
Machine Learning

ML for NLP
Lecturer: Kevin Koidl Assist. Lecturer Alfredo Maldonado

https://www.cs.tcd.ie/kevin.koidl/cs4062/

kevin.koidl@scss.tcd.ie, maldonaa@tcd.ie

2017

Outline

• Does TC (and NLP) need Machine Learning?

• What can Machine Learning do for us (“what has machine learning ever
done for us”?)

• What is machine learning?

• How do we design machine learning systems?

• What is a well-defined learning problem?

• An example

Why Machine Learning

• Progress in algorithms and theory

• Growing flood of online data

• Computational power is available

• Rich application potential

• The knowledge acquisition bottleneck

Well-Defined Learning Problems

• Learning = Improving with experience at some task

– Improve over Task T,

– with respect to performance measure P,

– based on experience E.

• Example Checkers

– T: Play Checkers,

– P: Percentage of Games won in a tournament,

– P: Games played against self.

1

https://www.cs.tcd.ie/kevin.koidl/cs4062/

Machine Learning Definitions

Machine learning is the subfield of computer science that gives com-
puters the ability to learn without being explicitly programmed
(Arthur Samuel, 1959).

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience E
(Tom M. Mitchell, 1998).

Machine Learning Challenges

• How can a computer program make an experience?

• How can this experience be codified?

• Examples of a codified experience?

User interface agents?

• An (artificial) agent may help users cope with increasing information:

An agent is a computer system that is situated in some envi-
ronment and that is capable of autonomous action in its envi-
ronment in order to meet its design objectives. (Wooldridge,
2002)

• Definition of a Rational Agent:

A rational agent should select an action that is expected to
maximize its performance measure, given the evidence provided.
[Peter Norvig, 2003]

Do Agents need machine learning?

• Practical concerns:

– large amounts of language data have become available (on the web
and elsewhere), and one needs to be able to make sense of them all,

– knowledge engineering methods don’t seem to be able to cope with
the growing flood of data

– Machine learning can be used to automate knowledge acquisition and
inference

• Theoretical contributions:

– reasonably solid foundations (theory and algorithms)

2

Machine Learning Categories

• Main Machine Learning Categories:

– Supervised Learning: Computer receives input and output data aka
’labelled’ data and creates a ’mapping’ between both.

– Unsupervised Learning: Input data has no labels are given. Learning
algorithm has to identify structure in the input data.

Supervised Learning

• Supervised Machine Learning Problem Categories:

– Regression Problem: Continous Output. For example predict per-
centage grade (e.g. 76%) based on hours studied.

– Classification Problem: Discrete Output. For example predict grade
(e.g. A) based on hours studied.

Supervised Learning Models

• Tyical Machine Learning Models:

– Supervised Vector Machines (SVM)

– Gaussian Process

– Artifical Neural Networks (ANN)

– Classification, Regression, Decission Trees, Random Forrest, Back
Propagation....

• What is the goal of a model and how do I select the right one?

Application niches for machine learning

• ML for text classification for use in, for instance, self customizing pro-
grams:

– Newsreader that learns user interests

• Data mining: using historical data to improve decisions

– medical records → medical knowledge

– analysis of customer behaviour

• Software applications we can’t program by hand

– autonomous driving

– speech recognition

3

Examples: data mining problem

Patient103 Patient103Patient103 ...
time=1 time=2 time=n

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

...

Elective C−Section: ?

Emergency C−Section: ?

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

Diabetes: YES

...
Emergency C−Section: ?

Ultrasound: abnormal

Elective C−Section: no

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

...

Elective C−Section: no

Ultrasound: ?

Diabetes: no

Emergency C−Section: Yes

Ultrasound: ?

Given:

• 9714 patient records, each describing a pregnancy and birth

• Each patient record contains 215 features

Learn to predict:

• Classes of future patients at high risk for Emergency Cesarean Section

Examples: data mining results

Patient103 Patient103Patient103 ...
time=1 time=2 time=n

Age: 23

FirstPregnancy: no

Anemia: no

Diabetes: no

PreviousPrematureBirth: no

...

Elective C−Section: ?

Emergency C−Section: ?

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

Diabetes: YES

...
Emergency C−Section: ?

Ultrasound: abnormal

Elective C−Section: no

Age: 23

FirstPregnancy: no

Anemia: no

PreviousPrematureBirth: no

...

Elective C−Section: no

Ultrasound: ?

Diabetes: no

Emergency C−Section: Yes

Ultrasound: ?

If No previous vaginal delivery, and

Abnormal 2nd Trimester Ultrasound, and

Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,

Over test data: 12/20 = .60

Other prediction problems

• Customer purchase behavior:

Customer103: Customer103: Customer103:(time=t0) (time=t1) (time=tn)...

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

MS Products: Word

Computer: 386 PC

Purchase Excel?: ?

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

MS Products: Word

...

Sex: M

Age: 53

Income: $50k

Own House: Yes

Purchase Excel?: ?

MS Products: Word

Computer: Pentium Computer: Pentium

Purchase Excel?: Yes

4

• Process optimization:

(time=t0) (time=t1) (time=tn)...
Product72: Product72: Product72:

...

Viscosity: 1.3

... ...

Viscosity: 1.3

Product underweight?: ?? Product underweight?:

Viscosity: 3.2

Yes

Fat content: 15%

Stage: mix

Mixing−speed: 60rpm

Density: 1.1

Stage: cook

Temperature: 325

Fat content: 12%

Density: 1.2

Stage: cool

Fan−speed: medium

Fat content: 12%

Spectral peak: 3200

Density: 2.8

Spectral peak: 2800 Spectral peak: 3100

Product underweight?: ??

Problems Too Difficult to Program by Hand

• ALVINN (Pomerleau, 1994): drives 70 mph

Software that adapts to its user

• Recommendation services,

• Bayes spam filtering

• etc

Perspectives

• Common applications

– First-generation algorithms: neural nets, decision trees, regression ...

5

– Applied to well-formated databases

• Advanced applications; areas of active reasearch:

– Learn across full mixed-media data

– Learn across multiple internal databases, plus the web and newsfeeds

– Learn by active experimentation

– Learn decisions rather than predictions

– Cumulative, lifelong learning

– Deep learning

Defining “learning”

• ML has been studied from various perspectives (AI, control theory, statistics,
information theory, ...)

• From an AI perspective, the general definition is formulated in terms of agents
and tasks. E.g.:

[An agent] is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with E. (Mitchell, 1997, p.
2)

• Statistics, model-fitting, ...

Agent Programs

• Agent = architecture + program

• Architecture = Sensors and Actuators

• Program = Decision Process

• Examples are: Simple Reflex Agents, Model-based reflex Agents, Goal-
based Agents, Utility-based Agents and Learning (Intelligent) Agents.

Simple Reflex Agent

6

Model-based Reflex Agent

7

Learning agents

Performance standard

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Effectors

Performance
 element

changes

knowledge

learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

The archiecture in some detail

• Performance element: responsible for selecting appropriate actions

• Learning element: responsible for making improvements

8

• Critic: evaluates action selection against a performance standard

• Problem generator: suggests actions that might lead to new and instructive
experiences

Designing a machine learning system

• Main design decisions:

– Training experience: How will the system access an use data?

– Target function: What exactly should be learnt?

– Hypothesis representation: How will we represent the concepts to be
learnt?

– Inductive inference: What specific algorithm should be used to learn
the target concepts?

Accessing and using data

• How will the system be exposed to its training experience? Some distinc-
tions:

– Direct or indirect access:

∗ indirect access: record of past experiences, corpora

∗ direct access: situated agents → reinforcement learning

– Source of feedback (“teacher”):

∗ supervised learning

∗ unsupervised learning

∗ mixed: semi-supervised (“transductive”), active learning

Determining the target function

• The target function specifies the concept to be learnt.

• In supervised learning, the target function is assumed to be specified
through annotation of training data or some form of feedback:

– a corpus of words annotated for word senses, e.g. f : W ×S → {0, 1}
– a database of medical data

– user feedback in spam filtering

– assessment of outcomes of actions by a situated agent

Representing hypotheses and data

• The goal of the learning algorithm is to “induce” an approximation f̂ of
a target function f

• The data used in the induction process needs to be represented uniformly

– E.g. representation of text as a “bag of words”, Boolean vectors, etc

9

• The choice of representation often constrains the space of available hy-
potheses, hence the possible f̂ ’s. E.g.:

– the approximation to be learnt could, for instance, map conjunctions
of Boolean literals to categories

– or it could assume that co-occurence of words do not matter for
categorisation

– etc

Deduction and Induction

• Deduction (conclusion guaranteed): From general premises to a conclu-
sion. E.g. If x = 4 And if y = 1, Then 2x + y = 9.

• Induction (conclusion likely): from instances to generalisations. E.g. All
of the swans we have seen are white. Therefore, (we expect) all swans to
be white.

• Machine learning algorithms produce models that generalise from instances
presented to the algorithm

• But all (useful) learners have some form of inductive bias:

– In terms of representation, as mentioned above,

– But also in terms of their preferences in generalisation procedures.
E.g:

∗ prefer simpler hypotheses, or

∗ prefer shorter hypotheses, or

∗ incorporate domain (expert) knowledge, etc etc

Given an function f̂ : X → C trained on a set of instances Dc describing a
concept c, we say that the inductive bias of f̂ is a minimal set of assertions B,
such that for any set of instanced X:

∀x ∈ X(B ∧Dc ∧ x ` f̂(x))

Choosing an algorithm

• Induction task as search for a hypothesis (or model) that fits the data and sample
of the target function available to the learner, in a large space of hypotheses

• The choice of learning algorithm is conditioned to the choice of representation

• Since the target function is not completely accessible to the learner, the algo-
rithm needs to operate under the inductive learning assumption that:

an approximation that performs well over a sufficiently large set of
instances will perform well on unseen data.

• Note: Computational Learning Theory

10

Computational learning theory deals in a precise manner with the concepts
highlighted above, namely, what it means for an approximation (learnt func-
tion) to perform well, and what counts as a sufficiently large set of instances.
An influential framework is the probably approximately correct (PAC) learn-
ing framework, proposed by Valiant (1984). For an accessible introduction to
several aspects of machine learning, see (Domingos, 2012). For some interest-
ing implications see the “no-free lunch” theorems and the Extended Bayesian
Framework (Wolpert, 1996).

An Example: learning to play (Mitchell, 1997)

• Learning to play draughts (checkers):

• Task? (target function, data representation) Training experience? Perfor-
mance measure?

A target function

• A target function for a draughts (checkers) player:

– f : Board→ R
– if b is a final board state that is won, then f(b) = 100

– if b is a final board state that is lost, then f(b) = −100

– if b is a final board state that is drawn, then f(b) = 0

– if b is a not a final state in the game, then f(b) = f(b′), where b′ is
the best final board state that can be achieved starting from b and
playing optimally until the end of the game.

• How feasible would it be to implement it?

• Not very feasible...

• ... and how can we find intermediate game states?

11

Representation

• collection of rules? neural network ? polynomial function of board features? ...

• Approximation as a linear combination of features:

f̂(b) = w0 + w1 · bp(b) + w2 · rp(b) + w3 · bk(b) + w4 · rk(b) + w5 · bt(b) + w6 · rt(b)

• where:

– bp(b): number of black pieces on board b

– rp(b): number of red pieces on b

– bk(b): number of black kings on b

– rk(b): number of red kings on b

– bt(b): number of red pieces threatened by black (i.e., which can be taken
on black’s next turn)

– rt(b): number of black pieces threatened by red

Training Experience

• Distinctions:

– f(b): the true target function

– f̂(b) : the learnt function

– ftrain(b): the training value

– A training set containing instances and its corresponding training
values

• Problem: How do we estimate training values?

• A simple rule for estimating training values:

– ftrain(b)← f̂(Successor(b))

– Successor(b) denotes the next board state following the programs
move and the opponent’s response.

– Note: (Successor(b) is an ’estimation’ of the value of board state b.

– Does the f̂(b) tend to become more or less accurate for board states
closer to the end of the game?

Example: Choosing a Function Approximation

• Learning the target function by approximation f̂(b)

• Based on a set of training examples describing a board state b

• And the corresponding training value ftrain(b)

• Each training example results in an ordered pair of the form < b, ftrain(b) >

• Example: << bp = 3, rp = 0, bk = 1, rk = 0, bt = 0, rt = 0 >,+100 >

• ftrain(b) is therefore +100 and black has won.

12

How do we learn the weights?

Algorithm 1: Least Mean Square

1 LMS(c : l e a r n i n g ra t e)
2 f o r each t r a i n i n g in s t anc e < b, ftrain(b) >
3 do
4 compute error(b) f o r cur r ent approximation
5 (us ing cur rent weights) :

6 error(b) = ftrain(b)− f̂(b)
7 f o r each board f e a t u r e ti ∈ {bp(b), rp(b), . . . } ,
8 do
9 update weight wi :

10 wi ← wi + c× ti × error(b)
11 done
12 done

LMS minimises the squared error between training data and current approx.:
E ≡

∑
〈b,ftrain(b)〉∈D(ftrain(b) − f̂(b))2 Notice that if error(b) = 0 (i.e. tar-

get and approximation match) no weights change. Similarly, if or ti = 0 (i.e.
feature ti doesn’t occcur) the corresponding weight doesn’t get updated. This
weight update rule can be shown to perform a gradient descent search for the
minimal squared error (i.e. weight updates are proportional to −∇E where
∇E = [∂E

∂w0
, ∂E
∂w1

, . . .]).
That the LMS weight update rule implements gradient descent can be seen

by differentiating ∇E:

∂E

∂wi
=

∂
∑

[f(b)− f̂(b)]2

∂wi

=

∑
∂[f(b)− f̂(b)]2

∂wi

=
∑

2× [f(b)− f̂(b)]× ∂

∂wi
[f(b)− f̂(b)]

=
∑

2× [f(b)− f̂(b)]× ∂

∂wi
[f(b)−

|D|∑
i

witi]

= −
∑

2× error(b)× ti

Learning agent architecture

13

element
Learning
element

Critic

Problem

learning
goals

E
n
v
iro

n
m

en
t

changes

generator

Performance

Sensors

feedback

Effectors

Agent

Performance standard

f_train(b) <− f(successor(b))

New problem (e.g. initial board)

(b1,...,bn)
Solution

Hypothesis
(f)

(f)

Training instances
{<b, f_train(b)>, ...}

Design choices: summary

Determine

Target Function

Determine Representation

of Learned Function

Determine Type

 of Training Experience

Determine

Learning Algorithm

Games against
 self

Games against
 experts Table of correct

 moves

Linear function
of six features

Artificial neural
 network

Polynomial

Gradient
 descent

Board
Ý value

Board
Ý move

Completed Design

 ...

 ...

Linear
 programming

 ...

 ...

Copyright 2009
by Sean Luke and Vittorio Zipparo Licensed under the Academic Free License
version 3.0 See the file ”LICENSE” for more information */ /* Copyright 2009
by Sean Luke and Vittorio Zipparo Licensed under the Academic Free License
version 3.0 See the file ”LICENSE” for more information */

Mapping and structure

• Some target functions (specially in NLP) fit more naturally into a trans-
ducer pattern, and naturally have a signature

f: sequence over vocab Σ ⇒ sequence over (Σ× labels C)

• eg. POS-tagging (Part-of Speech Tagging)

last week IBM bought Lotus ⇒ last/JJ week/NN IBM/NNP
bought/VBD Lotus/NNP

14

Targeting Sequences and Trees

• other functions do not fit this pattern either, but instead have a signature

f: sequence over vocab Σ ⇒ tree over (Σ∪ labels C)

• eg. parsing: last week IBM bought Lotus⇒

S

NP NP VP

IBM VBD

bought

NP

Lotus

weeklast

Issues in machine learning

• What algorithms can approximate functions well (and when)?

• How does number of training examples influence accuracy?

• How does complexity of hypothesis representation impact it?

• How does noisy data influence accuracy?

• What are the theoretical limits of learnability?

• How can prior knowledge of learner help?

• What clues can we get from biological learning systems?

• How can systems alter their own representations?

Some application examples we will see in some detail

• Applications of Supervised learning in NLP:

– Text categorisation

– POS tagging (briefly)

– Word-sense disambiguation (briefly)

• Unsupervised learning:

– Keyword selection, feature set reduction

– Word-sense disambiguation (revisited)

15

References

Domingos, P. (2012). A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Pomerleau, D. A. (1994). Neural Network Perception for Mobile Robot Guidance.
Kluwer, Dordrecht, Netherlands.

Valiant, L. (1984). A theory of the learnable. Communications of the ACM,
27(11):1134–1142.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algo-
rithms. Neural Computation, 8(7):1341–1390.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. John Wiley &
Sons.

16

