is an iterative procedure which can be
performed using any classifier. Starting from the empty set,
one feature is added in each step based on cross-validation
results. Note that this method can directly be used for chan-
nel selection without going the detour of averaging feature
scores.

Let C be the set of all channels. Start with the empty
set of selected features S0 := /0. In step j determine err(c)
for each channel c ∈ C −S j−1 as the cross-validation error

obtained for the feature vectors with those dimensions cor-
responding to channels S j−1 ∪{c}. Let cbest be the chan-
nel with minimum cross-validation error and define e(j) :=
err(cbest) = min{err(c) | c ∈ C −S j−1} and S j := S j−1 ∪
{cbest}.

The choice of the stopping criterion depends on what is
intended by the feature selection. If the objective is to ob-
tain a set of K features, one simply stops after step K. If the
objective is to find a set of features that gives the best classi-
fication, one stops when the sequence 〈e(j) | j = 1, . . . , |C |〉
starts to increase (or stops to ‘significantly’ decrease). Fig-
ure 6 shows three steps of the incremental feature selection.

4.3.2. Weighting of Sparse Classifiers

A special category of classifiers gives rise to a method of
feature selection that is considerably faster compared to the
incremental procedure above. A linear classifier is called
sparse, if it favors weighting vectors with a high percent-
age of elements being negligible. The formulation “high
percentage” is not very precise, but typically such classi-
fiers have a parameter, which allows to control the trade-
off between sparsity and percentage of misclassification (on
the training set). There are two variants of sparse classi-
fiers which are very closely related to linear SVMs, cf. Sec-
tion 3.1.1. In the classifiers presented here, sparse solutions
are obtained by using a linear instead of a quadratic norm, as
explained below. Such a strategy leads to feasible optimiza-
tion problems, but sparsity is not guaranteed. Nevertheless,
in practical problems which have sparse solutions, they are
typically found.

Using the same notation as above, the Linear Program-
ming Machine (LPM) is obtained from the linear SVM by
replacing the `2-norm on the regularizer by the `1-norm

(||w||1 = Σ|wn|), i.e., the weight vector w (normal vector of
the separating hyperplane), bias b and slack variables ξ are
determined by the minimization

min
w,b,ξ

1/N ||w||1 + C/K ||ξ ||1 subject to

yk(w
>xk +b) > 1−ξk and

ξk > 0 for k = 1, . . . ,K,

Here the parameterC controls the trade-off between sparsity
(||w||1 is small) and margin errors (||ξ ||1). The classifier is
called Linear Programming Machine because the minimiza-
tion is a constrained linear optimization that can be solved
by linear programming technique.

A different approach can be obtained by formulating
the regularized Fisher Discriminant as a mathematical pro-
gramm, cf. Section 3.1.2. This formalization gives the op-
portunity to consider some interesting variants. Again re-
placing the `2-norm on the regularizer by the `1-norm gives
a sparse variant of the Fisher Discriminant:

min
w,b,ξ

1/N ||w||1 + C/K ||ξ ||22 subject to

yk(w
>xk +b) = 1−ξ k for k = 1, . . . ,K

This optimization is a constrained quadratic convex prob-
lem, that can be solved, e.g., by the cplex optimizer [48].
To have a computationally less demanding classifier, the `2-
norm on the slack variables ξ can also be replaced by the
`1-norm (Linear Sparse Fisher Discriminant, LSFD). In that
case the minimum can be found by a constrained linear pro-
gram. Note that in spite of the little formal difference be-
tween this classifier and the LPM (‘=’ vs. ‘>’ and ξk > 0
in the constraints) the objective is quite different. While the
LPM is—like SVMs—a large margin classifier, the LSFD
maximizes the distance between the class means relative to
the intra class variance, like the usual Fisher Discriminant.

Having trained one of the linear sparse classifiers results
in a sparse weight vector w that projects feature vectors per-
pendicular to the separating hyperplane. The absolute value
of the weight for each feature can serve as a score for feature
selection. Figure 7 depicts the weight vector determined by
an LPM as a gray scale coded matrix. The derived channel
scores are indicated by the right bar and, arranged as scalp
topography, in the right plot of Figure 5.

Note that the classifiers presented in this section can
be kernelized. But in the kernelized nonlinear classifiers,
sparseness is obtained in feature space and thus cannot be
used for the selection of (input) features.

5. CAVEATS IN THE VALIDATION

The objective when evaluating offline classifications is to
estimate the future performance of the investigated meth-
ods, or in other words the generalization ability. The most

5 10 15 20 25 30

Fp

FAF
F

FFC

FC

CFC

C

CCP

CP

PCP

P

PPO
PO

O

Σ←

↑

Fig. 7: This figure shows the weight vector of a sparse classifier
(absolute values). The bar on the bottom shows the sum across
all channels. The focus in the frequency range lies on the α-band
(here 11–14 Hz). Note that less than 4% of the features were as-
signed non-zero weights. The right plot in Figure 5 shows the
channel score derived from these feature scores.

objective report of BCI performance are the results of ac-
tual feedback sessions. But in the development and enhace-
ment of BCI systems it is essential to make offline investiga-
tions. Making BCI feedback experiments is costly and time-
consuming. So, when one is exploring new ways for pro-
cessing or classifying brain signals, one would first like to
validate and tune the new methods before integrating them
into an online system and pursuing feedback experiments.
But there are many ways which lead to an (unintentional)
overestimation of the generalization ability. In this section
we discuss what has to be noted when analyzing the meth-
ods presented in this paper. A much more thorough discus-
sion of the evaluation methods for BCI classifications will
be the subject of a forthcoming paper.

5.1. The Fundamental Problem

The essence in estimating the generalization error is to split
the available labelled data into training and test set, to deter-
mine all free hyperparameters and parameters on the train-
ing set and then to evaluate the method on the test data.
The test data must not have been used in any way before all
parameters have been calculated, all hyperparameters have
been selected and all other selections have been made, to en-
sure that the estimation of the error is unbiased. In a cross-
validation or a leave-one-out validation the data set is split
in many different ways into training and test set, the pro-
cedure as outlined above is performed for each split, and fi-
nally the mean of all errors obtained for the test data is taken
as estimate for the generalization error. A common error in
the evaluation of machine learning techniques is that some
preprocessing steps or some parameter selections are per-
formed on the whole data set before the cross-validation. If
the preprocessing acts locally on each sample, there is no
problem, but if the preprocessing of one sample depends

somehow on the distribution of all samples, the basic prin-
ciple that the test set must remain unseen until all free pa-
rameters have been fixed, is violated. Whether this violation
leads to a severe underestimation of the generalization error
cannot be said in general as it depends on many factors, but
certainly it cannot be excluded.

When enough data samples are available, the problem
can be solved by having a three-fold split of the data into
training, test and validation set. In this setting methods with
competing parameter settings would all be trained on the
training and applied to the validation set. The setting with
the best performance on the validation set is chosen and ap-
plied to the test set. In a cross-validation one has many of
such three-fold splits and the mean error on the test set is
taken as estimate of the generalization error.

While this procedure is conceptually sound, it is often
not a viable way in BCI context where the number of avail-
able labelled samples is very limited compared to the com-
plexity of the data. In such a setting doing the model se-
lection on one fixed split is not robust. One can circumvent
this problem, when sufficiently computing resources (com-
puting power or time) are available by doing a nested cross-
validation. While the outer cross-validation is used to get
the estimation of the generalization error, there is an inner
cross-validation performed on each training set of the outer
validation to do the model selection.

5.2. Evaluating Classifiers with Hyperparameters

Machine learning classifiers have parameters whose values
are adapted to given labelled data (training data) by some
optimization criterion, like w,b,ξ in (4). Some classifiers
also have some so called hyperparameters, like C in (4).
These are parameters which also have to be adapted to the
data, but for which no direct optimization criterion exists.
Typically hyperparameters control the capacity of the clas-
sifier or the raggedness of the separation surface. In the
classifiers presented in Section 4.3.2 the hyperparameter C
controls the sparsity of the classifier (sparser classifiers have
less capacity). To validate the generalization ability of a
classifier with hyperparameters one has to perform a nested
cross-validation as explained above. On each training set of
the outer cross-validation, an inner cross-validation is per-
formed for different values of the hyperparameters. The one
with minimum (inner) cross-validation error is selected and
evaluated on the test set of the outer cross-validation.

5.3. Evaluating Preprocessing Methods

The fundamental problem that was discussed in Section 5.1
appears when a preprocessing method (as CSP) is applied
to the whole data set before the cross-validation. But even a
preprocessing which is not label dependent can be problem-
atic when it operates non-locally. To make an unbiased val-

idation non-local processings have to be performed within
the cross-validation, whereby all parameters have to be es-
timated from the training data. For example, a correct eval-
udation of a method that uses ICA as preprocessing has to
calculate the projection matrix with the cross-validation on
each training set. Data of the test set are projected using
that matrix. While the bias introduced by applying ICA be-
fore the cross-validation can be expected to be marginal, it
is critical for the label dependent method CSP.

5.4. Evaluating Feature Selection Methods

It is very tempting to evaluate feature selection methods by
running the feature selection on the whole data set and then
doing a cross-validation on the data set of reduced features.
Unfortunately such a procedure is found in many publica-
tions, but it is conceptually wrong and may very well lead
to an underestimation of the generalization error. As argu-
mented in Section 5.3 a preprocessing like feature selection
has to be performed within the cross-validation. When the
method has hyperparameters (like the number of features
to extract) the selection of these hyperparameters has to be
done by an inner cross-validation, see Section 5.2.

6. THE BERLIN BRAIN-COMPUTER INTERFACE

The Berlin Brain-Computer Interface is driven by the idea
to shift the main burden of the learning task from the hu-
man subject to the computer under the motto ’let the ma-
chines learn’. To this end, the machine learning and feature
selection methods presented in the previous sections are ap-
plied to EEG data from selected BBCI paradigms: selfpaced
[17, 18] and imagined [49, 44, 50] experiments.

6.1. Self-paced Finger Tapping Experiments

In preparation of motor tasks, a negative readiness potential
precedes the actual execution. Using multi-channel EEG
recordings it has been demonstrated that several brain ar-
eas contribute to this negative shift (cf. [51, 52]). In unilat-
eral finger or hand movements the negative shift is mainly
focussed on the frontal lobe in the area of the correspond-
ing motor cortex, i.e., contralateral to the performing hand.
Based on the laterality of the pre-movement potentials it is
possible to discriminate multi-channel EEG recordings of
upcoming left from right hand movements. Fig. 8 shows
the lateralized readiness potential during a ‘self-paced’ ex-
periment, as it can be revealed here by averaging over 260
trials in one subject.

In the ‘self-paced’ experiments, subjects were sitting in
a normal chair with fingers resting in the typing position at
the computer keyboard. In a deliberate order and on their

left [−100 −50] ms right [−100 −50] ms

−10

−5

0

5
CCP3

Fig. 8: The scalp plots show the topography of the electrical po-
tentials prior to keypress with the left resp. right index finger. The
plot in the middle depicts the event-related potential (ERP) for left
(thin line) vs. right (thick line) index finger in the time interval
-1000 to -500 ms relative to keypress at electrode position CCP3,
which is marked by a bigger cross in the scalp plots. The contralat-
eral negativation (lateralized readiness potential, LRP) is clearly
observable. Approx. 260 trials per class have been averaged.

own free will (but instructed to keep a pace of approxi-
mately 2 seconds), they were pressing keys with their index
and little fingers.

EEG data was recorded with 27 up to 120 electrodes,
arranged in the positions of the extended 10-20 system, ref-
erenced to nasion and sampled at 1000 Hz. The data were
downsampled to 100 Hz for further offline analyses. Surface
EMG at both forearms was recorded to determine EMG on-
set. In addition, horizontal and vertical electrooculograms
(EOG) were recorded to check for correlated eye move-
ments.

In [7], it has been demonstrated that when analyzing
LRP data offline with the methods detailed in the previous
sections, classification accuracies of more than 90% can be
reached at 110 ms before the keypress, i.e. a point in time
where classification on EMG is still at chance level. These
findings suggest that it is possible to use a BCI in time crit-
ical applications for an early classification and a rapid re-
sponse.

Table 2 shows the classification results for one subject
when comparing different machine learning methods. Clearly
regularization and careful model selection are mandatory
which can, e.g., be seen by comparing LDA and RLDA.
Of course, regularization is of more importance the higher
the dimensionality of features is. The reason of the very bad

Table 2: Test set error (± std) for classification at 110 ms before
keystroke; ›mc‹ refers to the 56 channels over (sensori) motor cor-
tex, ›all‹ refers to all 105 channels. The algorithms in question are
Linear Discriminant Analysis (LDA), Regularized Linear Discrim-
inant Analysis (RLDA), Linear Programming Machine (LPM),
Support Vector Machine with Gaussian RBF Kernel (SVMrbf) and
k-Nearest Neighbor (k-NN).

channels LDA RLDA LPM SVMrbf k-NN

all 16.9±1.3 8.4±0.6 7.7±0.6 8.6±0.6 28.4±0.9

mc 9.3±0.6 6.3±0.5 7.4±0.7 6.7±0.7 22.0±0.9

left−ref [8 14] Hz right−ref [8 14] Hz

−30

−20

−10

0
CCP5

Fig. 9: This scalp plots show the topography of the band power
in the frequency band 8–14 Hz relative to a reference period. The
plot in the middle shows ERD curves (temporal evolution of band
power) at channel CCP5 (mark by a bigger cross in the scalp plots)
for left (thin line) and right (thick line) hand motor imagery. The
contralateral attenuation of the µ-rhythm during motor imagery is
clearly observable. For details on ERD, see [54].

performance of k-NN is that the underlying Euclidean met-
ric is not appropriate for the bad signal-to-noise ratio found
in EEG trials. For further details refer to [17, 18]. Note that
the accuracy of 90% can be maintained in recent realtime
feedback experiments [53]. Here, as no trigger informa-
tion is not available beforehand, the classification decision
is split into one classifier that decides whether a movement
is being prepared and a second classifier that decides be-
tween left and right movement to come. In fact subjects tell
about peculiar experiences in their decision making intro-
spection since the feedback is immediate.

6.2. Motor Imagery Experiments

During imagination of a movement, a lateralized attenuation
of the µ- and/or central β -rhythm can be observed localized
in the corresponding motor and somatosensory cortex. Be-
sides a usual spectral analysis, this effect can be visualized
by plotting event-related desynchronization (ERD) curves
[54] which show the temporal evolution of the band-power
in a specified frequency band. A typical averaged ERD is
shown in Fig. 9.

We performed experiments with 6 healthy subjects per-
forming motor imagery. The subjects were sitting comfort-
ably in a chair with their arms in a relaxed position on an
arm rest. Two different sessions of data collection were pro-
vided: In both a target “L”, “R” and “F” (for left, right hand
and foot movement) is presented for the duration of 3.5 sec-
onds to the subject on a computer screen. In the first ses-
sion type this is done by visualizing the letter on the middle
of the screen. In the second session type the left, right or
lower triangle of a moving gray rhomb is colored red. For
the whole length of this period, the subjects were instructed
to imagine a sensorimotor sensation/movement in left hand,
right hand resp. one foot. After stimulus presentation, the
screen was blank for 1.5 to 2 seconds. In this manner, 35
trials per class per session were recorded. After 25 trials,
there was a short break for relaxation. Four sessions (two of

each training type) were performed. EEG data was recorded
with 128 electrodes together with EMG from both arms and
the involved foot, and EOG as described above.

An offline machine learning analysis of the “imagined”-
experiments yields again high classification rates (up to 98.9%
with the feature combination algorithm PROB [44, 49]),
which predicts the feasibility of this paradigm for online
feedback situations (see also [50]). In fact, our recent online
experiments have confirmed this prediction by showing high
bitrates for several subjects. These subjects were untrained
and had to play video games like ’brain pong’, ’basket’ (a
spelling task) and ’controlled 1-D cursor movement’ [55].
Depending on the ’game’ scenario the best subjects could
achieve information transfer rates of up to 37 Bits/min.

7. CONCLUSION

After a brief review of general linear and non-linear ma-
chine learning techniques, this paper discussed variable se-
lection methods and their application to EEG data. These
techniques are a salient ingredient of the BBCI online feed-
back system. Note that although machine learning algo-
rithms were initially always tested offline, it is the mastery
of choosing the ’right’ complexity for a learning problem
that makes the resulting classifiers generalize and thus ren-
ders them useful in real BCI feedback experiments. In par-
ticular the paradigm shift away from subject training to indi-
vidualization and adaptation (’let the machines that learn’)
of the signal processing and classification algorithm to the
specific brain ’under study’ holds the key to the success of
the BBCI. Being able to use (B)BCI for untrained subjects
dramatically enhances and broadens the spectrum of practi-
cal applications in human-computer interfacing.

Acknowledgments: We thank our co-authors from pre-
vious publications for letting us use the figures and joint
results [2, 1, 18, 21].

8. REFERENCES

[1] Klaus-Robert Müller, Charles W. Anderson, and Gary E. Birch, “Lin-
ear and non-linear methods for brain-computer interfaces,” IEEE
Trans. Neural Sys. Rehab. Eng., vol. 11, no. 2, 2003, 165–169.

[2] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An
introduction to kernel-based learning algorithms,” IEEE Transac-
tions on Neural Networks, vol. 12, no. 2, pp. 181–201, 2001.

[3] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert
Pfurtscheller, and Theresa M. Vaughan, “Brain-computer interfaces
for communication and control,” Clin. Neurophysiol., vol. 113, pp.
767–791, 2002.

[4] J. R. Wolpaw, N. Birbaumer, William J. Heetderks, D. J. McFarland,
P. Hunter Peckham, G. Schalk, E. Donchin, Louis A. Quatrano, C. J.
Robinson, and T. M. Vaughan, “Brain-computer interface technol-
ogy: A review of the first international meeting,” IEEE Trans. Rehab.
Eng., vol. 8, no. 2, pp. 164–173, 2000.

[5] Andrea Kübler, Boris Kotchoubey, Jochen Kaiser, Jonathan Wolpaw,
and Niels Birbaumer, “Brain-computer communication: Unlocking
the locked in,” Psychol. Bull., vol. 127, no. 3, pp. 358–375, 2001.

[6] Eleanor A. Curran and Maria J. Stokes, “Learning to control brain
activity: A review of the production and control of EEG components
for driving brain-computer interface (BCI) systems,” Brain Cogn.,
vol. 51, pp. 326–336, 2003.

[7] Matthias Krauledat, Guido Dornhege, Benjamin Blankertz, Gabriel
Curio, and Klaus-Robert Müller, “The berlin brain-computer inter-
face for rapid response,” in Proceedings of the 2nd International
Brain-Computer Interface and Training Course, Graz 2004, 2004,
accepted.

[8] J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan, “Brain-computer
interface research at the Wadsworth Center,” IEEE Trans. Rehab.
Eng., vol. 8, no. 2, pp. 222–226, 2000.

[9] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen,
B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, and H. Flor, “A
spelling device for the paralysed,” Nature, vol. 398, pp. 297–298,
1999.

[10] S.S. Haykin, Adaptive Filter Theory, Prentice Hall, 1995.

[11] A.J. Smola and B. Schölkopf, “On a kernel–based method for pat-
tern recognition, regression, approximation and operator inversion,”
Algorithmica, vol. 22, pp. 211–231, 1998.

[12] V.N. Vapnik, The nature of statistical learning theory, Springer
Verlag, New York, 1995.

[13] T. Poggio and F. Girosi, “Regularization algorithms for learning that
are equivalent to multilayer networks,” Science, vol. 247, pp. 978–
982, 1990.

[14] R.O. Duda, P.E.Hart, and D.G.Stork, Pattern classification, John
Wiley & Sons, second edition, 2001.

[15] R.A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936.

[16] K. Fukunaga, Introduction to Statistical Pattern Recognition, Aca-
demic Press, San Diego, 2nd edition, 1990.

[17] Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Müller, “Clas-
sifying single trial EEG: Towards brain computer interfacing,” in
Advances in Neural Inf. Proc. Systems (NIPS 01), T. G. Diettrich,
S. Becker, and Z. Ghahramani, Eds., 2002, vol. 14, pp. 157–164.

[18] Benjamin Blankertz, Guido Dornhege, Christin Schäfer, Roman
Krepki, Jens Kohlmorgen, Klaus-Robert Müller, Volker Kunzmann,
Florian Losch, and Gabriel Curio, “Boosting bit rates and error de-
tection for the classification of fast-paced motor commands based on
single-trial EEG analysis,” IEEE Trans. Neural Sys. Rehab. Eng., vol.
11, no. 2, pp. 127–131, 2003.

[19] S. Mika, G. Rätsch, and K.-R. Müller, “A mathematical program-
ming approach to the kernel Fisher algorithm,” in Advances in Neu-
ral Information Processing Systems, T.K. Leen, T.G. Dietterich, and
V. Tresp, Eds. 2001, vol. 13, pp. 591–597, MIT Press.

[20] G. Orr and K.-R. Müller, Eds., Neural Networks: Tricks of the Trade,
vol. 1524, Springer LNCS, 1998.

[21] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for AdaBoost,”
Machine Learning, vol. 42, no. 3, pp. 287–320, Mar. 2001, also
NeuroCOLT Technical Report NC-TR-1998-021.

[22] J. Moody and C. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Computation, vol. 1, no. 2, pp. 281–294,
1989.

[23] S. Haykin, Neural Networks : A Comprehensive Foundation,
Macmillan, New York, 1994.

[24] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

[25] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Com-
puter and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[26] J. Schürmann, Pattern Classification: a unified view of statistical and
neural approaches, Wiley, New York, 1996.

[27] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foun-
dations of the potential function method in pattern recognition learn-
ing.,” Automation and Remote Control, vol. 25, pp. 821–837, 1964.

[28] S. Saitoh, Theory of Reproducing Kernels and its Applications,
Longman Scientific & Technical, Harlow, England, 1988.

[29] B.E. Boser, I.M. Guyon, and V.N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory, D. Haussler,
Ed., 1992, pp. 144–152.

[30] B. Schölkopf, A.J. Smola, and K.-R. Müller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation, vol.
10, pp. 1299–1319, 1998.

[31] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, 2001, Forthcoming.

[32] F. Girosi, M. Jones, and T. Poggio, “Priors, stabilizers and basis
functions: From regularization to radial, tensor and additive splines,”
Tech. Rep. A.I. Memo No. 1430, Massachusetts Institute of Technol-
ogy, June 1993.

[33] A.J. Smola, B. Schölkopf, and K.-R. Müller, “The connection be-
tween regularization operators and support vector kernels,” Neural
Networks, vol. 11, pp. 637–649, 1998.

[34] F. Girosi, “An equivalence between sparse approximation and sup-
port vector machines,” A.I. Memo No. 1606, MIT, 1997.

[35] B. Schölkopf, Support vector learning, Oldenbourg Verlag, Munich,
1997.

[36] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[37] D. Haussler, “Convolution kernels on discrete structures,” Tech. Rep.
UCSC-CRL-99-10, UC Santa Cruz, July 1999.

[38] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R.
Müller, “Engineering Support Vector Machine Kernels That Recog-
nize Translation Initiation Sites,” BioInformatics, vol. 16, no. 9, pp.
799–807, Sept. 2000.

[39] M. Stitson, A. Gammerman, V.N. Vapnik, V. Vovk, C. Watkins, and
J. Weston, “Support vector regression with ANOVA decomposi-
tion kernels,” Tech. Rep. CSD-97-22, Royal Holloway, University
of London, 1997.

[40] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller,
“Fisher discriminant analysis with kernels,” in Neural Networks for
Signal Processing IX, Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas,
Eds. 1999, pp. 41–48, IEEE.

[41] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, Mar. 2003.

[42] T.N. Lal, M. Schröder, T. Hinterberger, J. Weston, M. Bogdan,
N. Birbaumer, and B. Schölkopf, “Support vector channel selection
in bci,” IEEE Transactions on Biomedical Engineering, Special Issue
on Brain-Machine Interfaces, vol. 51, no. 6, pp. 1003–1010, 2004.

[43] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal spa-
tial filtering of single trial EEG during imagined hand movement,”
IEEE Trans. Rehab. Eng., vol. 8, no. 4, pp. 441–446, 2000.

[44] Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-
Robert Müller, “Boosting bit rates in non-invasive EEG single-trial
classifications by feature combination and multi-class paradigms,”
IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 993–1002, 2004.

[45] Frank Meinecke, Andreas Ziehe, Motoaki Kawanabe, and Klaus-
Robert Müller, “A Resampling Approach to Estimate the Stability of
one- or multidimensional Independent Components,” IEEE Trans-
actions on Biomedical Engineering, vol. 49, no. 12, pp. 1514–1525,
2002.

[46] K.-R. Müller, R. Vigario, F. Meinecke, and A. Ziehe, “Blind source
separation techniques for decomposing event-related brain signals,”
International Journal of Bifurcation and Chaos, vol. 14, no. 2, pp.
773–791, 2004.

[47] G. Wübbeler, A. Ziehe, B.-M. Mackert, K.-R. Müller, L. Trahms,
and G. Curio, “Independent component analysis of non-invasively
recorded cortical magnetic DC-fields in humans,” IEEE Transactions
on Biomedical Engineering, vol. 47, no. 5, pp. 594–599, 2000.

[48] “Ilog solver, ilog cplex 6.5 reference manual,” www.ilog.com,
1999.

[49] Guido Dornhege, Benjamin Blankertz, Gabriel Curio, and Klaus-
Robert Müller, “Increase information transfer rates in BCI by CSP
extension to multi-class,” in Advances in Neural Inf. Proc. Systems
(NIPS 03), 2004, vol. 16, in press.

[50] Matthias Krauledat, Guido Dornhege, Benjamin Blankertz, Florian
Losch, Gabriel Curio, and Klaus-Robert Müller, “Improving speed
and accuracy of brain-computer interfaces using readiness potential
features,” in Proceedings of the 26th Annual International Confer-
ence IEEE EMBS on Biomedicine, San Francisco, 2004, accepted.

[51] R. Q. Cui, D. Huter, W. Lang, and L. Deecke, “Neuroimage of vol-
untary movement: topography of the Bereitschaftspotential, a 64-
channel DC current source density study,” Neuroimage, vol. 9, no. 1,
pp. 124–134, 1999.

[52] W. Lang, O. Zilch, C. Koska, G. Lindinger, and L. Deecke, “Negative
cortical DC shifts preceding and accompanying simple and complex
sequential movements,” Exp. Brain Res., vol. 74, no. 1, pp. 99–104,
1989.

[53] Roman Krepki, Benjamin Blankertz, Gabriel Curio, and Klaus-
Robert Müller, “The Berlin Brain-Computer Interface (BBCI): to-
wards a new communication channel for online control in gaming
applications,” Journal of Multimedia Tools and Applications, 2004,
accepted.

[54] Gert Pfurtscheller and F. H. Lopes da Silva, “Event-related
EEG/MEG synchronization and desynchronization: basic princi-
ples,” Clin. Neurophysiol., vol. 110, no. 11, pp. 1842–1857, Nov
1999.

[55] Roman Krepki, Benjamin Blankertz, Gabriel Curio, and Klaus-
Robert Müller, “The Berlin Brain-Computer Interface (BBCI): to-
wards a new communication channel for online control of multimedia
applications and computer games,” in 9th International Conference
on Distributed Multimedia Systems (DMS’03), 2003, pp. 237–244.

