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Abstract	
We	apply	machine-learning	techniques	to	predict	drug	approvals	using	drug-development	
and	clinical-trial	data	from	2003	to	2015	involving	several	thousand	drug-indication	pairs	
with	 over	 140	 features	 across	 15	 disease	 groups.	 To	 deal	 with	 missing	 data,	 we	 use	
imputation	methods	that	allow	us	to	fully	exploit	the	entire	dataset,	the	largest	of	its	kind.	
We	 show	 that	 our	 approach	 outperforms	 complete-case	 analysis,	 which	 typically	 yields	
biased	inferences.	We	achieve	predictive	measures	of	0.78,	and	0.81	AUC	(“area	under	the	
receiver	operating	characteristic	curve,”	the	estimated	probability	that	a	classifier	will	rank	
a	positive	outcome	higher	than	a	negative	outcome)	for	predicting	transitions	from	phase	2	
to	 approval	 and	 phase	 3	 to	 approval,	 respectively.	 Using	 five-year	 rolling	 windows,	 we	
document	an	 increasing	trend	 in	the	predictive	power	of	 these	models,	a	consequence	of	
improving	data	quality	and	quantity.	The	most	important	features	for	predicting	success	are	
trial	outcomes,	trial	status,	trial	accrual	rates,	duration,	prior	approval	for	another	indication,	
and	sponsor	track	records.	We	provide	estimates	of	the	probability	of	success	for	all	drugs	
in	the	current	pipeline.	
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1 Introduction	
While	many	recent	medical	breakthroughs	such	as	immuno-therapies,	gene	therapies,	and	

gene-editing	 techniques	 offer	 new	 hope	 for	 patients,	 they	 have	 also	 made	 biomedical	

innovation	riskier,	and	more	complex	and	expensive.	These	breakthroughs	generate	novel	

therapies	for	investigation,	each	of	which	requires	many	years	of	translational	research	and	

clinical	testing,	costing	hundreds	of	millions	to	billions	of	dollars	and	yet	often	face	a	high	

likelihood	of	failure	(Fernandez,	Stein,	&	Lo,	2012).	In	fact,	drug	development	productivity—

the	ratio	of	the	number	of	new	drugs	approved	to	R&D	spending	each	year—has	declined	

steadily	over	the	past	50	years	despite	scientific	and	technical	progress.	This	phenomenon,	

which	Scannell,	Blanckley,	Boldon,	 and	Warrington	 (2012)	 termed	 “Eroom’s	Law,”	 as	 the	

reverse	 of	 Moore’s	 Law,	 suggests	 that	 the	 cost	 of	 developing	 new	 drugs	 has	 doubled	

approximately	every	nine	years	since	the	1950s.	 In	 the	 face	of	multiple	uncertainties,	 the	

need	to	evaluate	drug	candidates	better	and	allocate	capital	to	high-potential	opportunities	

more	efficiently	has	only	intensified.	

To	address	these	needs,	in	this	article	we	apply	machine-learning	techniques	to	predict	the	

outcomes	of	randomized	clinical	trials.	Machine	learning	is	an	interdisciplinary	field	focused	

on	 tackling	 pattern	 recognition	 problems	 and	 building	 predictive	 models	 to	make	 data-

driven	 decisions,	 which	 is	 well-suited	 for	 this	 context.	 Successful	 applications	 of	 these	

techniques	have	already	revolutionized	a	number	of	industries	(e.g.,	advertising,	marketing,	

finance	and	insurance,	oil	and	gas	exploration)	and	are	poised	for	even	greater	impact	via	

autonomous	vehicles,	facial-recognition	authentication,	and	general-purpose	robotics.	
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Drug	developers	have	already	applied	machine-learning	tools	to	the	discovery	process	via	

high-throughput	screening	of	vast	libraries	of	chemical	and	biological	compounds	to	identify	

drug	 targets.	 However,	 in	 managing	 their	 portfolios	 of	 investigational	 drugs,	 biopharma	

companies	 typically	 use	 unconditional	 estimates	 of	 regulatory	 approval	 rates	 based	 on	

historically	 observed	 relative	 frequencies.	 Machine	 learning	 techniques	 yield	 conditional	

estimates	 of	 success,	 conditioned	 on	 a	 host	 of	 predictive	 factors	 known	 to	 affect	 the	

likelihood	 of	 approval,	 including	 drug	 compound	 characteristics,	 clinical	 trial	 design,	

previous	trial	outcomes,	and	the	sponsor	track	record.	We	show	that	these	features	contain	

useful	signals	about	drug	development	outcomes	that	will	allow	us	to	forecast	the	outcome	

of	pipeline	developments	more	accurately.		

Our	methodology	and	results	have	several	implications	for	stakeholders	in	the	biomedical	

ecosystem.	More	accurate	forecasts	of	the	likelihood	of	success	of	clinical	trials	will	reduce	

the	uncertainty	surrounding	drug	development,	which	will	increase	the	amount	of	capital	

that	investors	and	drug	developers	are	willing	to	allocate	to	this	endeavor.	By	extension,	this	

would	 lower	 the	 cost	 of	 capital	 and	 increase	 the	 efficiency	 of	 the	 allocation	 process.	

Specifically,	 we	 predict	 the	 probability	 of	 success	 of	 drug	 candidates	 in	 two	 scenarios:	

(1)	advancing	 from	 phase	 2	 to	 regulatory	 approval	 and	 (2)	 from	 phase	 3	 to	 regulatory	

approval	(see	Fig	1).	Investors	and	drug	developers	may	use	such	predictions	to	evaluate	the	

risks	of	different	investigational	drugs	at	different	clinical	stages,	providing	them	with	much-

needed	 transparency.	 Greater	 risk	 transparency	 is	 one	 source	 of	 improved	 financial	

efficiency	because	it	facilitates	more	accurate	matching	of	investor	risk	preferences	with	the	

risks	of	biomedical	investment	opportunities.	
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Machine-learning	models	 can	 also	 offer	 guidance	 to	 scientists,	 clinicians,	 and	 biopharma	

professionals	as	 to	which	 factors	are	most	 important	 in	determining	clinical-trial	success,	

suggesting	 ways	 to	 improve	 the	 drug	 development	 process	 and	 decelerate	 or	 reverse	

Eroom’s	Law.		

Policymakers	 and	 regulators	 would	 also	 benefit	 from	 machine-learning	 predictions,	

particularly	for	drug-indication	pairs	that	are	predicted	to	fail	with	high	likelihood—these	

cases	 highlight	 the	most	difficult	 challenges	 in	 biomedicine	 and	 underscore	 the	 need	 for	

greater	government	and	philanthropic	support.		

	

Fig	1.	Predictive	models	for	assessing	the	probability	of	approval	of	drug	candidates	in	two	scenarios:	(1)	after	
phase	2	testing,	and	(2)	after	phase	3	testing.	

	

To	the	best	of	our	knowledge,	our	study	is	the	largest	of	its	kind.	We	construct	two	datasets,	

one	 for	 each	 scenario,	 from	 two	 proprietary	 pharmaceutical	 pipeline	 databases,	

Pharmaprojects	 and	 Trialtrove	 provided	 by	 Informa®	 (Informa,	 2016).	 The	 phase-2-to-

approval	dataset	includes	more	than	6,000	unique	drugs	for	288	indications	and	over	14,500	

phase	2	trials,	and	the	phase-3-to-approval	dataset	contains	more	than	1,400	unique	drugs	

for	253	indications	and	over	4,500	phase	3	trials.	These	data	cover	over	15	indication	groups.	

In	contrast,	most	published	research	on	drug	approval	prediction	have	very	small	sample	
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sizes,	are	concentrated	on	specific	therapeutic	areas,	and	involve	only	one	or	a	small	number	

of	 predictive	 factors:	 Malik	 et	 al.	 (2014)	 examined	 the	 trial	 objective	 responses	 of	 88	

anticancer	agents	in	phase	1;	Goffin,	Baral,	Tu,	Nomikos,	and	Seymour	(2005)	studied	the	

tumor	response	rates	of	58	cytotoxic	agents	in	100	phase	1	trials	and	46	agents	in	499	phase	

2	trials;	El-Maraghi	and	Eisenhauer	(2008)	looked	at	the	objective	responses	of	19	phase	2	

anticancer	drugs	 in	89	single	agent	 trials;	 Jardim,	Groves,	Breitfeld,	 and	Kurzrock	 (2017)	

examined	the	response	rates	of	80	phase	3	oncology	drugs	to	identify	factors	associated	with	

failures;	and	DiMasi	et	al.	(2015)	analyzed	62	cancer	drugs	and	proposed	an	approved	new	

drug	 index	 (ANDI)	algorithm	with	 four	 factors	 to	predict	 approval	 for	 lead	 indications	 in	

oncology	 after	 phase	 2	 testing	 (see	 Supplementary	Materials	 H	 for	 a	 comparison	 of	 our	

analysis	to	theirs).	

Another	key	difference	in	our	approach	is	that	we	deal	with	missing	data	using	statistical	

imputation	 methods.	 We	 explore	 four	 common	 approaches	 to	 “missingness”	 and	

demonstrate	their	advantages	and	disadvantages	over	discarding	incomplete	cases.	With	the	

FDA	 Amendments	 Act	 of	 2007,	 drug	 and	 clinical	 trial	 data	 collection	 has	 been	 rapidly	

expanding,	but	these	data	are	often	sparse,	and	our	dataset	is	no	exception.	Related	studies	

(e.g.,	DiMasi	et	al.,	2015)	have	typically	used	only	complete-case	observations—discarding	

clinical	trials	with	any	missing	information—which	typically	eliminates	large	portions	of	the	

data	and	may	also	lead	to	certain	biases.		

We	use	machine-learning	techniques	to	form	our	predictions,	including	cross-validation	for	

training	and	a	held-out	testing	set	for	performance	evaluation,	and	use	the	standard	“area	

under	 the	 receiver	 operating	 characteristic	 curve”	 (AUC)	 metric	 to	 measure	 model	
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performance	(AUC	is	the	estimated	probability	that	a	classifier	will	rank	a	positive	outcome	

higher	than	a	negative	outcome	[Fawcett,	2006]).	We	achieve	AUCs	of	0.78	 for	predicting	

phase	2	to	approval	(95%	confidence	interval	(CI):	[0.75,	0.81])	and	0.81	for	predicting	phase	

3	to	approval	(95%	CI:	[0.78,	0.83]).	A	time-series,	walk-forward	analysis	approach	shows	

similar	results.	We	also	apply	our	models	to	the	current	drug	pipeline—that	is,	all	drugs	still	

in	development	as	of	the	end	of	our	dataset—to	identify	the	candidates	that	have	the	highest	

and	 lowest	probabilities	of	success.	We	examine	the	 latest	development	statuses	of	 these	

pipeline	drug-indication	pairs—a	true	“out-of-sample”	experiment	(validation	on	data	not	

used	 in	model	 building)—and	 find	 that	 candidates	with	 higher	 scores	 are,	 indeed,	more	

likely	to	progress	to	later	clinical	stages.	This	indicates	that	our	classifiers	do	discriminate	

between	high-	and	low-potential	candidates.	

2 Materials	and	methods	
Data	
The	commercial	data	vendor	Informa®	offers	two	databases	that	are	used	in	our	analysis:	

Pharmaprojects,	which	specializes	in	drug	information,	and	Trialtrove,	which	specializes	in	

clinical	 trials	 information	 (Informa,	2016).	These	 two	databases	aggregate	drug	and	 trial	

information	from	over	30,000	data	sources	in	more	than	150	countries,	including	company	

press	 releases,	 government	 drug	 databases	 (e.g.,	 Drugs@FDA)	 and	 trial	 databases	 (e.g.,	

Clinicaltrials.gov	 [Zarin,	 Tse,	 Williams,	 &	 Carr,	 2016],	 Clinicaltrialsregister.eu	 [extracted	

from	 EudraCT]),	 and	 scientific	 conferences	 and	 publications.	 Using	 these	 sources,	 we	

construct	two	datasets	of	drug-indication	pairs:	phase	2	to	approval	(P2APP)	and	phase	3	to	

approval	(P3APP).	We	extract	clinical	trial	features	from	Trialtrove,	and	augment	this	data	

using	drug	 features	 from	Pharmaprojects.	Applying	machine-learning	algorithms	 to	 these	
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datasets	allows	us	to	estimate:	(1)	whether	a	drug-indication	pair	that	has	concluded	phase	

2	testing	will	be	approved	eventually;	and	(2)	whether	a	pair	 that	has	concluded	phase	3	

testing	will	be	approved	eventually.	Data	cleaning	procedures	are	outlined	in	Supplementary	

Materials	A.	

We	consider	all	indications	associated	with	a	particular	drug,	as	opposed	to	only	the	lead	

indication.	We	extract	 all	 features	 that	 could	 conceivably	 correlate	with	 the	 likelihood	of	

success,	 from	 drug	 compound	 attributes	 (31	 features	 from	 Pharmaprojects	 profiles)	 to	

clinical	 trial	 characteristics	 (113	 features	 from	Trialtrove).	 These	 features	 are	 defined	 in	

Table	1	and	Supplementary	Materials	A.	In	general,	each	dataset	may	be	partitioned	into	two	

disjoint	subsets:	one	with	samples	that	have	known	outcomes,	and	another	with	samples	

that	are	still	in	the	pipeline	at	the	time	of	snapshot	of	the	databases	(that	is,	the	outcomes	

are	unknown).	To	provide	intuition	for	the	characteristics	of	the	samples,	we	describe	key	

summary	statistics	of	each	subset.	

The	P2APP	dataset	consists	of	6,344	drug-indication	pairs	that	have	ended	phase	2	testing;	

that	is,	there	are	no	phase	2	trials	in	progress	or	planned	in	the	database.	The	phase	2	trials	

in	this	dataset	range	from	August	8,	1990	to	December	15,	2015.	In	our	sample,	4,812	pairs	

have	known	outcomes,	while	1,532	pairs	are	still	in	the	pipeline.	In	the	subset	with	known	

outcomes,	 we	 define	 the	 development	 statuses	 of	 suspension,	 termination,	 and	 lack	 of	

development	as	“failures”	(86.8%),	and	registration	and	launch	as	“successes”	or	approvals	

(13.2%).	The	P3APP	dataset	consists	of	1,870	pairs	that	have	ended	phase	3	testing,	of	which	

1,610	pairs	have	known	outcomes,	while	260	pairs	are	still	in	the	pipeline.	For	those	pairs	

with	known	outcomes,	we	define	“failures”	(59.1%)	and	“successes”	(40.9%)	 in	the	same	
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fashion	as	 the	P2APP	dataset.	The	phase	3	 trials	 in	P3APP	span	 from	 January	1,	1988	 to	

November	1,	2015.	These	figures	are	summarized	in	Table	2.	Here,	the	use	of	terms	“success”	

and	“failure”	is	in	the	context	of	achieving	approval.	We	note	that	our	definition	of	“failures”	

can	include	drug	development	programs	that	are	terminated	due	to	factors	unrelated	to	the	

performance	of	the	drug	(e.g.,	market	conditions,	business	decisions).	In	Section	3	Results,	

we	find	that	this	outcome	variable	has	significant	associations	with	trial	performance	and	

other	factors.	

The	datasets	cover	15	indication	groups:	alimentary,	anti-infective,	anti-parasitic,	blood	and	

clotting,	 cardiovascular,	 dermatological,	 genitourinary,	 hormonal,	 immunological,	

musculoskeletal,	neurological,	anti-cancer,	rare	diseases,	respiratory,	and	sensory	products.	

Anti-cancer	agents	make	up	the	largest	subgroup	in	P2APP,	and	the	second	largest	in	P3APP	

(see	Table	3).	Industry-sponsored	trials	dominate	both	datasets	(see	Table	4).	In	aggregate,	

we	observe	a	decreasing	trend	in	success	rates	over	five-year	rolling	windows	from	2003	to	

2015	(see	Fig	2).	

To	 the	 best	 of	 our	 knowledge,	 this	 sample	 is	 the	 largest	 of	 its	 kind.	 All	 prior	 published	

research	in	this	literature	involved	fewer	than	100	drugs	or	500	trials	(DiMasi	et	al.,	2015;	

El-Maraghi	 &	 Eisenhauer,	 2008;	 Goffin	 et	 al.,	 2005;	 Malik	 et	 al.,	 2014).	 In	 addition,	 our	

datasets	cover	a	diverse	set	of	indication	groups,	as	opposed	to	a	single	area	such	as	oncology.	
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Table	1.	Description	of	parent	features	extracted	from	Pharmaprojects	and	Trialtrove.	Some	parent	features	are	
multi-label	(e.g.,	a	trial	may	be	tagged	with	United	States	and	United	Kingdom	simultaneously).	We	transform	all	
multi-label	parent	features	into	binary	child	features	(1	or	0).	See	Supplementary	Materials	A	for	specific	examples	
of	each	feature.	Note	that	drug-indication	pairs	for	the	same	drug	have	the	same	drug	features;	drug-indication	
pairs	involved	in	the	same	trial	have	the	same	trial	features.	

	 Description	 Type	
Drug	Features	
Route	 Route	of	administration	of	the	drug,	the	path	by	which	the	drug	is	taken	

into	the	body.	
Multi-label	

Origin	 Origin	of	the	active	ingredient	in	the	drug.	 Multi-label	
Medium	 Medium	of	the	drug.	 Multi-label	
Biological	target	family	 Family	of	proteins	in	the	body	whose	activity	is	modified	by	the	drug,	

resulting	in	a	specific	effect.	
Multi-label	

Pharmacological	target	
family	

Mechanism	of	action	of	the	drug,	the	biochemical	interaction	through	
which	the	drug	produces	its	pharmacological	effect.	

Multi-label	

Drug-indication	
development	status	

Current	phase	of	development	of	the	drug	for	the	indication.	 Binary	

Prior	approval	of	drug	for	
another	indication	

Approval	of	the	drug	for	another	indication	prior	to	the	indication	under	
consideration	(specific	to	drug-indication	pair).	

Binary	

Trial	Features	
Duration	 Duration	of	the	trial	(from	reported	start	date	to	end	date)	in	days.	 Continuous	
Study	design	 Design	of	the	trial	(keywords).	 Multi-label	
Sponsor	type	 Sponsors	of	the	trial	grouped	by	types.	 Multi-label	
Therapeutic	area	 Therapeutic	areas	targeted	by	the	trial.	 Multi-label	
Trial	status	 Status	of	the	trial.	 Binary	
Trial	outcome	 Results	of	the	trial.	 Multi-label	
Target	accrual	 Target	patient	accrual	of	the	trial.	 Continuous	
Actual	accrual	 Actual	patient	accrual	of	the	trial.	 Continuous	
Locations	 Locations	of	the	trial	by	country.	 Multi-label	
Number	of	identified	sites	 Number	of	sites	where	the	trial	was	conducted.	 Continuous	
Biomarker	involvement	 Type	of	biomarker	involvement	in	the	trial.	 Multi-label	
Sponsor	track	record	 Sponsor’s	success	in	developing	other	drugs	prior	to	the	drug-indication	

pair	under	consideration.	
Continuous	

Investigator	experience	 Primary	investigator’s	success	in	developing	other	drugs	prior	to	the	
drug-indication	pair	under	consideration.	

Continuous	
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Table	2.	Sample	sizes	of	P2APP	and	P3APP	datasets.	We	consider	phase	2	trial	information	in	P2APP	datasets	and	
phase	3	trial	information	in	P3APP	dataset.	

	 Counts	
	 Drug-indication	

Pairs	
Phase	2/3	
Trials	

Unique	
Drugs	

Unique	
Indications	

Unique	Phase	
2/3	Trials	

P2APP	
Success	 635	 2,563	 540	 173	 2,486	
Failure	 4,177	 10,328	 2,779	 263	 9,722	
Pipeline	 1,532	 2,815	 1,189	 221	 2,713	
Total	 6,344	 15,706	 4,073	 288	 14,584	

P3APP	
Success	 659	 1,830	 572	 171	 1,801	
Failure	 951	 2,425	 764	 203	 2,360	
Pipeline	 260	 494	 240	 120	 480	
Total	 1,870	 4,749	 1,451	 253	 4,552	

	

Table	 3.	 Breakdown	 of	 drug-indication	 pairs	 by	 indication	 groups.	 A	 drug-indication	 pair	may	 have	multiple	
indication	group	tags.	For	instance,	renal	cancer	is	tagged	as	both	anti-cancer	and	rare	disease	in	Pharmaprojects.	

	 Count	
	 P2APP	 P3APP	
All	 6,344	 1,870	
Anti-cancer	 2,239	 409	
Rare	Diseases	 1,105	 259	
Neurological	 1,069	 444	
Alimentary	 757	 249	
Immunological	 474	 101	
Anti-infective	 493	 177	
Respiratory	 428	 134	
Musculoskeletal	 394	 121	
Cardiovascular	 388	 158	
Dermatological	 254	 45	
Genitourinary	 210	 85	
Blood	and	Clotting	 160	 97	
Sensory	 137	 41	
Hormonal	 17	 4	
Anti-parasitic	 8	 0	

	

Table	4.	Breakdown	of	trials	by	sponsor	types.	A	trial	may	be	sponsored	by	more	than	one	party	(e.g.,	collaboration	
between	industry	developers	and	academia).	

	 Counts	
	 P2APP	 P3APP	
All	 14,584	 4,552	
Other	Pharma	 5,432	 1,721	
Top	20	Pharma	 5,322	 2,369	
Academic	 4,869	 736	
Government	 1,807	 314	
Cooperative	Group	 958	 230	
Not	for	Profit	 181	 51	
Generic	 52	 54	
Contract	Research	Organization	 41	 17	
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Fig	2.	Success	rates	in	P2APP	and	P3APP	over	five-year	rolling	windows	from	2003-2015.	

	

Missing	data	
Prior	to	the	2007	FDA	Amendments	Act	(FDAAA),	it	was	not	uncommon	for	investigators	to	

release	 only	 partial	 information	 about	 pipeline	 drugs	 and	 clinical	 trials	 to	 protect	 trade	

secrets	or	simply	because	there	was	no	incentive	to	do	more.	Even	today,	some	investigators	

still	 do	 not	 adhere	 to	 the	 FDAAA-mandated	 registration	 policy	 or	 submit	 adequate	

registrations.	Therefore,	all	historical	drug	development	databases	have	missing	data.	We	

note	that	the	“missingness”	here	is	largely	related	to	the	post-study	reporting	of	clinical	trial	

data	as	opposed	to	in-trial	data	missingness	(e.g.,	censorship	of	panel	data	due	to	patients	

terminating	trial	participation	prematurely).	In	the	former	case,	the	data	(e.g.,	trial	duration,	

trial	outcomes)	are	usually	available	to	the	investigators	but	may	not	be	released	publicly,	

and	 are	 thus	 considered	 “missing”	 from	 our	 standpoint.	 Therefore,	 our	 dataset	 may	 be	
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considered	an	approximation	of	 the	actual	data	available	 to	 the	FDA	and	 individual	drug	

developers.	

Fig	3,	Fig	4,	Table	5,	and	Table	6	summarize	the	patterns	of	missingness	in	our	dataset	(we	

exclude	pipeline	drug-indication	pairs	here	because	their	outcomes	are	still	pending).	The	

missing	data	patterns	are	multivariate.	When	conditioned	on	the	latest	level	of	development,	

for	any	indication,	we	find	that	successful	drugs	generally	have	lower	levels	of	missingness	

compared	to	failed	drugs.	For	instance,	in	the	P2APP	dataset,	61%	of	failed	drugs	have	an	

unknown	medium,	while	 only	 15%	of	 approved	 drugs	 are	missing	 this	 feature.	We	 also	

observe	 that	 completed	 trials	 tend	 to	have	greater	 levels	of	missingness	 than	 terminated	

trials.	Between	two	datasets,	we	find	that	the	P3APP	dataset,	which	focuses	on	phase	3	drugs	

and	trials,	generally	has	less	missing	data	for	both	drug	and	trial	features	than	the	P2APP	

dataset	which	focuses	on	phase	2	drugs	and	trials.	This	is	expected	since	phase	3	trials	are	

primarily	used	to	support	registration	filings.	
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Fig	3.	Missingness	patterns	of	drug	features.	Each	row	corresponds	to	a	unique	drug.	Features	not	included	in	the	
figure	are	complete	and	do	not	have	missing	values.	Abbreviations:	Dev	status:	highest	level	of	development	of	a	
drug	for	any	indication;	Pharma:	pharmacological	target	family;	Bio:	biological	target	family.	

	

Fig	4.	Missingness	patterns	of	trial	features.	Each	row	corresponds	to	a	unique	clinical	trial.	Features	not	included	
in	the	figure	are	complete	and	do	not	have	missing	values.	Abbreviations:	Dev	status:	highest	level	of	development	
of	 a	 drug	 for	 any	 indication;	 Status:	 trial	 status;	 Idsi:	 number	of	 identified	 sites;	 Actacc:	 actual	 accrual;	Dura:	
duration;	Taracc:	target	accrual;	Loc:	locations;	Dkw:	trial	study	design	keywords;	Outcome:	trial	outcomes.	 	
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Table	5.	Missingness	in	drug	features	with	respect	to	unique	drugs	(see	Fig	3).	The	column	heading	“Unconditional”	
refers	to	overall	missingness	without	conditioning	on	outcome.	

	 Missingness	
	 Unconditional	 Success	 Failure	

P2APP	
Route	 0.04	 0.00	 0.04	
Pharmacological	target	family	 0.06	 0.02	 0.07	
Biological	target	family	 0.32	 0.27	 0.32	
Medium	 0.53	 0.15	 0.61	

P3APP	
Route	 0.01	 0.00	 0.02	
Pharmacological	target	family	 0.03	 0.02	 0.04	
Biological	target	family	 0.27	 0.24	 0.30	
Medium	 0.35	 0.14	 0.54	

	

Table	6.	Missingness	in	trial	features	with	respect	to	unique	trials	(see	Fig	4).	The	column	heading	“Unconditional”	
refers	to	overall	missingness	without	conditioning	on	trial	status.	

	 Missingness	
	 Unconditional	 Completion	 Termination	

P2APP	
Number	of	identified	sites	 0.10	 0.10	 0.10	
Actual	accrual	 0.12	 0.10	 0.22	
Duration	 0.26	 0.29	 0.05	
Target	accrual	 0.37	 0.42	 0.09	
Locations	 0.02	 0.02	 0.02	
Study	design	keywords	 0.22	 0.24	 0.10	
Trial	outcomes	 0.63	 0.73	 0.11	

P3APP	
Number	of	identified	sites	 0.10	 0.09	 0.12	
Actual	accrual	 0.12	 0.09	 0.26	
Duration	 0.17	 0.19	 0.06	
Target	accrual	 0.27	 0.31	 0.09	
Locations	 0.01	 0.01	 0.02	
Study	design	keywords	 0.09	 0.09	 0.06	
Trial	outcomes	 0.53	 0.62	 0.07	

	

Most	related	studies	do	not	report	the	extent	of	missing	data	in	their	samples,	presumably	

because	smaller	datasets	were	used.	DiMasi	et	al.	(2015)	reported	missing	data	for	some	of	

their	factors,	and	addressed	it	through	listwise	deletion—deleting	all	observations	with	any	

missing	factors.	Since	statistical	estimators	often	require	complete	data,	this	approach	is	the	

simplest	remedy	for	missingness.	However,	it	greatly	reduces	the	amount	of	data	available	

and	decreases	the	statistical	power	of	the	resulting	statistics.	Furthermore,	listwise	deletion	

is	valid	only	under	strict	and	unrealistic	assumptions	(see	below),	and	when	such	conditions	
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are	violated,	inferences	are	biased.	In	the	current	study,	we	make	an	effort	to	include	in	our	

analysis	 all	 observed	 examples,	 with	 or	 without	 complete	 features,	 through	 the	 use	 of	

statistical	imputation.	

Missing	data	may	be	classified	 into	three	categories	(Rubin,	1976):	missing	completely	at	

random	 (MCAR),	 missing	 at	 random	 (MAR),	 and	 missing	 not-at-random	 (MNAR).	 MCAR	

refers	 to	data	that	are	missing	 for	reasons	entirely	 independent	of	 the	data;	MAR	applies	

when	the	missingness	can	be	fully	accounted	for	by	the	observed	variables;	and	MNAR	refers	

to	situations	when	neither	MCAR	nor	MAR	is	appropriate,	in	which	case	the	probability	of	

missingness	is	dependent	on	the	value	of	an	unobserved	variable	(Van	Buuren,	2012).	See	

Supplementary	Materials	B	for	the	precise	definitions	of	each	type	of	missingness.	

If	the	missingness	is	MCAR,	the	observed	samples	can	be	viewed	as	a	random	subsample	of	

the	 dataset.	 Consequently,	 using	 listwise	 deletion	 should	 not	 introduce	 any	 bias.	 While	

convenient,	 this	 assumption	 is	 rarely	 satisfied	 in	 practice.	 In	 most	 drug-development	

databases,	failed	drugs	are	more	likely	to	have	missing	features	than	successful	drugs	(see	

Table	5).	Clearly,	MCAR	does	not	hold.		

Applying	listwise	deletion	when	the	missingness	 is	not	MCAR	can	 lead	to	severely	biased	

estimates.	Moreover,	given	the	nature	of	drug-development	reporting,	a	large	portion	of	the	

original	data	may	be	discarded	if	many	variables	have	missing	values.	For	these	reasons,	the	

listwise-deletion	approach	adopted	by	DiMasi	et	al.	(2015)	and	others	is	less	than	ideal.		

Given	only	the	observed	data,	it	is	impossible	to	test	for	MAR	versus	MNAR	(Enders,	2010).	

However,	 our	 knowledge	 of	 the	 data-collection	 process	 suggests	 that	MAR	 is	 a	 plausible	

starting	point,	and	we	hypothesize	that	the	missingness	in	drug	and	trial	features	is	mainly	
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accounted	for	by	drug	development	and	trial	statuses	respectively.	Our	observations	in	Table	

5	and	Table	6	support	this	approach,	as	the	missingness	proportions	for	some	features	differ	

greatly	depending	on	the	outcome.	

Our	assumption	of	MAR	is	consistent	with	the	data-collection	methodology	in	the	Informa®	

databases.	Drug	profiles	are	built	up	over	time	in	Pharmaprojects.	As	a	drug	advances	to	later	

phases,	 information	 about	 its	 characteristics	 becomes	 more	 readily	 available	 because	

investigators	 release	more	 data	 about	 pipeline	 drugs	 after	 each	 phase	 of	 clinical	 testing.	

Informa®	inputs	this	information	into	its	databases	as	they	become	available	in	the	public	

domain	or	through	primary	research.	Approved	drugs	are	more	likely	to	have	more	complete	

profiles,	 while	 information	 about	 failed	 drugs	 tends	 to	 stay	 stagnant	 because	 no	 further	

studies	are	conducted.	It	is	very	plausible	that	the	MAR	nature	of	our	datasets	is	an	artifact	

of	data	collection,	and	by	extension,	so	are	similar	pharmaceutical	datasets	extracted	from	

the	public	domain	and	maintained	in	the	same	fashion.	Originally	intended	to	track	drug	and	

trial	activities,	Pharmaprojects	and	Trialtrove	are	not	structured	to	keep	track	of	information	

updates	over	time	since	there	was	no	use	for	it.	Without	timestamps	of	the	updates,	we	are	

not	able	to	eliminate	the	MAR	artifact	from	our	datasets.	

In	our	analysis,	we	impute	the	missing	data	under	the	more	plausible	MAR	assumption	to	

obtain	 complete	 datasets.	 In	 contrast	 to	 listwise	 deletion,	we	 fill	 in	missing	 values	 using	

information	in	the	observed	variables.	This	allows	us	to	utilize	data	that	would	otherwise	be	

discarded.	Thereafter,	we	can	apply	all	the	usual	statistical	estimators	to	 this	 imputation-

completed	data.	
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Methods	
Our	 analysis	 consists	 of	 two	 parts	 that	we	 perform	 in	 R	 version	 3.2.3.	 First,	 we	 impute	

missing	values	to	generate	complete	datasets.	Next,	we	apply	a	range	of	machine-learning	

algorithms	to	build	predictive	models	based	on	the	imputed	data.	Illustration	of	the	specific	

components	of	our	analysis	appear	in	Fig	5.	

Fig	5.	Modeling	methodology	adopted	in	this	study.	Abbreviations:	CV:	cross-validation.	

	

We	formulate	our	two	scenarios	as	supervised	bipartite	ranking	problems,	where	the	goal	is	

to	predict	 the	outcome—success	or	 failure—of	a	drug-indication	pair	given	a	set	of	 input	

features.	Initially,	we	split	each	dataset	into	training	and	testing	sets.	For	each	scenario,	we	

train	various	classifiers	based	on	the	corresponding	training	set,	and	compute	the	expected	

error	of	our	predictive	models	by	testing	them	on	the	held-out	testing	set.	

We	create	feature	matrices	from	the	datasets	by	representing	drug	and	trial	features	for	each	

drug-indication	pair	as	vectors	(see	Fig	6).	Drug-indication	pairs	associated	with	multiple	

trials	are	represented	by	the	same	number	of	feature	vectors,	e.g.,	a	pair	with	two	trials	has	

two	rows.	We	give	a	concrete	example	in	Fig	6.	Consider	the	drug-indication	pair	Analiptin-

diabetes	type	2	in	the	P2APP	dataset.	We	represent	it	using	two	vector	rows	since	it	has	two	

phase	2	trials	in	Trialtrove.	Note	that	the	feature	matrix	is	incomplete	due	to	missing	drug	
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and	trial	features.	We	also	construct	a	column	vector	of	labels,	which	contains	the	outcomes	

of	 the	 drug-indication	 pairs.	 Labels	 are	 not	 available	 for	 pipeline	 drug-indication	 pairs	

because	 they	are	 still	 in	development	and	 their	outcomes	are	 still	uncertain,	hence	 these	

observations	are	not	used	to	train	our	classifiers.	However,	with	the	trained	classifiers,	we	

can	generate	predictions	for	pipeline	data.	

We	split	each	dataset	(excluding	pipeline	drugs-indication	pairs)	into	two	disjoint	sets,	one	

training	set	and	one	testing	set,	and	form	feature	matrices	for	both	according	to	the	drug-

indication	pairs	in	each	set.	The	testing	sets	serve	as	out-of-sample	datasets	to	evaluate	our	

models.	Therefore,	we	mask	their	outcomes	(that	is,	we	treat	them	as	unknown)	and	access	

them	only	at	the	very	end	to	check	our	performance.	

	

Fig	6.	Feature	matrix	of	dataset.	Each	row	corresponds	to	a	feature	vector;	each	feature	corresponds	to	an	entry	in	
the	vector;	each	vector	has	a	length	of	144	since	we	have	31	drug	and	113	trial	features.	Feature	vectors	of	all	drug-
indication	pairs	in	the	dataset	form	the	feature	matrix	collectively.	Trial	ID	is	a	unique	trial	identifier	in	Trialtrove.	
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To	deal	with	missing	data	in	both	training	and	testing	sets,	we	consider	listwise	deletion	and	

four	 statistical	 imputation	 techniques	 commonly	 used	 in	 social	 science	 research	 and	

biostatistics:	 unconditional	 mean	 imputation,	 k-nearest	 neighbor	 (kNN)	 imputation,	

multiple	imputation	(MI),	and	decision-tree	algorithms	(see	Supplementary	Materials	C	for	

details).	 We	 follow	 best	 practices	 of	 the	 missing-data	 literature	 by	 including	 as	 many	

relevant	auxiliary	variables	as	possible,	as	well	as	all	variables	used	in	subsequent	models	

(Collins,	Schafer,	&	Kam,	2001;	Enders,	2010;	Rubin,	1996;	Schafer	&	Graham,	2002).	This	

makes	the	assumption	of	MAR	more	plausible	in	our	datasets,	and	helps	to	reduce	bias	in	

subsequent	 analyses	 (Schafer,	 1997).	 In	 particular,	 it	 is	 necessary	 to	 include	 our	 target	

variable—the	 drug-indication	 development	 status—in	our	 imputation	model	 because	we	

hypothesize	 that	missingness	 is	mainly	 accounted	 for	 by	 it.	 This	 is	 not	 an	 issue	 for	 the	

training	sets.	However,	the	outcomes	in	the	testing	sets	are	masked,	and	not	supposed	to	be	

known.	Therefore,	we	treat	the	testing	set	outcomes	as	though	they	were	missing	and	impute	

them	together	with	all	the	other	missing	features.	After	imputation,	we	discard	the	imputed	

testing-set	outcomes,	and	use	only	the	 imputed	feature	values	 for	predictions.	We	do	the	

same	when	evaluating	pipeline	datasets.	

With	respect	 to	 the	machine-learning	algorithm,	we	explore	several	 linear	and	non-linear	

classifiers	 commonly	 used	 in	 this	 literature:	 penalized	 logistic	 regression	 (PLR),	 random	

forests	(RF),	neural	networks	(NN),	gradient	boosting	trees	(GBT),	support	vector	machines	

with	 radial	 basis	 functions	 (SVM),	 and	 decision	 trees	 C5.0.	 We	 implement	 the	 first	 five	

algorithms	using	the	scikit-learn	package	in	Python	(Pedregosa	et	al.,	2011)	and	the	sixth	

using	the	C50	package	in	R	(Kuhn,	Weston,	Coulter,	&	Quinlan,	2014).	For	training,	we	weight	

each	 feature	matrix	 row	example	according	 to	 the	number	of	 trials	of	 the	 corresponding	
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drug-indication	pair.	In	our	earlier	example,	the	drug-indication	pair	Analiptin-diabetes	type	

2	was	 involved	 in	 two	phase	2	 trials.	 It	 is	 represented	by	 two	vector	 rows	 in	 the	 feature	

matrix	(see	Fig	6).	Both	rows	are	used	as	training	examples,	and	each	is	weighted	equally	

during	training	(0.5,	since	there	are	two	trials	 in	 total).	To	obtain	predictions	 for	a	drug-

indication	pair,	we	average	the	output	probabilities	and	scores	of	the	corresponding	feature	

vector	rows	that	are	used	as	inputs	to	the	classifier.	

All	 machine-learning	 algorithms	 have	 hyper-parameters	 that	 affect	 the	 flexibility	 of	 the	

model	and	must	be	tuned	to	each	dataset	to	optimize	goodness	of	fit.	Poorly-chosen	hyper-

parameters	can	lead	to	overfitting	(attributing	signal	to	noise)	or	underfitting	(attributing	

noise	 to	 signal).	We	 tune	our	parameters	using	k-fold	 cross-validation	 (with	k	=	5	or	10,	

depending	on	the	sample	size).	Since	the	cross-validation	process	should	emulate	the	testing	

process	as	closely	as	possible,	we	include	imputation	in	the	cross-validation	loop	as	well.	We	

split	the	training	set	into	validation	and	non-validation	folds.	Then	we	treat	validation	fold	

outcomes	as	missing,	and	impute	them	as	we	would	for	a	testing	set.	From	here,	we	ignore	

the	imputed	validation	fold	outcomes	and	proceed	with	the	standard	validation	process.	

In	the	final	step,	we	test	the	trained	classifiers	on	the	unseen	testing	sets	for	out-of-sample	

model	validation.	This	gives	the	expected	performance	of	our	predictive	models	for	each	of	

the	scenarios,	using	the	standard	AUC	metric	to	measure	model	performance.	
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3 Results	
Simulation	of	listwise	deletion	versus	imputation	
We	 study	 the	 effects	 of	 imputation	 using	 a	 “gold-standard”	 dataset	 derived	 from	 the	

complete	cases	of	the	P2APP	dataset	(see	Table	7).	To	simulate	the	missingness	present	in	

the	original	dataset,	we	 introduce	missingness	 in	 the	gold-standard	dataset	based	on	our	

MAR	assumption	and	the	missingness	patterns	observed	in	the	P2APP	dataset.	We	randomly	

split	the	drug-indication	pairs	into	a	training	set	(70%)	and	a	testing	set	(30%),	and	use	five	

different	missing	data	approaches,	as	described	in	Supplementary	Materials	C,	to	generate	

complete	training	sets	from	the	MAR	training	set.	We	use	each	imputed	training	set	to	build	

six	 different	 predictive	 models	 (PLR,	 RF,	 NN,	 GBT,	 SVM,	 and	 C5.0)	 according	 to	 the	

methodology	outlined	 in	Section	2.	We	 repeat	 this	 experiment	100	 times	 for	 robustness.	

Table	8	summarizes	the	AUC	performance	of	the	classifiers	on	the	gold-standard	testing	sets.	

See	Supplementary	Materials	E	for	a	more	detailed	description	and	results.	

	

Table	7.	Sample	size	of	the	gold-standard	dataset	(derived	from	complete	cases	of	P2APP).	

	 Counts	
	 Drug-indication	

Pairs	
Phase	2	
Trials	

Unique	
Drugs	

Unique	
Indications	

Unique	Phase	
2	Trials	

Success	 166	 341	 152	 83	 337	
Failure	 812	 1,672	 503	 158	 1,549	
Total	 978	 2,013	 623	 171	 1,872	
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Table	8.	AUC	of	different	 classifiers	under	different	missing	data	approaches.	Abbreviations:	Avg:	average;	Sd:	
standard	deviation;	5%:	5th	percentile;	50%:	median;	95%:	95th	percentile;	m:	number	of	imputations	generated.	

	 	 Gold-Standard	Testing	Set	AUC	

Imputation	Method	 Machine-learning	
Model	 Avg	 Sd	 5%	 50%	 95%	

Gold-Standard	

PLR	

0.810	 0.028	 0.761	 0.808	 0.853	
Complete	Cases	 0.755	 0.040	 0.683	 0.764	 0.813	
Mean/mode	 0.778	 0.031	 0.729	 0.779	 0.823	
Median/mode	 0.778	 0.031	 0.728	 0.779	 0.824	
5NN	 0.786	 0.032	 0.738	 0.787	 0.834	
10NN	 0.787	 0.032	 0.739	 0.791	 0.835	
MI	(m=1)	 0.781	 0.036	 0.722	 0.777	 0.843	
MI	(m=10)	 0.782	 0.031	 0.729	 0.782	 0.831	
Gold-Standard	

RF	

0.837	 0.027	 0.793	 0.837	 0.876	
Complete	Cases	 0.764	 0.048	 0.685	 0.772	 0.830	
Mean/mode	 0.775	 0.031	 0.726	 0.771	 0.822	
Median/mode	 0.774	 0.031	 0.723	 0.774	 0.827	
5NN	 0.805	 0.033	 0.755	 0.805	 0.857	
10NN	 0.802	 0.033	 0.747	 0.805	 0.856	
MI	(m=1)	 0.797	 0.033	 0.748	 0.795	 0.853	
MI	(m=10)	 0.804	 0.030	 0.751	 0.804	 0.848	
Gold-Standard	

NN	

0.800	 0.032	 0.754	 0.799	 0.849	
Complete	Cases	 0.715	 0.043	 0.638	 0.716	 0.779	
Mean/mode	 0.790	 0.037	 0.739	 0.789	 0.848	
Median/mode	 0.789	 0.036	 0.740	 0.792	 0.849	
5NN	 0.794	 0.032	 0.743	 0.798	 0.842	
10NN	 0.797	 0.036	 0.737	 0.798	 0.851	
MI	(m=1)	 0.780	 0.036	 0.719	 0.781	 0.838	
MI	(m=10)	 0.795	 0.030	 0.750	 0.795	 0.838	
Gold-Standard	

GBT	

0.820	 0.028	 0.776	 0.821	 0.868	
Complete	Cases	 0.746	 0.050	 0.659	 0.756	 0.816	
Mean/mode	 0.781	 0.034	 0.724	 0.784	 0.826	
Median/mode	 0.778	 0.033	 0.719	 0.783	 0.823	
5NN	 0.796	 0.029	 0.737	 0.798	 0.837	
10NN	 0.796	 0.028	 0.748	 0.798	 0.838	
MI	(m=1)	 0.796	 0.031	 0.747	 0.796	 0.847	
MI	(m=10)	 0.804	 0.031	 0.757	 0.803	 0.854	
Gold-Standard	

SVM	

0.785	 0.030	 0.730	 0.786	 0.831	
Complete	Cases	 0.733	 0.053	 0.650	 0.741	 0.795	
Mean/mode	 0.766	 0.036	 0.707	 0.771	 0.818	
Median/mode	 0.764	 0.035	 0.711	 0.771	 0.818	
5NN	 0.771	 0.034	 0.722	 0.770	 0.827	
10NN	 0.772	 0.037	 0.710	 0.773	 0.825	
MI	(m=1)	 0.760	 0.035	 0.696	 0.762	 0.813	
MI	(m=10)	 0.768	 0.030	 0.719	 0.764	 0.813	
Gold-Standard	

C5.0	

0.800	 0.033	 0.758	 0.800	 0.844	
Complete	Cases	 0.710	 0.063	 0.585	 0.713	 0.802	
Mean/mode	 0.758	 0.039	 0.698	 0.762	 0.816	
Median/mode	 0.754	 0.043	 0.679	 0.751	 0.823	
5NN	 0.772	 0.038	 0.715	 0.772	 0.843	
10NN	 0.770	 0.035	 0.710	 0.771	 0.822	
MI	(m=1)	 0.758	 0.037	 0.701	 0.754	 0.819	
MI	(m=10)	 0.807	 0.031	 0.756	 0.808	 0.857	
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For	all	six	machine-learning	algorithms,	we	find	that	gold-standard	classifiers—that	is,	the	

models	derived	from	complete	data—consistently	outperform	their	complete-case	analysis	

and	 imputation	 counterparts.	This	 is	 logical	because	useful	 information	 is	 invariably	 lost	

when	we	 introduce	missingness	 in	 the	datasets.	 In	contrast,	complete-case	analysis	often	

leads	to	inferior	performance.	The	AUCs	of	classifiers	trained	on	complete-cases	training	sets	

tend	to	be	smaller	than	those	trained	on	imputed	training	sets.	This	suggests	that	imputation	

does	indeed	offer	improved	fit	and	predictive	power	over	listwise	deletion.	

Overall,	we	find	kNN	imputation	to	be	most	compatible	with	our	datasets.	It	provides	the	

least	biased	imputations	among	all	missing	data	methods	(see	Supplementary	Materials	E).	

In	particular,	the	combination	of	kNN	imputation	(k	=	5)	with	RF	gives	one	of	the	highest	

gold-standard	 testing	 set	 AUCs	 (0.81).	 We	 note	 a	 few	 other	 MI	 combinations	 that	 yield	

comparable	 or	 marginally	 better	 performance	 but	 focus	 on	 the	 5NN-RF	 approach	 in	

subsequent	analyses	on	the	main	datasets	due	to	its	ease	of	implementation	and	application.	

We	find	that	SVM	has	the	worst	performance	among	all	machine-learning	models.	This	is	not	

surprising	because	SVMs	are	aimed	only	at	learning	binary	classifiers,	and	do	not	generally	

produce	good	class	probability	estimates.	Consequently,	such	models	do	not	necessarily	give	

high	AUCs.	

We	also	compare	our	approach	with	the	ANDI	algorithm	(DiMasi	et	al.,	2015)	by	applying	a	

modified	 version	 of	 the	 index	 on	 oncology	 drugs	 in	 the	 gold-standard	 testing	 sets	 (see	

Supplementary	Materials	H	for	a	more	in-depth	description).	We	find	that	our	5NN-RF	model	

achieves	significantly	higher	AUC	than	the	modified	ANDI,	with	an	average	improvement	of	

0.1	in	AUC	over	100	simulations	(see	Fig	7).	We	believe	that	this	gain	can	be	attributed	to	a	



HDSR	

Issue	1	

19	May	2019	 Machine	Learning	Predictions	of	Drug	Approvals	 Page	23	of	44	
©	2019	by	Lo,	Siah,	and	Wong,	All	Rights	Reserved	

larger	training	set	with	a	wider	range	of	 features,	a	nonlinear	model	 that	can	capture	the	

complex	relationships	in	the	data,	and	a	proper	model	validation	methodology.	

	

Fig	7.	Distributions	of	AUC	of	5NN-RF	and	the	modified	ANDI	on	oncology-only	gold-standard	testing	sets.	

	

Predicting	approvals	
We	analyze	the	two	datasets	(P2APP	and	P3APP)	by	first	splitting	each	into	a	training	set	

(70%)	and	a	testing	set	(30%)	randomly	(pipeline	drug-indication	pairs	are	omitted	since	

their	outcomes	have	yet	to	be	determined).	Subsequently,	we	train	5NN-RF	models	for	each	

scenario	according	to	the	methodology	outlined	in	Section	2.	We	repeat	this	experiment	100	

times	for	robustness.	Table	9	summarizes	the	AUC	performance	metrics	for	the	testing	sets.	

On	average,	we	achieve	0.78	AUC	for	P2APP	and	0.81	AUC	for	P3APP.	 	
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Table	 9.	 Comparison	 of	 the	 general	 and	 indication-group	 specific	 classifiers	 for	 selected	 indication	 groups.	
Abbreviations:	Avg:	average;	Sd:	standard	deviation;	5%:	5th	percentile;	50%:	median;	95%:	95th	percentile.	

	 General	Classifier	 Specialized	Classifiers	
	 Avg	 Sd	 5%	 50%	 95%	 Avg	 Sd	 5%	 50%	 95%	

P2APP	
All	 0.777	 0.017	 0.749	 0.775	 0.806	 -	 -	 -	 -	 -	
Anti-cancer	 0.805	 0.025	 0.764	 0.805	 0.847	 0.818	 0.029	 0.773	 0.819	 0.865	
Rare	Diseases	 0.800	 0.028	 0.756	 0.800	 0.848	 0.775	 0.036	 0.715	 0.777	 0.838	
Neurological	 0.767	 0.036	 0.710	 0.769	 0.819	 0.778	 0.039	 0.721	 0.779	 0.834	
Alimentary	 0.749	 0.045	 0.672	 0.751	 0.817	 0.732	 0.048	 0.651	 0.734	 0.807	
Immunological	 0.783	 0.065	 0.665	 0.786	 0.889	 0.766	 0.069	 0.646	 0.775	 0.860	
Anti-infective	 0.735	 0.043	 0.673	 0.736	 0.800	 0.750	 0.047	 0.684	 0.746	 0.832	
Respiratory	 0.756	 0.055	 0.648	 0.764	 0.835	 0.867	 0.043	 0.794	 0.872	 0.921	
Musculoskeletal	 0.822	 0.049	 0.736	 0.821	 0.899	 0.731	 0.076	 0.614	 0.745	 0.849	
Cardiovascular	 0.709	 0.072	 0.580	 0.711	 0.812	 0.694	 0.073	 0.579	 0.698	 0.807	
Genitourinary	 0.633	 0.086	 0.503	 0.634	 0.790	 0.706	 0.091	 0.552	 0.710	 0.840	

P3APP	
All	 0.810	 0.018	 0.781	 0.810	 0.834	 -	 -	 -	 -	 -	
Anti-cancer	 0.783	 0.047	 0.699	 0.779	 0.853	 0.707	 0.054	 0.612	 0.714	 0.786	
Rare	Diseases	 0.819	 0.054	 0.727	 0.822	 0.896	 0.786	 0.058	 0.687	 0.793	 0.875	
Neurological	 0.796	 0.037	 0.734	 0.794	 0.857	 0.789	 0.038	 0.741	 0.787	 0.853	
Alimentary	 0.817	 0.047	 0.744	 0.820	 0.891	 0.805	 0.054	 0.718	 0.808	 0.888	
Immunological	 0.811	 0.074	 0.680	 0.815	 0.910	 0.757	 0.099	 0.586	 0.765	 0.892	
Anti-infective	 0.757	 0.065	 0.644	 0.752	 0.854	 0.708	 0.068	 0.600	 0.707	 0.808	
Respiratory	 0.823	 0.065	 0.712	 0.831	 0.920	 0.773	 0.083	 0.627	 0.784	 0.907	
Musculoskeletal	 0.741	 0.095	 0.576	 0.747	 0.866	 0.763	 0.072	 0.646	 0.762	 0.882	
Cardiovascular	 0.794	 0.058	 0.702	 0.788	 0.887	 0.755	 0.076	 0.639	 0.765	 0.864	
Genitourinary	 0.814	 0.083	 0.670	 0.821	 0.937	 0.801	 0.090	 0.635	 0.808	 0.927	

	

The	 observed	 performance	 is	 essentially	 the	 MAR	 testing	 set	 AUC,	 since	 backfilling	 has	

already	affected	the	datasets	used.	In	Supplementary	Materials	E,	we	highlight	the	perils	of	

relying	on	the	MAR	testing	set	for	model	validation,	and	suggest	that	the	AUCs	for	the	gold-

standard	 and	 MCAR	 testing	 sets	 are	 more	 reflective	 of	 a	 classifier’s	 real	 performance.	

Unfortunately,	 we	 have	 access	 to	 neither	 the	 gold-standard	 nor	 the	 MCAR	 testing	 sets,	

because	we	do	not	know	the	true,	underlying	values	of	the	missing	features.	However,	our	

experiments	 indicate	 that	 the	 AUCs	 for	 the	 MAR	 and	 MCAR	 testing	 sets	 of	 the	 5NN-RF	

combination	are	very	close	(a	difference	of	0.002	on	average).	This	means	that	we	may	use	

the	former,	the	only	observed	figure,	as	a	reasonable	estimate	of	the	latter,	which	reflects	

real	performance.	
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Next,	we	train	classifiers	based	on	the	union	of	the	training	and	testing	sets,	and	use	them	to	

generate	predictions	for	pipeline	drug-indication	pairs.	We	generate	predictions	for	P2APP	

using	only	information	from	phase	2	trials	and	for	P3APP	using	only	information	from	phase	

3	trials.	While	we	cannot	compute	AUC	scores	for	these	samples	because	their	outcomes	are	

still	pending,	we	can	compare	their	prediction	scores	with	their	development	status	at	the	

time	of	 this	writing.	These	pipeline	drug-indication	pairs	may	still	be	 in	 the	same	clinical	

stage	(no	change,	i.e.,	phase	2	for	P2APP;	phase	3	for	P3APP),	be	terminated	(failed),	or	have	

progressed	to	higher	phases	(advanced).	

Fig	8,	Table	10,	and	Table	11	summarize	the	distributions	of	pipeline	prediction	scores.	We	

find	that	pairs	that	fail	generally	have	lower	scores	than	those	that	advance	to	later	phases	

of	development.	In	Fig	8,	we	observe	peaks	at	the	lower	end	of	the	score	spectrum	for	failed	

pairs	(red)	 for	both	datasets.	 In	contrast,	pairs	 that	advance	tend	to	have	peaks	at	higher	

scores	(green).	We	observe	the	same	patterns	when	we	disaggregate	the	distributions	by	

indication	groups:	the	green	parts	tend	to	cluster	above	the	distribution	median	while	the	

red	parts	cluster	below.	However,	there	are	also	some	indication	groups	for	which	there	are	

too	few	samples	to	make	any	useful	remarks	(e.g.,	hormonal	products	in	P2APP).	From	Table	

10,	we	see	that	the	average	scores	of	failed	pairs	are	indeed	lower	than	those	that	advance	

(differences	ranging	from	0.05	to	0.15).	In	Table	11,	we	bin	drug-indication	pairs	that	have	

new	developments	 (whether	 failure	 or	 advancement)	 into	 four	 groupings,	 depending	on	

their	prediction	scores.	For	each	bin,	we	compute	the	proportion	of	samples	that	advance	to	

later	development	stages.	We	 find	 that	 the	proportions	generally	 increase	with	 the	score	

magnitude,	suggesting	that	pairs	with	higher	scores	are	more	likely	to	advance	than	those	

with	 lower	 scores.	We	note	 that	progress	 to	 later	 clinical	 stages	does	not	always	 lead	 to	
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approval.	 However,	 the	 results	 are	 still	 promising	 because	 advancement	 is	 a	 necessary	

condition	 for	 approval.	 Our	 experiments	 indicate	 that	 our	 trained	 classifiers	 are	 able	 to	

discriminate	between	high-	and	low-potential	candidates.	

	

Table	10.	Distributions	of	prediction	scores	for	all	indication	groups	in	aggregate	(see	Fig	8).	Advanced	refers	to	
progress	to	a	higher	phase	from	the	original	phase.	Original	phase	for	P2APP	is	phase	2;	for	P3APP	is	phase	3.	For	
instance,	out	of	1,511	drug-indication	pairs	in	the	P2APP	testing	set,	859	pairs	are	still	pending	decision	in	phase	
2,	244	pairs	have	failed	and	408	pairs	have	successfully	advanced	to	phase	3	testing.	Abbreviations:	n:	sample	size;	
Avg:	average;	Sd:	standard	deviation;	5%:	5th	percentile;	50%:	median;	95%:	95th	percentile.	

	 Prediction	Scores	
	 n	 Avg	 Sd	 5%	 50%	 95%	

P2APP	
Aggregate	 1,511	 0.153	 0.061	 0.044	 0.155	 0.258	
No	change	 859	 0.143	 0.060	 0.041	 0.147	 0.246	
Failed	 244	 0.137	 0.061	 0.034	 0.147	 0.240	
Advanced	 408	 0.183	 0.056	 0.093	 0.178	 0.274	

P3APP	
Aggregate	 252	 0.417	 0.189	 0.128	 0.402	 0.695	
No	change	 142	 0.392	 0.185	 0.129	 0.384	 0.693	
Failed	 32	 0.348	 0.185	 0.100	 0.344	 0.656	
Advanced	 78	 0.492	 0.176	 0.233	 0.492	 0.699	

	

Table	11.	Distributions	of	prediction	scores	for	all	indication	groups	in	aggregate	(see	Fig	8).	Proportion	refers	to	
the	fraction	of	samples	that	advanced	to	a	later	phase	from	the	original	phase.	Abbreviations:	n:	sample	size.	

Scores	 n	 Proportion	
P2APP	

<	0.1	 108	 0.231	
0.1-0.2	 368	 0.671	
0.2-0.3	 171	 0.766	
≥	0.3	 5	 1.000	

P3APP	
<	0.2	 13	 0.308	
0.2-0.4	 35	 0.686	
0.4-0.6	 27	 0.667	
≥	0.6	 35	 0.914	
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Fig	8.	Distributions	of	prediction	scores	for	P2APP	and	P3APP.	First	row	for	all	indication	groups	in	aggregate.	
Subsequent	rows	for	specific	indication	groups.	
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To	 gain	 insight	 into	 the	 logic	 of	 our	 trained	 predictive	models,	we	 compute	 the	 average	

importance	of	features	used	in	the	5NN-RF	classifiers	over	all	the	experiments,	and	extract	

the	top	ten	most	informative	variables.	The	RF	classifier	(Pedregosa	et	al.,	2011)	we	used	

computes	the	importance	of	a	variable	by	finding	the	decrease	in	node	impurity	for	all	nodes	

that	split	on	that	variable,	weighted	by	the	probability	of	reaching	that	node	(as	estimated	

by	 the	 proportion	 of	 samples	 reaching	 that	 node),	 averaged	 over	 all	 trees	 in	 the	 forest	

ensemble	(Breiman,	Friedman,	Stone,	&	Olshen,	1984).	Table	12	summarizes	the	results.		

	

Table	12.	Top	ten	important	variables	of	5NN-RF	classifiers	for	P2APP	and	P3APP.	Average	and	standard	deviation	
taken	across	all	experiments.	Abbreviations:	Avg:	average;	Sd:	standard	deviation.	

	 Importance	
	 Avg	 Sd	

P2APP	
Trial	outcome	–	completed,	positive	outcome,	or	primary	endpoint(s)	met	 0.234	 0.043	
Trial	status	 0.160	 0.026	
Medium	–	solution	 0.051	 0.018	
Actual	accrual	 0.046	 0.010	
Sponsor	type	–	industry,	all	other	pharma	 0.025	 0.008	
Sponsor	track	record	–	number	of	positive	phase	3	trials		 0.023	 0.006	
Sponsor	track	record	–	number	of	failed	drug-indication	pairs	 0.021	 0.007	
Study	design	–	placebo	control	 0.019	 0.009	
Target	accrual	 0.018	 0.005	
Prior	approval	of	drug	for	another	indication	 0.018	 0.007	

P3APP	
Trial	outcome	–	completed,	positive	outcome,	or	primary	endpoint(s)	met	 0.357	 0.028	
Trial	status	 0.148	 0.014	
Duration	 0.099	 0.016	
Trial	outcome	–	terminated,	lack	of	efficacy	 0.033	 0.010	
Trial	outcome	–	completed,	negative	outcome,	or	primary	endpoint(s)	not	met	 0.033	 0.008	
Therapeutic	area	–	oncology	 0.030	 0.009	
Prior	approval	of	drug	for	another	indication	 0.021	 0.007	
Actual	accrual	 0.015	 0.003	
Medium	–	powder	 0.014	 0.007	
Medium	–	solution	 0.012	 0.006	

	

We	find	that	trial	outcome	(whether	the	trial	was	completed	with	its	primary	endpoints	met)	

and	 trial	 status	 (whether	 the	 trial	 was	 completed	 or	 terminated)	 have	 significant	
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associations	with	success.	These	two	features	were	consistently	ranked	the	top	two	out	of	

all	variables	and	across	both	datasets.	It	is	easy	to	imagine	that	a	drug-indication	pair	whose	

trials	were	terminated	has	a	low	probability	of	success	in	terms	of	advancing	from	phases	

2/3	 to	 approval.	 In	 contrast,	 candidates	 that	 achieve	 positive	 outcomes	 certainly	 have	 a	

better	shot	at	success.	We	also	observe	that	prior	approval	of	a	drug	has	an	effect	on	success	

for	new	indications	or	patient	segmentation.	It	is	plausible	that	developing	an	approved	drug	

for	a	new	indication	has	a	greater	likelihood	of	success	than	a	new	candidate.		

In	addition,	trial	characteristics	such	as	accrual,	duration,	and	the	number	of	identified	sites	

frequently	appear	in	the	top	ten	important	variables.	There	are	several	possible	explanations.	

For	example,	trials	that	end	quickly	without	achieving	primary	endpoints	may	undermine	

the	 likelihood	 of	 success,	 and	 drugs	 with	 trials	 that	 have	 small	 accrual—and	 thus	 low	

statistical	power—may	have	a	lower	probability	of	being	approved.		

We	also	find	sponsor	track	records—quantified	by	the	number	of	past	successful	trials	(trials	

that	achieve	positive	results	or	meet	primary	endpoints)—to	be	a	useful	factor	for	prediction.	

This	 factor	 has	 not	 been	 considered	 in	 previous	 related	 studies,	 but	 the	 intuition	 for	 its	

predictive	power	is	clear:	strong	track	records	are	likely	associated	with	greater	expertise	in	

drug	development.	

Since	drugs	developed	for	different	indication	groups	may	have	very	different	characteristics,	

we	might	expect	classifiers	trained	on	indication-group-specific	data	to	outperform	general	

classifiers.	We	 build	 and	 analyze	 such	 specialized	 classifiers	 by	 filtering	 the	 datasets	 by	

indication	group	before	performing	the	experiment	described	in	the	previous	section.	As	a	

comparison,	we	also	break	down	 the	performance	of	 the	general	 classifiers	by	 indication	
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group.	 Table	 9	 shows	 the	 results	 for	 selected	 indication	 groups.	 In	 general,	 we	 find	

specialized	models	to	give	poorer	performance	than	general	models.	This	is	likely	because	

the	former	are	trained	on	less	data,	which	makes	them	less	accurate	and	more	susceptible	to	

overfitting.	

We	 note	 that	 the	 approach	 adopted	 in	 this	 section—splitting	 drug-indication	 pairs	 into	

training	and	testing	sets	randomly	without	considering	the	dates	of	development—may	be	

less	 than	 ideal	because	of	 look-ahead	bias.	For	example,	 if	 the	 results	of	 a	2008	 trial	 are	

included	 in	the	training	set	 for	predicting	the	outcome	of	a	2004	development	path	 for	a	

drug-indication	pair,	our	model	will	be	using	future	information	during	validation,	which	can	

yield	misleading	and	 impractical	 inferences.	To	address	this	 issue,	 in	 the	next	section	we	

apply	 our	 machine-learning	 framework	 to	 time-series	 data	 using	 rolling	 windows	 that	

account	for	temporal	ordering	in	the	construction	of	training	and	testing	sets.	Although	this	

process	makes	use	of	less	data	within	each	estimation	window	than	when	the	entire	dataset	

is	used,	it	minimizes	the	impact	of	look-ahead	bias	and	yields	more	realistic	inferences.	We	

study	the	effects	of	random	splitting	versus	temporal	ordering	in	Supplementary	Materials	

J.	

Predictions	over	time	
Drug	development	has	changed	substantially	over	time,	thanks	to	new	scientific	discoveries	

and	 technological	 improvements.	To	 reflect	 these	 changes	 in	our	predictive	analytics,	we	

adopt	a	time	series,	walk-forward	approach	to	create	training	and	testing	sets	for	each	of	the	

two	datasets,	P2APP	and	P3APP	(see	Fig	9).	We	sample	five-year	rolling	windows	between	

2004	and	2014	from	each	dataset.	Each	window	consists	of	a	training	set	of	drug-indication	

pairs	whose	outcomes	become	finalized	within	the	window,	and	an	out-of-sample,	out-of-
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time	testing	set	of	drug-indication	pairs	that	ended	phase	2	or	phase	3	testing,	but	are	still	in	

the	pipeline	with	undetermined	outcomes	within	 the	window.	For	example,	 consider	 the	

P2APP	dataset.	We	draw	the	 first	window	from	2004–2008,	 train	our	algorithm	on	drug-

indication	pairs	that	failed	or	were	approved	within	this	period	as	the	training	set,	and	apply	

the	trained	model	to	predict	the	outcomes	of	drug-indications	that	just	ended	phase	2	testing	

within	the	same	window	as	the	testing	set.	

	

Fig	9.	Time-series	walk-forward	analysis	approach.	The	testing	set	 in	the	last	window	(green)	comprises	drug-
indication	pairs	in	the	pipeline	at	the	time	of	snapshot	of	the	databases.	

	

We	 evaluate	 the	 resulting	 classifier	 by	 comparing	 its	 predictions	with	 outcomes	 that	 are	

realized	 in	 the	 future	 (2009–2015).	 This	 rolling-window	 approach	 yields	 a	 total	 of	 eight	

overlapping	 training	and	 testing	periods	where	a	new	5NN-RF	model	 is	 trained	 for	each	

period.	The	eighth	testing	period	consists	of	drug-indication	pairs	in	the	pipeline	at	the	time	

of	snapshot	of	the	databases.	Unlike	the	first	seven	periods,	their	outcomes	are	still	pending	

current	 development,	 and	 therefore	we	 cannot	 compute	 a	 testing	 AUC	 for	 this	 window.	

However,	we	can	examine	the	predictions	and	compare	the	scores	with	their	development	

statuses	at	the	time	of	this	writing.	
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Fig	10	summarizes	the	results	of	the	time-series	analysis	for	the	first	seven	windows.	We	

observe	an	increasing	trend	over	the	years	for	both	P2APP	(0.67	in	the	first	and	0.80	in	the	

last	window)	and	P3APP	(0.77	in	the	first	and	0.88	in	the	last	window).	Interestingly,	we	note	

that	the	proportions	of	complete	cases	in	the	training	sets	correlate	well	with	the	time	series	

AUC	(correlation	coefficient	0.95	for	P2APP	and	0.90	for	P3APP).	We	compute	the	proportion	

of	complete	cases	by	taking	the	number	of	feature	vector	rows	with	complete	information	

over	 the	 total	 number	 of	 rows.	 As	 is	 apparent	 from	 Fig	 10,	 the	 proportions	 have	 been	

increasing	 over	 the	 years	 for	 both	 datasets.	 This	 is	 likely	 due	 to	 better	 data	 reporting	

practices	by	drug	developers,	a	possible	consequence	of	FDAAA.	

	

Fig	10.	Time-series	walk-forward	analysis	for	P2APP	and	P3APP	using	5NN-RF.	We	use	bootstrapping	to	determine	
the	95%	CI	for	AUC	(dotted	lines).	The	dashed	lines	plot	the	corresponding	proportions	of	complete	cases	in	the	
training	sets	of	each	five-year	window.	Abbreviations:	CC:	proportion	of	complete	cases.	
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Next,	we	examine	the	2011–2015	window.	Fig	11,	Table	13,	and	Table	14	summarize	the	

distributions	 of	 prediction	 scores	 for	 the	 P2APP	 and	 P3APP	 datasets.	 We	 observe	 very	

similar	patterns	to	the	static	pipeline	predictions	above.	The	histograms,	average	scores,	and	

binning	of	samples	 indicate	that	pairs	 that	 fail	 tend	to	have	 lower	prediction	scores	than	

those	that	advance.	This	shows	that	our	classifiers	are	indeed	able	to	differentiate	successful	

candidates.	

	

Table	13.	Distributions	of	prediction	scores	for	all	indication	groups	in	aggregate	(see	Fig	11).	Advanced	refers	to	
progress	to	a	higher	phase	from	the	original	phase.	Original	phase	for	P2APP	is	phase	2;	 for	P3APP	is	phase	3.	
Abbreviations:	n:	sample	size;	Avg:	average;	Sd:	standard	deviation;	5%:	5th	percentile;	50%:	median;	95%:	95th	
percentile.	

	 Prediction	Scores	
	 n	 Avg	 Sd	 5%	 50%	 95%	

P2APP	
Aggregate	 1,190	 0.158	 0.080	 0.036	 0.173	 0.290	
No	change	 712	 0.148	 0.080	 0.035	 0.158	 0.275	
Failed	 195	 0.143	 0.079	 0.034	 0.149	 0.255	
Advanced	 283	 0.197	 0.071	 0.068	 0.200	 0.323	

P3APP	
Aggregate	 218	 0.431	 0.211	 0.113	 0.476	 0.689	
No	change	 121	 0.395	 0.207	 0.113	 0.403	 0.684	
Failed	 28	 0.362	 0.211	 0.093	 0.335	 0.640	
Advanced	 69	 0.521	 0.193	 0.149	 0.631	 0.707	

	

Table	14.	Distribution	of	prediction	scores	for	all	indication	groups	in	aggregate	(see	Fig	11).	Proportion	refers	to	
the	fraction	of	samples	that	advanced	to	a	higher	phase	from	the	original	phase.	Abbreviations:	n:	sample	size.	

Scores	 n	 Proportion	
P2APP	

<	0.1	 99	 0.313	
0.1-0.2	 183	 0.607	
0.2-0.3	 168	 0.690	
≥	0.3	 28	 0.893	

P3APP	
<	0.2	 17	 0.412	
0.2-0.4	 17	 0.706	
0.4-0.6	 17	 0.647	
≥	0.6	 46	 0.848	
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Fig	11.	Distributions	of	prediction	scores	of	the	2011–2015	window	testing	set	for	P2APP	and	P3APP.	First	row	for	
all	indication	groups	in	aggregate.	Subsequent	rows	for	specific	indication	groups.	
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Table	15	summarizes	the	top	ten	most	informative	variables	in	the	5NN-RF	classifiers	over	

the	eight	rolling	windows.	We	find	them	to	be	largely	consistent	with	those	observed	in	the	

static	case:	the	trial	outcome	and	trial	status	are	significantly	associated	with	success;	trial	

characteristics	 (such	 as	 accrual,	 duration,	 and	 number	 of	 identified	 sites),	 sponsor	 track	

record,	and	drug	medium	appear	frequently	in	both	scenarios.	

	

Table	15.	Top	ten	important	variables	in	5NN-RF	classifiers	for	P2APP	and	P3APP.	Average	and	standard	deviation	
taken	across	the	eight	rolling	windows.	Abbreviations:	Avg:	average;	Sd:	standard	deviation.	

	 Importance	
	 Avg	 Sd	

P2APP	
Trial	outcome	–	completed,	positive	outcome,	or	primary	endpoint(s)	met	 0.203	 0.083	
Trial	status	 0.102	 0.033	
Prior	approval	of	drug	for	another	indication	 0.077	 0.061	
Actual	accrual	 0.039	 0.015	
Target	accrual	 0.031	 0.010	
Duration	 0.027	 0.014	
Sponsor	track	record	–	number	of	completed	phase	3	trials	 0.025	 0.007	
Medium	–	suspension	 0.024	 0.018	
Sponsor	type	–	academic	 0.023	 0.017	
Medium	–	solution	 0.021	 0.019	

P3APP	
Trial	outcome	–	completed,	positive	outcome,	or	primary	endpoint(s)	met	 0.348	 0.028	
Trial	status	 0.125	 0.020	
Duration	 0.053	 0.017	
Prior	approval	of	drug	for	another	indication	 0.046	 0.028	
Trial	outcome	–	completed,	negative	outcome,	or	primary	endpoint(s)	not	met	 0.033	 0.026	
Target	accrual	 0.021	 0.005	
Trial	outcome	–	terminated,	lack	of	efficacy	 0.020	 0.013	
Actual	accrual	 0.019	 0.004	
Therapeutic	area	–	oncology	 0.017	 0.013	
Number	of	identified	sites	 0.012	 0.002	

	

As	in	the	static	case,	we	also	train	indication-group	specific	classifiers	using	rolling	windows.	

Table	16	and	Table	17	summarize	the	results	for	selected	indication	groups	in	P2APP	and	

P3APP,	 respectively	 (see	 Supplementary	 Materials	 G	 for	 results	 of	 all	 other	 indication	

groups).	 Indication	 groups	 with	 small	 sample	 sizes	 tend	 to	 produce	 poor	 and	 unstable	
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specialized	classifiers	(e.g.,	the	musculoskeletal	indication	group	in	P2APP).	This	is	expected	

because	models	trained	on	small	training	sets	are	more	susceptible	to	overfitting,	especially	

when	non-linear	algorithms	such	as	RF	are	used.	In	contrast,	indication	groups	with	larger	

sample	sizes	tend	to	give	rise	to	rather	good	classifiers	(e.g.,	anti-cancer	in	P2APP).	

	

Table	16.	Comparison	of	 the	general	and	 indication-group	specific	 classifiers	 for	 selected	 indication	groups	 in	
P2APP.	We	use	bootstrapping	to	determine	the	95%	CI	for	AUC.	

	 General	Classifier	 Specialized	Classifiers	
	 Train	Set	 Test	Set	 AUC	[95%	CI]	 Train	Set	 Test	Set	 AUC	[95%	CI]	

All	
2004–2008	 1,361	 551	 0.669	[0.614,	0.725]	 -	 -	 -	
2005–2009	 1,562	 591	 0.680	[0.625,	0.735]	 -	 -	 -	
2006–2010	 1,764	 636	 0.712	[0.668,	0.755]	 -	 -	 -	
2007–2011	 1,969	 598	 0.738	[0.698,	0.777]	 -	 -	 -	
2008–2012	 2,082	 597	 0.799	[0.760,	0.837]	 -	 -	 -	
2009–2013	 2,212	 517	 0.823	[0.779,	0.867]	 -	 -	 -	
2010–2014	 2,289	 380	 0.797	[0.718,	0.876]	 -	 -	 -	

Anti-cancer	
2004–2008	 1,361	 137	 0.665	[0.528,	0.803]	 456	 137	 0.683	[0.533,	0.833]	
2005–2009	 1,562	 163	 0.739	[0.618,	0.861]	 494	 163	 0.635	[0.512,	0.758]	
2006–2010	 1,764	 188	 0.774	[0.702,	0.846]	 546	 188	 0.726	[0.635,	0.816]	
2007–2011	 1,969	 193	 0.830	[0.773,	0.887]	 618	 193	 0.746	[0.661,	0.831]	
2008–2012	 2,082	 198	 0.805	[0.717,	0.894]	 682	 198	 0.760	[0.665,	0.855]	
2009–2013	 2,212	 177	 0.852	[0.783,	0.922]	 736	 177	 0.786	[0.696,	0.876]	
2010–2014	 2,289	 173	 0.815	[0.691,	0.938]	 791	 173	 0.803	[0.666,	0.940]	

Musculoskeletal	
2004–2008	 1,361	 35	 0.765	[0.597,	0.933]	 96	 35	 0.704	[0.512,	0.896]	
2005–2009	 1,562	 38	 0.716	[0.489,	0.944]	 109	 38	 0.674	[0.472,	0.876]	
2006–2010	 1,764	 35	 0.634	[0.439,	0.830]	 111	 35	 0.509	[0.276,	0.742]	
2007–2011	 1,969	 37	 0.737	[0.571,	0.903]	 119	 37	 0.677	[0.493,	0.860]	
2008–2012	 2,082	 36	 0.884	[0.773,	0.995]	 127	 36	 0.683	[0.462,	0.904]	
2009–2013	 2,212	 26	 0.792	[0.573,	1.000]	 133	 26	 0.667	[0.429,	0.904]	
2010–2014	 2,289	 19	 0.882	[0.724,	1.000]	 128	 19	 0.882	[0.706,	1.000]	

	

	 	



HDSR	

Issue	1	

19	May	2019	 Machine	Learning	Predictions	of	Drug	Approvals	 Page	38	of	44	
©	2019	by	Lo,	Siah,	and	Wong,	All	Rights	Reserved	

Table	17.	Comparison	of	 the	general	and	 indication-group	specific	 classifiers	 for	 selected	 indication	groups	 in	
P3APP.	We	use	bootstrapping	to	determine	the	95%	CI	for	AUC.	

	 General	Classifier	 Specialized	Classifiers	
	 Train	Set	 Test	Set	 AUC	[95%	CI]	 Train	Set	 Test	Set	 AUC	[95%	CI]	

All	
2004–2008	 472	 196	 0.769	[0.704,	0.834]	 -	 -	 -	
2005–2009	 559	 177	 0.724	[0.650,	0.798]	 -	 -	 -	
2006–2010	 604	 211	 0.738	[0.671,	0.805]	 -	 -	 -	
2007–2011	 664	 174	 0.806	[0.740,	0.871]	 -	 -	 -	
2008–2012	 677	 197	 0.827	[0.768,	0.886]	 -	 -	 -	
2009–2013	 740	 153	 0.868	[0.809,	0.927]	 -	 -	 -	
2010–2014	 734	 110	 0.876	[0.811,	0.941]	 -	 -	 -	

Anti-cancer	
2004–2008	 472	 34	 0.773	[0.618,	0.928]	 95	 34	 0.684	[0.495,	0.874]	
2005–2009	 559	 28	 0.740	[0.543,	0.936]	 107	 28	 0.568	[0.345,	0.791]	
2006–2010	 604	 50	 0.754	[0.599,	0.910]	 110	 50	 0.630	[0.452,	0.809]	
2007–2011	 664	 24	 0.587	[0.333,	0.842]	 132	 24	 0.392	[0.132,	0.651]	
2008–2012	 677	 40	 0.793	[0.549,	1.000]	 134	 40	 0.668	[0.457,	0.879]	
2009–2013	 740	 29	 0.800	[0.480,	1.000]	 151	 29	 0.775	[0.528,	1.000]	
2010–2014	 734	 26	 0.943	[0.842,	1.000]	 153	 26	 0.852	[0.558	,1.000]	

Rare	Diseases	
2004–2008	 472	 22	 0.711	[0.465,	0.957]	 54	 22	 0.620	[0.364,	0.876]	
2005–2009	 559	 23	 0.735	[0.517,	0.952]	 60	 23	 0.606	[0.360,	0.852]	
2006–2010	 604	 24	 0.888	[0.747,	1.000]	 66	 24	 0.825	[0.645,	1.000]	
2007–2011	 664	 22	 0.838	[0.652,	1.000]	 72	 22	 0.735	[0.520,	0.950]	
2008–2012	 677	 34	 0.893	[0.780,	1.000]	 76	 34	 0.700	[0.523,	0.877]	
2009–2013	 740	 28	 0.962	[0.899,	1.000]	 94	 28	 0.932	[0.840,	1.000]	
2010–2014	 734	 18	 0.908	[0.766,	1.000]	 109	 18	 0.985	[0.942,	1.000]	

	

For	 comparison,	 we	 disaggregate	 performance	 by	 indication	 group.	 We	 find	 that	 these	

classifiers	do	not	lose	out	to	their	specialized	counterparts.	In	fact,	our	results	show	that	the	

former	tend	to	exhibit	more	stable	performance	across	the	seven	windows,	particularly	on	

indication	groups	with	small	sample	sizes.	We	hypothesize	that	classifiers	trained	on	all	data	

benefit	 from	having	access	 to	 larger	datasets	with	greater	diversity,	 and	are	 thus	able	 to	

make	more	informed	predictions.	This	suggests	that	it	may	be	more	appropriate	to	rely	on	

general	classifiers,	rather	than	specialized	ones,	for	predictions	over	time	where	samples	are	

spread	out	over	multiple	windows,	since	further	filtering	by	indication	group	results	in	even	

smaller	sample	sizes.	
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Finally,	we	extract	the	top	five	P2APP	pipeline	drug	candidates	with	the	highest	scores	in	

each	 indication	 group	 as	 predicted	 by	 the	 2011–2015	 rolling-window	 model.	 Table	 18	

summarizes	the	results.	We	include	only	candidates	that	are	still	outstanding	at	the	time	of	

writing	(neither	discontinued	nor	approved).	It	is	encouraging	that	many	of	these	candidates	

(indicated	in	italics)	have	advanced	beyond	phase	2	testing	since	our	analysis,	indicating	the	

predictive	power	of	our	models.	We	include	an	interactive	version	in	Fig	12	where	readers	

can	filter	our	pipeline	predictions	by	indication	group	and	probability	of	approval.	Ultimately,	

all	biopharma	stakeholders	can	use	such	scores	to	rank	and	evaluate	the	potential	risks	and	

rewards	of	drug	candidates.	

Fig	12.	Network	graph	of	P2APP	pipeline	drug	candidates.	Black	nodes	correspond	to	indication	groups.	Colored	
nodes	correspond	to	drug-indication	pairs.	Each	drug-indication	pair	node	is	connected	to	its	parent	indication	
group	and	also	other	drug-indication	pairs	 that	have	 the	same	 indication.	They	are	colored	according	to	 their	
respective	probability	of	approval	as	predicted	by	our	model—blue	for	higher	scores	and	red	for	lower	scores.	
Hover	over	nodes	for	details	of	each	drug-indication	pair.	Black	indication	group	nodes	are	sized	based	on	the	
number	of	connections.	

The	information	presented	through	this	research	and	in	the	included	figure	are	made	available	solely	for	general	
informational	purposes.	The	authors	do	not	warrant	the	accuracy,	completeness	or	usefulness	of	this	information.	
Any	reliance	you	place	on	such	information	is	strictly	at	your	own	risk.	The	authors	expressly	disclaim	all	liability	and	
responsibility	arising	from	any	reliance	placed	on	such	information	by	you,	or	by	anyone	who	may	be	informed	of	this	
information. 



HDSR	

Issue	1	

19	May	2019	 Machine	Learning	Predictions	of	Drug	Approvals	 Page	40	of	44	
©	2019	by	Lo,	Siah,	and	Wong,	All	Rights	Reserved	

Table	18.	Top	five	P2APP	pipeline	drug	candidates	with	the	highest	scores	in	each	indication	group	as	predicted	
by	our	model.	We	include	only	candidates	that	are	still	outstanding	at	the	time	of	writing	(neither	discontinued	
nor	approved).	Drug-indication	pairs	 in	 italics	are	 those	 that	have	advanced	beyond	phase	2	 testing	since	our	
analysis.	

Drug	 Indication	 Score	 	 Drug	 Indication	 Score	
Anti-cancer	 	 Musculoskeletal	
ontecizumab	 Cancer,	colorectal	 0.34	 	 tofacitinib	 Arthritis,	psoriatic	 0.31	

calmangafodipir	
Radio/chemotherapy-induced	
injury,	bone	marrow,	
neutropenia	

0.31	 	 ixekizumab	 Arthritis,	rheumatoid	 0.31	

tivantinib	 Cancer,	sarcoma,	soft	tissue	 0.30	 	 anti-BLyS/APRIL	antibody	
fusion	protein	 Arthritis,	rheumatoid	 0.31	

pidilizumab	 Cancer,	colorectal	 0.29	 	 sirukumab	 Arthritis,	rheumatoid	 0.29	
NK-012	 Cancer,	colorectal	 0.28	 	 romosozumab	 Osteoporosis	 0.28	
Rare	Diseases	 	 Cardiovascular	
surotomycin	 Infection,	Clostridium	difficile	 0.34	 	 K-134	 Peripheral	vascular	disease	 0.37	
tivantinib	 Cancer,	sarcoma,	soft	tissue	 0.30	 	 nitric	oxide,	inhaled	 Hypertension,	pulmonary	 0.29	

VP-20621	 Infection,	Clostridium	difficile	
prophylaxis	 0.30	 	 TY-51924	 Infarction,	myocardial	 0.28	

KHK-7580	 Secondary	hyperparathyroidism	 0.29	 	 s-amlodipine	+	telmisartan	 Hypertension,	unspecified	 0.27	
nitric	oxide,	inhaled	 Hypertension,	pulmonary	 0.29	 	 tirasemtiv	 Peripheral	vascular	disease	 0.24	
Neurological	 	 Dermatological	

dasotraline	 Attention	deficit	hyperactivity	
disorder	 0.35	 	 tofacitinib	 Arthritis,	psoriatic	 0.31	

idalopirdine	 Alzheimer's	disease	 0.35	 	 dimethyl	fumarate	 Psoriasis	 0.27	
GRC-17536	 Neuropathy,	diabetic	 0.34	 	 pefcalcitol	 Psoriasis	 0.24	
caprylic	triglyceride	 Alzheimer's	disease	 0.32	 	 Benvitimod	 Psoriasis	 0.22	

levodopa	 Parkinson's	disease	 0.31	 	
calcipotriol	monohydrate	
+	betamethasone	
dipropionate	

Psoriasis	 0.22	

Alimentary	 	 Genitourinary	

ibodutant	 Irritable	bowel	syndrome,	
diarrhoea-predominant	 0.37	 	

etonogestrel	+	estradiol	
(vaginal	ring),	next	
generation	

Contraceptive,	female	 0.30	

GRC-17536	 Neuropathy,	diabetic	 0.34	 	 drospirenone	+	estradiol	 Contraceptive,	female	 0.28	
mesalazine	+	N-
acetylcysteine	 Colitis,	ulcerative	 0.31	 	 finerenone	 Nephropathy,	diabetic	 0.27	

apabetalone	(tablet)	 Diabetes,	Type	2	 0.31	 	 afacifenacin	fumarate	 Overactive	bladder	 0.26	
phosphatidylcholine	 Colitis,	ulcerative	 0.31	 	 GKT-137831	 Nephropathy,	diabetic	 0.26	
Immunological	 	 Blood	and	Clotting	

tofacitinib	 Arthritis,	psoriatic	 0.31	 	 calmangafodipir	
Radio/chemotherapy-induced	
injury,	bone	marrow,	
neutropenia	

0.31	

ixekizumab	 Arthritis,	rheumatoid	 0.31	 	 balugrastim	 Radio/chemotherapy-induced	
injury,	bone	marrow,	neutropenia	 0.27	

anti-BLyS/APRIL	
antibody	fusion	protein	 Arthritis,	rheumatoid	 0.31	 	 eflapegrastim	 Radio/chemotherapy-induced	

injury,	bone	marrow,	neutropenia	 0.25	

sirukumab	 Arthritis,	rheumatoid	 0.29	 	 pegfilgrastim	 Radio/chemotherapy-induced	
injury,	bone	marrow,	neutropenia	 0.22	

dimethyl	fumarate	 Psoriasis	 0.27	 	 lexaptepid	pegol	 Radio/chemotherapy-induced	
anaemia	 0.20	

Anti-infective	 	 Sensory	

delafloxacin	 Infection,	skin	and	skin	structure,	
acute	bacterial		 0.39	 	 AR-13324	+	latanoprost	 Glaucoma	 0.27	

surotomycin	 Infection,	Clostridium	difficile	 0.34	 	 S-646240	 Macular	degeneration,	age-
related,	wet	 0.27	

delafloxacin	 Infection,	pneumonia,	
community-acquired	 0.33	 	 netarsudil	 Glaucoma	 0.26	

plazomicin	 Infection,	urinary	tract,	
complicated	 0.33	 	 fenofibrate,	micronized-2	 Oedema,	macular,	diabetic	 0.25	

Ypeginterferon	alpha-2b	 Infection,	hepatitis-C	virus	 0.33	 	 LX-7101	 Glaucoma	 0.21	
Respiratory	 	 Hormonal	
fluticasone	+	salmeterol	 Asthma	 0.36	 	 KHK-7580	 Secondary	hyperparathyroidism	 0.29	
fluticasone	furoate	+	
umeclidinium	+	vilanterol	

Chronic	obstructive	pulmonary	
disease	 0.36	 	 somatropin	prodrug,	

pegylated	 Growth	hormone	deficiency	 0.21	

fluticasone	furoate	+	
umeclidinium	

Chronic	obstructive	pulmonary	
disease	 0.36	 	 2MD	 Secondary	hyperparathyroidism	 0.21	

beclometasone	+	
formoterol	

Chronic	obstructive	pulmonary	
disease	 0.35	 	 velcalcetide	 Secondary	hyperparathyroidism	 0.19	

fluticasone	propionate	DPI	 Asthma	 0.35	 	 tesamorelin	acetate	 Growth	hormone	deficiency	 0.18	
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4 Discussion	
Drug	development	is	an	extremely	costly	process	and	the	accurate	evaluation	of	a	candidate	

drug’s	 likelihood	 of	 approval	 is	 critical	 to	 the	 efficient	 allocation	 of	 capital.	 Historical	

successes	 and	 failures	 contain	 valuable	 insights	 on	 the	 characteristics	 of	 high-potential	

candidates.	 Unfortunately,	 such	 data	 are	 often	 incomplete	 due	 to	 partial	 reporting	 by	

investigators	and	developers.	Most	analytic	methods	require	complete	data,	however,	and	

prior	studies	on	estimating	approval	rates	and	predicting	approvals	are	typically	based	on	a	

small	number	of	examples	that	have	complete	information	for	just	a	few	features.	

In	 this	paper,	we	 extract	 two	datasets,	 P2APP	 and	P3APP,	 from	 Informa®	databases	 and	

apply	5NN	statistical	imputation	to	make	efficient	use	of	all	available	data.	We	use	machine-

learning	techniques	to	train	and	validate	our	RF	predictive	models	and	achieve	promising	

levels	of	predictive	power	for	both	datasets.	When	applied	to	pipeline	drugs,	we	find	that	

candidates	with	higher	scores	are	indeed	more	likely	to	advance	to	higher	clinical	phases,	

indicating	 that	 our	 5NN-RF	 classifiers	 are	 able	 to	 discriminate	 between	 high-	 and	 low-

potential	candidates.		

A	time-series	analysis	of	the	datasets	shows	generally	increasing	trends	in	performance	over	

five-year	 rolling	 windows	 from	 2004	 to	 2014.	We	 find	 that	 the	 classifiers’	 performance	

correlates	well	with	the	proportions	of	complete	cases	in	the	training	sets:	as	completeness	

increases,	 the	 classifier	 learns	 better	 and	 achieves	 higher	 AUCs.	 This	 highlights	 the	

importance	 of	 data	 quality	 in	 building	 more	 accurate	 predictive	 algorithms	 for	 drug	

development.	
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Finally,	we	compute	feature	importance	in	the	predictive	models	and	find	that	trial	outcomes,	

trial	status,	trial	accrual	rates,	duration,	prior	approval	for	another	indication,	and	sponsor	

track	 records	 are	 the	 most	 critical	 features	 for	 predicting	 success.	 Because	 the	 5NN-RF	

classifiers	are	non-linear,	there	is	no	simple	interpretation	of	the	incremental	contribution	

of	each	predictor	to	the	forecast.	However,	the	intuition	behind	some	of	these	factors	is	clear:	

drug-indication	 pairs	 with	 trials	 that	 achieve	 positive	 outcomes	 certainly	 have	 a	 better	

chance	 of	 approval;	 candidates	 sponsored	 by	 companies	 with	 strong	 track	 records	 and	

greater	 expertise	 in	 drug	 development	 should	 have	 higher	 likelihood	 of	 success;	 and	

approved	drugs	may	have	higher	chances	of	approval	for	a	second	related	indication.	Many	

of	these	factors	contain	useful	signals	about	drug	development	outcomes	but	have	not	been	

considered	in	prior	studies.	

These	 results	 are	 promising	 and	 raise	 the	 possibility	 of	 even	 more	 powerful	 drug	

development	prediction	models	with	access	 to	better	quality	data.	This	 can	be	driven	by	

programs	such	as	Project	Data	Sphere	(Green	et	al.,	2015)	and	Vivli	(Bierer,	Li,	Barnes,	&	Sim,	

2016)	that	promote	and	facilitate	public	sharing	of	patient-level	clinical	trial	data.	Ultimately,	

such	predictive	analytics	can	be	used	to	make	more	informed	data-driven	decisions	in	the	

risk	assessment	and	portfolio	management	of	investigational	drugs	at	all	clinical	stages.	 	
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