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Outline

• Does TC (and NLP) need Machine Learning?

• What can Machine Learning do for us (“what has machine learning ever
done for us”?)

• What is machine learning?

• How do we design machine learning systems?

• What is a well-defined learning problem?

• An example

Why Machine Learning

• Progress in algorithms and theory

• Growing flood of online data

• Computational power is available

• Rich application potential

• The knowledge acquisition bottleneck

Well-Defined Learning Problems

• Learning = Improving with experience at some task

– Improve over Task T,

– with respect to performance measure P,

– based on experience E.

• Example Checkers

– T: Play Checkers,

– P: Percentage of Games won in a tournament,

– P: Games played against self.
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Machine Learning Definitions

Machine learning is the subfield of computer science that gives com-
puters the ability to learn without being explicitly programmed
(Arthur Samuel, 1959).

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience E
(Tom M. Mitchell, 1998).

Machine Learning Challenges

• How can a computer program make an experience?

• How can this experience be codified?

• Examples of a codified experience?

User interface agents?

• An (artificial) agent may help users cope with increasing information:

An agent is a computer system that is situated in some envi-
ronment and that is capable of autonomous action in its envi-
ronment in order to meet its design objectives. (Wooldridge,
2002)

• Definition of a Rational Agent:

A rational agent should select an action that is expected to
maximize its performance measure, given the evidence provided.
[Peter Norvig, 2003]

Do Agents need machine learning?

• Practical concerns:

– large amounts of language data have become available (on the web
and elsewhere), and one needs to be able to make sense of them all,

– knowledge engineering methods don’t seem to be able to cope with
the growing flood of data

– Machine learning can be used to automate knowledge acquisition and
inference

• Theoretical contributions:

– reasonably solid foundations (theory and algorithms)
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Machine Learning Categories

• Main Machine Learning Categories:

– Supervised Learning: Computer receives input and output data aka
’labelled’ data and creates a ’mapping’ between both.

– Unsupervised Learning: Input data has no labels are given. Learning
algorithm has to identify structure in the input data.

Supervised Learning

• Supervised Machine Learning Problem Categories:

– Regression Problem: Continous Output. For example predict per-
centage grade (e.g. 76%) based on hours studied.

– Classification Problem: Discrete Output. For example predict grade
(e.g. A) based on hours studied.

Supervised Learning Models

• Tyical Machine Learning Models:

– Supervised Vector Machines (SVM)

– Gaussian Process

– Artifical Neural Networks (ANN)

– Classification, Regression, Decission Trees, Random Forrest, Back
Propagation....

• What is the goal of a model and how do I select the right one?

Application niches for machine learning

• ML for text classification for use in, for instance, self customizing pro-
grams:

– Newsreader that learns user interests

• Data mining: using historical data to improve decisions

– medical records → medical knowledge

– analysis of customer behaviour

• Software applications we can’t program by hand

– autonomous driving

– speech recognition
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Examples: data mining problem

Patient103 Patient103Patient103 ...
time=1 time=2 time=n

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

...

Elective C−Section: ?

Emergency C−Section: ?

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

Diabetes: YES

...
Emergency C−Section: ?

Ultrasound: abnormal

Elective C−Section: no

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

...

Elective C−Section: no

Ultrasound: ?

Diabetes: no

Emergency C−Section: Yes

Ultrasound: ?

Given:

• 9714 patient records, each describing a pregnancy and birth

• Each patient record contains 215 features

Learn to predict:

• Classes of future patients at high risk for Emergency Cesarean Section

Examples: data mining results

Patient103 Patient103Patient103 ...
time=1 time=2 time=n

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

...

Elective C−Section: ?

Emergency C−Section: ?

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

Diabetes: YES

...
Emergency C−Section: ?

Ultrasound: abnormal

Elective C−Section: no

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

...

Elective C−Section: no

Ultrasound: ?

Diabetes: no

Emergency C−Section: Yes

Ultrasound: ?

If No previous vaginal delivery, and

Abnormal 2nd Trimester Ultrasound, and

Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,

Over test data: 12/20 = .60

Other prediction problems

• Customer purchase behavior:

Customer103: Customer103: Customer103:(time=t0) (time=t1) (time=tn)...

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

MS Products: Word

Computer: 386 PC

Purchase Excel?: ?

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

MS Products: Word

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

Purchase Excel?: ?

MS Products: Word

Computer: Pentium Computer: Pentium

Purchase Excel?: Yes
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• Process optimization:

(time=t0) (time=t1) (time=tn)...
Product72: Product72: Product72:

...

Viscosity: 1.3

... ...

Viscosity: 1.3

Product underweight?: ?? Product underweight?:

Viscosity: 3.2

Yes

Fat content: 15%

Stage: mix

Mixing−speed: 60rpm

Density: 1.1

Stage: cook

Temperature: 325

Fat content: 12%

Density: 1.2

Stage: cool

Fan−speed: medium

Fat content: 12%

Spectral peak: 3200

Density: 2.8

Spectral peak: 2800 Spectral peak: 3100

Product underweight?: ??

Problems Too Difficult to Program by Hand

• ALVINN (Pomerleau, 1994): drives 70 mph

Software that adapts to its user

• Recommendation services,

• Bayes spam filtering

• etc

Perspectives

• Common applications

– First-generation algorithms: neural nets, decision trees, regression ...
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– Applied to well-formated databases

• Advanced applications; areas of active reasearch:

– Learn across full mixed-media data

– Learn across multiple internal databases, plus the web and newsfeeds

– Learn by active experimentation

– Learn decisions rather than predictions

– Cumulative, lifelong learning

– Deep learning

Defining “learning”

• ML has been studied from various perspectives (AI, control theory, statistics,
information theory, ...)

• From an AI perspective, the general definition is formulated in terms of agents
and tasks. E.g.:

[An agent] is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with E. (Mitchell, 1997, p.
2)

• Statistics, model-fitting, ...

Agent Programs

• Agent = architecture + program

• Architecture = Sensors and Actuators

• Program = Decision Process

• Examples are: Simple Reflex Agents, Model-based reflex Agents, Goal-
based Agents, Utility-based Agents and Learning (Intelligent) Agents.

Simple Reflex Agent
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Model-based Reflex Agent
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Learning agents

Performance standard

Agent
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The archiecture in some detail

• Performance element: responsible for selecting appropriate actions

• Learning element: responsible for making improvements
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• Critic: evaluates action selection against a performance standard

• Problem generator: suggests actions that might lead to new and instructive
experiences

Designing a machine learning system

• Main design decisions:

– Training experience: How will the system access an use data?

– Target function: What exactly should be learnt?

– Hypothesis representation: How will we represent the concepts to be
learnt?

– Inductive inference: What specific algorithm should be used to learn
the target concepts?

Accessing and using data

• How will the system be exposed to its training experience? Some distinc-
tions:

– Direct or indirect access:

∗ indirect access: record of past experiences, corpora

∗ direct access: situated agents → reinforcement learning

– Source of feedback (“teacher”):

∗ supervised learning

∗ unsupervised learning

∗ mixed: semi-supervised (“transductive”), active learning

Determining the target function

• The target function specifies the concept to be learnt.

• In supervised learning, the target function is assumed to be specified
through annotation of training data or some form of feedback:

– a corpus of words annotated for word senses, e.g. f : W ×S → {0, 1}
– a database of medical data

– user feedback in spam filtering

– assessment of outcomes of actions by a situated agent

Representing hypotheses and data

• The goal of the learning algorithm is to “induce” an approximation f̂ of
a target function f

• The data used in the induction process needs to be represented uniformly

– E.g. representation of text as a “bag of words”, Boolean vectors, etc
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• The choice of representation often constrains the space of available hy-
potheses, hence the possible f̂ ’s. E.g.:

– the approximation to be learnt could, for instance, map conjunctions
of Boolean literals to categories

– or it could assume that co-occurence of words do not matter for
categorisation

– etc

Deduction and Induction

• Deduction (conclusion guaranteed): From general premises to a conclu-
sion. E.g. If x = 4 And if y = 1, Then 2x + y = 9.

• Induction (conclusion likely): from instances to generalisations. E.g. All
of the swans we have seen are white. Therefore, (we expect) all swans to
be white.

• Machine learning algorithms produce models that generalise from instances
presented to the algorithm

• But all (useful) learners have some form of inductive bias:

– In terms of representation, as mentioned above,

– But also in terms of their preferences in generalisation procedures.
E.g:

∗ prefer simpler hypotheses, or

∗ prefer shorter hypotheses, or

∗ incorporate domain (expert) knowledge, etc etc

Given an function f̂ : X → C trained on a set of instances Dc describing a
concept c, we say that the inductive bias of f̂ is a minimal set of assertions B,
such that for any set of instanced X:

∀x ∈ X(B ∧Dc ∧ x ` f̂(x))

Choosing an algorithm

• Induction task as search for a hypothesis (or model) that fits the data and sample
of the target function available to the learner, in a large space of hypotheses

• The choice of learning algorithm is conditioned to the choice of representation

• Since the target function is not completely accessible to the learner, the algo-
rithm needs to operate under the inductive learning assumption that:

an approximation that performs well over a sufficiently large set of
instances will perform well on unseen data.

• Note: Computational Learning Theory

10



Computational learning theory deals in a precise manner with the concepts
highlighted above, namely, what it means for an approximation (learnt func-
tion) to perform well, and what counts as a sufficiently large set of instances.
An influential framework is the probably approximately correct (PAC) learn-
ing framework, proposed by Valiant (1984). For an accessible introduction to
several aspects of machine learning, see (Domingos, 2012). For some interest-
ing implications see the “no-free lunch” theorems and the Extended Bayesian
Framework (Wolpert, 1996).

An Example: learning to play (Mitchell, 1997)

• Learning to play draughts (checkers):

• Task? (target function, data representation) Training experience? Perfor-
mance measure?

A target function

• A target function for a draughts (checkers) player:

– f : Board→ R
– if b is a final board state that is won, then f(b) = 100

– if b is a final board state that is lost, then f(b) = −100

– if b is a final board state that is drawn, then f(b) = 0

– if b is a not a final state in the game, then f(b) = f(b′), where b′ is
the best final board state that can be achieved starting from b and
playing optimally until the end of the game.

• How feasible would it be to implement it?

• Not very feasible...

• ... and how can we find intermediate game states?
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Representation

• collection of rules? neural network ? polynomial function of board features? ...

• Approximation as a linear combination of features:

f̂(b) = w0 + w1 · bp(b) + w2 · rp(b) + w3 · bk(b) + w4 · rk(b) + w5 · bt(b) + w6 · rt(b)

• where:

– bp(b): number of black pieces on board b

– rp(b): number of red pieces on b

– bk(b): number of black kings on b

– rk(b): number of red kings on b

– bt(b): number of red pieces threatened by black (i.e., which can be taken
on black’s next turn)

– rt(b): number of black pieces threatened by red

Training Experience

• Distinctions:

– f(b): the true target function

– f̂(b) : the learnt function

– ftrain(b): the training value

– A training set containing instances and its corresponding training
values

• Problem: How do we estimate training values?

• A simple rule for estimating training values:

– ftrain(b)← f̂(Successor(b))

– Successor(b) denotes the next board state following the programs
move and the opponent’s response.

– Note: (Successor(b) is an ’estimation’ of the value of board state b.

– Does the f̂(b) tend to become more or less accurate for board states
closer to the end of the game?

Example: Choosing a Function Approximation

• Learning the target function by approximation f̂(b)

• Based on a set of training examples describing a board state b

• And the corresponding training value ftrain(b)

• Each training example results in an ordered pair of the form < b, ftrain(b) >

• Example: << bp = 3, rp = 0, bk = 1, rk = 0, bt = 0, rt = 0 >,+100 >

• ftrain(b) is therefore +100 and black has won.
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How do we learn the weights?

Algorithm 1: Least Mean Square

1 LMS(c : l e a r n i n g ra t e )
2 f o r each t r a i n i n g in s t anc e < b, ftrain(b) >
3 do
4 compute error(b) f o r cur r ent approximation
5 ( us ing cur rent weights ) :

6 error(b) = ftrain(b)− f̂(b)
7 f o r each board f e a t u r e ti ∈ {bp(b), rp(b), . . . } ,
8 do
9 update weight wi :

10 wi ← wi + c× ti × error(b)
11 done
12 done

LMS minimises the squared error between training data and current approx.:
E ≡

∑
〈b,ftrain(b)〉∈D(ftrain(b) − f̂(b))2 Notice that if error(b) = 0 (i.e. tar-

get and approximation match) no weights change. Similarly, if or ti = 0 (i.e.
feature ti doesn’t occcur) the corresponding weight doesn’t get updated. This
weight update rule can be shown to perform a gradient descent search for the
minimal squared error (i.e. weight updates are proportional to −∇E where
∇E = [ ∂E

∂w0
, ∂E
∂w1

, . . . ]).
That the LMS weight update rule implements gradient descent can be seen

by differentiating ∇E:

∂E

∂wi
=

∂
∑

[f(b)− f̂(b)]2

∂wi

=

∑
∂[f(b)− f̂(b)]2

∂wi

=
∑

2× [f(b)− f̂(b)]× ∂

∂wi
[f(b)− f̂(b)]

=
∑

2× [f(b)− f̂(b)]× ∂

∂wi
[f(b)−

|D|∑
i

witi]

= −
∑

2× error(b)× ti

Learning agent architecture
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Mapping and structure

• Some target functions (specially in NLP) fit more naturally into a trans-
ducer pattern, and naturally have a signature

f: sequence over vocab Σ ⇒ sequence over (Σ× labels C)

• eg. POS-tagging (Part-of Speech Tagging)

last week IBM bought Lotus ⇒ last/JJ week/NN IBM/NNP
bought/VBD Lotus/NNP
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Targeting Sequences and Trees

• other functions do not fit this pattern either, but instead have a signature

f: sequence over vocab Σ ⇒ tree over (Σ∪ labels C)

• eg. parsing: last week IBM bought Lotus⇒

S

NP NP VP

IBM VBD

bought 

NP 

Lotus

weeklast

Issues in machine learning

• What algorithms can approximate functions well (and when)?

• How does number of training examples influence accuracy?

• How does complexity of hypothesis representation impact it?

• How does noisy data influence accuracy?

• What are the theoretical limits of learnability?

• How can prior knowledge of learner help?

• What clues can we get from biological learning systems?

• How can systems alter their own representations?

Some application examples we will see in some detail

• Applications of Supervised learning in NLP:

– Text categorisation

– POS tagging (briefly)

– Word-sense disambiguation (briefly)

• Unsupervised learning:

– Keyword selection, feature set reduction

– Word-sense disambiguation (revisited)
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