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Abstract

Machine maintenance is modeled in the setting of a singlkeesgueue. Machine deterioration corresponds
to slower service rates and failure. This leads to highegestion and an increase in customer holding
costs. The decision-maker decides when to perform maintenavhich may be done preemptively; be-
fore catastrophic failures. Similar to classic maintemaoontrol models, the information available to the
decision-maker includes the state of the server. Unlikesatamodels, the information also includes the
number of customers in queue. Considered are both a repdeelrand a replacement model. In the repair
model, with random replacement times, fixed costs are agstibe constant in the server state. In the
replacement model, both constant and variable fixed costsarsidered. It is shown in general that the
optimal maintenance policies have switching curve stmgctibat is monotone in the server state. However,
the switching curve policies for the repair model are notaglsvmonotone in the number of customers in
the queue. Numerical examples and two heuristics are atsepred.



1 Introduction

Traditional maintenance control models include what vajkHiiizen and van Harter8p] refer to as the
“technical” state of the system (e.g., machine failure abtaristics). These models do not however typically
include other important characteristics associated Wwitfoperating” states of manufacturing systems (e.g.,
workload, inventory, due dates, etc.). For many systemgaiticular controlled queueing systems, it is
precisely the operational properties of the system thatmrgal when making maintenance decisions. For
example, when the system is heavily loaded, is it better ¢ginbereventative maintenance or to postpone
repair until some of the congestion subsides? This quesiaomplicated by the fact that as machines
deteriorate, so does their ability to produce acceptaldymts; service rates become slower. The goal of
this paper is to gain a better understanding of questiomgeito maintenance when the decision-maker
has access to operating information and the machine’syatnliproduce deteriorates over time. The main

contributions of the paper are as follows (under variousragsions):
e There exists an optimal maintenance policy that is monoiotiee state of the server.
e On the other hand, the optimal maintenance policy need noiditone in the congestion level.

From a managerial perspective, this implies that the sdargland the storage of) optimal policies can
be reduced since only switching curve policies need to bsidered. The second result serves as somewhat
of a warning since these switching curves need not be moeaitotine number of customers in the system.
Moreover, we point out that in all of the examples that exhilbé non-monotonicity it is such that repair
is optimal when the system is empty, do not repair is optimatnvthe system has a single customer, and
repair is again optimal as the number of customers incre&sestively, this means that when the system is
empty, it is optimal in some cases to take advantage of thvesieieness.

Considered are two modelepair andreplacement The repair model has repair times that are random
with positive mean. The replacement model is similar butihssntaneous replacements. There are fixed
costs associated with repairs or replacements and costxhreed that explicitly depend on the operational
state of the queue: linear customer holding costs.

Several textbooks include the well-known, fundamentalnesiance control models of Dermdr®] 11]
and Ross24]. The deterioration of a machine is modeled as a discraie-WMarkov chain. The machine
in states deteriorates to statgin the next stage with some probability. At each stage, tloésata-maker

chooses one of two actions: either replace or do not repde@dgthing). Dermanl0] considers a finite



number of states with forced replacement at the worst statess P4] considers a countable number of
states. Both show sufficient conditions for the optimal @olio be of “control limit” form. This simple
form aids in both computation and implementation of therapticontrol. The optimality of control limit
policies in replacement models has been addressed morglyelog So B3]. The reader is referred to the
survey papers2], [29], [9], and [38].

Queueing models incorporating maintenance control dawsinclude those of Federgruen and $2 [
13]. In their models, a single server is either ‘up’ or ‘down.” Hilé the server is up, breakdowns occur
according to a Poisson process. 1'Z]} when the server goes down, the decision-maker choodesr éit
start repair immediately or to postpone. Optimal policies@aracterized by a single threshold: a repair is
initiated if and only if the number of customers in the sysixueeds the threshold. 163], there are two
different repair options. Roughly, one is faster and thesiotk slower but less expensive. Again, optimal
policies are monotone: the more expensive, faster repelrdsen if and only if the number of customers in
the system exceeds some threshold. Also related to thesespajfi4] where a vacation model is considered
and again monotone threshold policies are optimal, ‘Depedi’ These papers are fundamentally different
than the models we consider because they do not includepteuitinctioning server states, and, therefore,
preventive maintenance is precluded.

The non-queueing production/maintenance literature @it into two categories: 1) papers that
study how failures or fixed maintenance policies affectitiaaial production/inventory policies, but do not
consider optimal maintenance control; 2) papers that dechptimal maintenance control decisions, but that
may or may not jointly incorporate optimal production dems. The present work is related to category 2.
The papers in category 2 includeg], [7], and [34]. These models each assume a single functioning state.
Other related papers with multiple functioning states fl@rhaps not multiple yield rates) includg], [35],
[3],[31, 32, and [3Q]. As for category 1, Iravani and Duenyds] consider a single-machine make-to-stock
system. Included in the model are multiple functioningestdor the facility where production rates change
with the deterioration of the system. By comparing optimalitistic policies based on the production rates
of the facility in different deterioration states to hetids based on average production rates, Iravani and
Duenyas 15] argue that it is important for firms to collect information bow the production rates change
as a function of deterioration states. The models we conside incorporate yield information, but in the
setting of a queue. For other non-queueing productionfea@mce literature, the reader is referred to the

references in15] and [42, 43.



The queueing network studied in Seshadri and Pin@@p daptures the effects of productivity loss
through service rate reductions and downtime by allowimgwork per unit time to depend on an efficiency
factor. The queueing models most closely related to ourshase of Koyanagi and Kawal}] and Yao,
in Chapter 3 of 42]. Both of these works include multiple server states. Anantgnt assumption that is
made in [L7] is that at the beginning of maintenance, the customersdrsjfstem are rejected and so are
the customers arriving during maintenance. We make no sstmaptions. Yao42] also includes multiple
server deterioration states; however, they are modeléetelitly. The lifetime of the server depends on the
number of customers served since the last (non-instaniaheepair. If the technical state of the server,
the number of service completions since last repair, resasbme staté., then repair is mandatory. More
important than this modeling difference is the fact that Y42 assumes a single service rate. The fact that
deteriorations may result in reduced service rates is aoritapt characteristic for the models we consider.
Conditions are shown irdp] for optimal policies that are monotone in the technicatests the server: for
a fixed number in queue, there exists an optimal server-state threskold) such that it is optimal to start
repair if and only if the state of the server is worse th&fy). Similar results are shown here in Sectiéhs
and4. Yao [42] does not address whether or not the optimal policy for hislehés monotone irg.

Reliability issues have recently received increased tidterin the controlled queueing research com-
munity as Flexible Manufacturing Systems (FMS) have becamee prevalent. An important benefit of
flexible servers is that they can alleviate congestion dudailiares and loss of resources. Earlier works on
reliability and FMS include 37], [39], and [21]. More recently, the models of Andradottir et al] and Wu
et al. 40, 41] incorporate reliability in the control of agile serversvever, they do not include preventive
maintenance of the servers. They model servers that aer &ifhi or ‘down,” and they do not incorporate
maintenance control decisions. The focus in the preserk isanstead on models of maintenance control.

The remainder of the paper is organized as follows. Setimontains formal definitions of the models.
Results for the repair model are given in Sectipthe main results are presented in Theofe@ Section
4 contains the results for the replacement model; the maintseare Theorem.2 and Propositiont.10,

Additional examples and two heuristics are considered ati@e5. Section5 also concludes the paper.

2 Model Formulations

Consider a single queue being served by a single machinee(seYVhile the server state is the machine
works at rateus, s € {0,1,...,B}. Itis assumed that server state zero is a repair stateyyita 0, and

0 < pp < pue < --- < up < oo. Customers arrive to the queue according to a Poisson [wadds
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rate A > 0. The service requirements for the customers are i.i.d. apdreentially distributed with mean
1. Note that this implies that the service time for a custothat receives service at ratethroughout is
exponentially distributed with rate.

So long as the machine is not being repaired, the machineversgtates deteriorates asynchronously
(independent of the work it is doing) down to server sfate- 1) in a random amount of time. Assume
that deterioration times for such transitions out of sestates are i.i.d. and exponentially distributed with
meansl/ms > 0. If repairs are not done preemptively, as soon as the setar ieaches 0, repairs are
initiated to bring the server state back upRoThe replacement model has instantaneous repair times whil
the repair model has random, not necessarily exponenti@lyibuted, repair times. Rather, assume that
they are i.i.d. with general distributiafd(-) that has finite first and second moments. Denote the meam repai
time by1/mg > 0.

The costs associated with operating the system are holdistg/cper customer per unit time and fixed
repair/replacement costs > 0. Repairs can be initiated preemptively; that is, beforentiaehine fails by
reaching server state 0. It is assumed that both the quegthland the server state are perfectly observable
to the decision maker at all times.

The problem is modeled as a semi-Markov decision procesDfE&MLetII be the set of all non-
anticipating policies. A policyr € II prescribes when to repair the server, given the number tbiress
in the system (the queue length process) and the state oéther {the server state process). For a fixed
policy 7 € ITandt > 0, let @™ (¢) andS™(t) represent the queue length process and the server stagsgroc
at timet, respectively. Denote the set of decision epochs (uajiday D = {o,,,n > 0}. The decision
epochs during non-repair times form a Poisson process aféhir = A + X2 | (4, + my). This follows
from the exponential distribution assumptions amdformization(see [L9]). Without loss of generality,
assume thalr = 1. The (random) time® then include server deteriorations, repair completiond, &r
non-repair times, customer arrivals and departures dantmytransitions due to uniformization. The state
of the “embedded” process after th¢h transition is given byX] = (Q7(0y),S™(0y)), n > 0. That
is, the state spackE = Z* x {0,1,..., B}, whereZ™ is the set of non-negative integers. A change in
the server state process corresponds to a change for theléetbprocess. However, a change in the queue
length process may not coincide with a change in the embgoidegss since the queue length may increase
during a repair. From an optimization standpoint, this is@tonsequence since the two processes coincide

at decision epochs.



The sets of feasible actions for state- (¢, s) are

a {{R} if s =0,
{D,R} else,

whereR indicates repair and indicates do not repair. Let

0 ifa=D,
k(s,a) = (2.1)
K ifa=R.
Let{(X],Al),n > 0} be the sequence of states of the embedded process and tms attbosen. Suppose

0, is the number of decision epochs up to titné is assumed that = 0 is a decision epoch. Define

Se—1 .
Gi() = Ex{zk(S“(m-),A?)Jr / h@”(u)du}, 22)
i=0 0
o gw) = { S ek (5700, A+ [ e 0RO (u)du } 2.3)
e [ /, |

wheref > 0 is the discount factor. The expressidhd) defines the expected total cost incurred by time
t when the initial state is. Likewise, @.3) defines the expected total discounted cost incurred by.tihe
decision epoch. The expressions f4j and @.5) below define the infinite horizon expected discounted

cost and average cost underrespectively.

G = Jim e, 2.
g () = li?lsupgzr(x). (2.5)

Define the optimal valueg(z) = inf e vj (), g(x) = infrem g™ (x), where any policy that achieves the
infimum of the respective criteria is deemed optimal.
In either model considered below, we provide conditionseunehich there exists an optimal policy that

is monotone in the server stateThis type of policy is often called switching curvepolicy.

Definition 2.1 Suppose in each statec X there are but two actiong) andR. A (deterministic) stationary

policy is aswitching curve policyf it may be described by a curve W that separateX into two connected
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regions. In one region the policy calls for acti@hto be used, while in the other region actiénis used.
Furthermore, a switching curve policy is calledn@notone switching curve polidfthe curve dividingX

into two regions is monotone.

Although typically more general, for the purposes of thipgrawe say that a policy that is monotonesin

hasswitching curve structure that is monotonesin

3 The Repair Model

This section is devoted to the repair model. The main resuighat there exists an optimal policy that is
monotone in the server statebut not necessarily in the number of customers in the systdmat is, there

exists an optimal policy that has switching curve structheg is monotone i (see Figurel).

Forg > 0, let
B hq/(6 + 1) if a =D,
Cola.a) = { K+h [ [ e (¢ + At) dt] G(du) if a =R, 1)
00 -t j
i) = [ o @2)

The functionCy(q, a) is the one-stage expected discounted cost incurred wheardbess is in statgy, s)
and actiona is chosen. Recall that = 1. In (3.1), whena = R, At is the expected number of customer
arrivals withint time units. The functiomy(j) is the discounted probability that exacflycustomers arrive
during a repair. For the discounted cost case, Witb- 0 and (¢,s) € X, define the discounted cost

optimality equations (DCOE):

la.s) = Cola. D)+ o ool + 1.5) + (o = D79
+ mgvg(q, s — 1) + (1 = X — pg — ms)vg(q,s)], se{l,2,...,B}, (3.3)
i@ = Colq, )+ po(i)velq+j,B), (3.4)
7=0
U@(q7 8) = min {fGD(q7 8)7 fGR(q)}v s € {1727' B 7B}7 (35)
w(g,0) = f3'(q), (3.6)



wherey ™ represents the positive partgf Similarly, define the average cost optimality inequaitf@CoOl):

fD(Q73) = —g+ CO(Q7D) + )‘w(q + 173) + :usw((q - 1)+73)
+ msw(q,s — 1)+ (1 = X — ps — ms)w(q, s), s€{1,2,...,B}, (3.7)
e = —m—+Co ¢, R +Zpo w(q + 4, B), (3.8)
w(q,s) > min{f"(q,5), (@)}, se{1.2,...,B}, (3.9)
w(q,0) > f"(q). (3.10)

It is proved next that under a sufficient stability conditibiere existsy andg that satisfy 8.7) - (3.10).
Any stationary policy that minimizes the right-hand sidg®5b) is 6-discounted cost optimal with optimal
valuesvy. Furthermore, any stationary policy minimizing the rightld side of 8.9) is average cost optimal
andg(z) = g for every initial stater.

To arrive at the sufficient stability condition, considee tlollowing policy. For¢ € {1,2,..., B} and

(¢, s) € X we call the stationary policg, that uses the decision rule

D ifs>0
W(q’s)_{ R ifs<¢

the server-state threshold poliayith threshold¢. Note thate, is a switching curve policy where the action
is repair if and only ifs < ¢ (independent of). The next proposition states that the limiting queue lengt

process is finite under policy, provided that the arrival rate is less than the averageepapacity.

Proposition 3.1 Let/ € {1,2,...,B}. If

ZSB:ZNS/ms
1/myg +Efz€ 1/ms

(3.11)

then there exists an invariant probability measyresuch thatlim; .« E.[Q%¢ ()] = E,[Q%(0)] < oo,
and g% (z) < oo, for all z € X. Furthermore, for the Markov chain induced by, the class of states
Xy ={(q,s)|[q e ZT,s € {{ —1,¢,...,B}} are ergodic (aperiodic and positive recurrent) and the sat

X\ Xj are transient.



Proof: See Sectionr.1in the Appendix. [

Theorem 3.2 For either the discounted cost criterion or the average @pgerion suppose

B
A< max 2a MSB/ M . (3.12)
1€{1,2,..B} | 1/mo+ > o, 1/ms

The following then hold.
1. There exists an optimal stationary policy that has sviiiglturve structure that is monotone in

2. There may not exist an optimal switching curve policy ke monotone switching curve policy

(monotone in botly and s).

The proof of Theoren3.2is divided into several pieces. The first states the intiitesult that it is better
to start in a state with fewer customers and a higher seraiee This implies the first result of the theorem
for the discounted cost case and implies the existence ofrdrfral” state(0, B) where the value functions

(under each criterion) are minimized.

Proposition 3.3 For (¢1, $1), (g2, s2) € X, supposey; < g2 ands; > so. Thenwg(qr, s1) < vg(qa, $2)-

Proof: The result is proved via a sample-path argument by consigléwo processes. Process 1, which
starts with a better server state and fewer initial custgmenimics the actions of the policy governing
Process 2 by repairing at the same times (the policy emplbyderocess 1 is potentially non-stationary).
Furthermore, Process 2 only sees customer departurescié$dd sees potential (there may not be a cus-
tomer to serve) departures. The result is that both prosessethe same fixed costs while Process 2 sees
higher holding costs.

Suppose Process 1 starts in sfatg s?) at time 0 (the superscript ‘0’ indicates time 0). Procesa#tst
in state(q9, s9) whereq? < ¢§ ands? > s9. Process 2 follows an arbitrary polieyy € II. Denote the
policy under which Process 1 mimics Process 2 repairs;byVe will now show how to construct Process
2 so thatr; € II; recall it needs to be non-anticipating.

Assume that the two processes are defined on the same pitybsiidice. Both processes see the same
customer arrivals and sequence of repair times. Recallttiggie are no decision epochs during repair
times. For non-repair times, deteriorations and custorapadures are constructed by thinning a Poisson

process with rat& = 1. We must construct the processes so that the probabilitgreice and server state

8



transitions in Process 1 (2) ag, (us,) andmsg, (ms,), respectively. The dummy transitions should then
bel — pus, — ms, for Process, i = 1,2. Consider first the case whefl > 0. Suppose there is an event
for the Poisson process at timend that at— (just prior to the event) Process 1 is in stéfe, s;) and
Process 2 is in stat@o, s2). Suppose for now that; > so > 0. With probability (1 — us, — ms, —ms,)
there is a dummy transition for both processes; with prditabin,, there is a deterioration in Process
1 and a dummy transition for Process 2; with probability, there is a deterioration in Process 2 and a
dummy transition for Process 1; with probability, there is a potential departure for Process 1. In this
case, with probabilityus, /is, there is a potential departure for Process 2 as well, otlsert¥iere is a

dummy transition. Note that the probability of a dummy tiias in Process 2 i3 — us, — mgs, — ms, +

Mgy + sy <1 — Zi ) = 1—us, —ms,. Similarly, for Process 1 there is a dummy transition witbhability

1— sy —mg, —ms, +ms, = 1—pus, —mg, as desired. Fot; = so > 0, a potential departure occurs in both
processes with probability;, and a deterioration occurs in both Process 1 and Proces$ Dwibability
mg,. Inthis case, since; calls for repair only whem,, repairs, whes; = s, the two processes are coupled
in their server state processes; both processes see thelgtarierations and potential customer departures
from that time forward. It is not necessary to consider cafesres; < so because these states are never
reached.

In either case, under the construction above, Process Yslmaintains a service rate that is at least
as high as that of Process 2. Moreover, Process 2 never hasoaneu departure without a corresponding
potential departure for Process 1. Thus, Process 1 inctaishiolding costs that are less than or equal to
those incurred by Process 2. The total repair costs are the & both processes. Thugl(q?, s9) <
ng(qS, s9). Policy 7 is a (randomized) non-anticipating policy and henges II. Sincers is an arbitrary
policy, it follows thatvy(q?, s7) < vg(g3, s9).

It remains to consider the case whén= 0. In this case, suppose Process 1 also repairs in(gate]).
Both processes incur fixed codisat time zero. Under the construction above, after time zeood3ses 1

and 2 remain coupled in the server state and the result felimsan the case when = s,. [ |

To complete the proof of Theoref2we need to show that the DCOE and ACOI have solutions, that
the average cost solution can be obtained via limits frondieeounted cost value functions, and that the
structure of an optimal policy is the same in both cases. iBoetid, we provide conditions under which the

following set of conditions hold (se&)]).

e SENSM1 There existA > 0 ande > 0 such that for every state and action, there is a probabifity o



at least that the transition time will be greater than

e SENSM2There exist$8 such thatr(i,a) < B for everyi anda, wherer (i, a) is the mean transition

time out of stateé when actior: is chosen.
e SENSM3uwy(i) < oo for every state andd > 0.

e SENSM4 There existd)y, > 0 and non-negative numbefd; such thatwy(i) < M, for every state
and0 < 6 < 6y, wherewy(i) = vg(i) — vy(0), for a distinguished stat@. For every state, there
exists an action (i) such thaty_; F;(a(i))M; < oo, whereP; is the probability of transitioning to

statej from statei when actioru(i) is chosen.

e SENSM5 There existg), > 0 and a non-negative numbaf such that-N < wy(i) for everyi and

0<6<8by.

Proposition 3.4 Under (3.12 the following hold.

1. Ford > 0, vg(x) satisfies the DCOE3(3) - (3.6) and any stationary policy that minimizes the right-

hand side of §.5) is #-discounted cost optimal.

2. There exists a constaptand a limit pointw(q, s) = lim_.[ve, (¢, s) — vg, (0, B)], wheredy, | 0,

such that(g, w) satisfy the ACOIZ.7) - (3.10).

3. Any stationary policy that achieves the minimum in the AG) with (g, w) defined as above is

average cost optimal. Moreover, the optimal average cogti$ = g, for every initial stater € X.

4. The optimal average cost may be computed bylimg |, vy (z) for anyz € X.

Proof: Becausel < oo and repair times have a positive mean, SENSM1 holds andatsithat there are
only a finite number of decision epochs in a finite time intérva., the processes are regular. SENSM2 is
satisfied since the transition rates and ¥ are uniformly bounded above. SENSM3-4 require the stgbilit
results. Let the distinguished stat&, be (0, B). Under 8.12), Proposition3.1 implies that there exists

¢ € {1,2,..., B} such that the average cost for poligyis finite with a single ergodic class, > (0, B).
Note thatX, can be reached by any transient state in one (repair) i@mnsttENSM3-4 then follow from
Lemma 2 of R6. SENSMS5 holds since, by Propositiéh3, the distinguished stat@, B) has the lowest
cost, implying thatug(q, s) > 0.
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SENSM1 and SENSM3 are the assumptions of Theorem 26pf\hich implies Result 1. SENSM1-5
and linear holding costs imply that Proposition 4 @6] holds. In turn, Results 2 - 4 then follow from

Theorem 2 of 26]; Result 2 is contained in the proof of the theorem, whiclerefices25]. [

The following is immediate from Propositidh3and Result 2 of Propositiod.4.

Corollary 3.5 For (¢1, 1), (g2, s2) € X, supposey; < g2 ands; > s9. Then, under3.12), w(qy, s1) <

w(qa, 52).

We are now ready to prove the first result of Theor&

Proof of Statement 1 of Theorem3.2. Consider the average cost criterion. From Corollarg,
w(q,s) > w(g,s +1),s € {1,2,...,B}. From Propositior8.4, the ACOI are satisfied and any policy
that satisfies the ACOl is average cost optimal. ¢.etZ* ands € {1,2,..., B—1}. Assume that repair is
optimal in statg(q, s + 1). Suppose that repair is not optimal in stéges). Then by 8.9), w(q, s) < ff(q)
andw(q,s + 1) > f£(q). This impliesw(q,s + 1) > f%(q) > w(q, s), a contradiction to Corollar{.5.
Therefore, if repair is optimal in state, s + 1), repair is also optimal in statg, s). The proof is similar

for the discounted cost criterion. ]

It seems intuitive that if it is optimal to repair in state, s), then it would also be optimal to repair
in state(q + 1,s). Such intuition is in line with the work of Federgruen and 3&][where when there
are more customers in the system the decision-maker is nketg to start repair immediately as opposed
to postponing. Similarly, in13], when there are more customers in the system the decisakemis more
likely to choose faster, more expensive repairs; the opfiwiicies are monotone in the number of customers
in the system. It was originally conjectured by the authbeg this would continue to hold in the current
models. However, surprisingly, this is not the case.

For all of the repair model numerical examples in this papisrassumed that the repair times are expo-
nentially distributed. All of the numerical examples aretlte average cost criterion. For the calculations,
the queue length is truncated. Since any feasible statigr@icy is unichain, the results o28], Chapter 8,
apply under queue length truncation and the computatiombealone using either policy iteration or value
iteration. The next (counter-)example completes the pobdheorem3.2

Proof of Statement 2 of Theorem3.2.

Example 3.6 Suppose that the parameter settings afe=0; h =1; A=1; B =4; u1 = 1/2, p2 = 1,
s =3/2, ug = 2; mg =1/5,s € {0,1,...,4}. Figure 1 displays the optimal repair policy.
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Figure 1. Example of an optimal non-monotone switching eupolicy. The optimal repair policy for

Example3.6.

The optimal repair policy in Figuré is not monotone. This is evident by an initial decrease in the
switching curve between = 0 andg = 1. We note that there is not a tie; for example, it is not also
optimal to choose actiof in state(0,2). Fors = 2, when there are zero customers in the system, there is
actually more incentive to repair than when there are one/orcuistomers in the system. As the number of
customers increases, then so again does the incentivedio. iéghould also be noted that in every example
we considered that if an example does not have an optimal towaswitching curve, the non-monotonicity
occurred ay = 0. In essence, when there are zero customers in the systerar sapacity is not being

used, so there is less penalty for downtime during repaicoagpared to when customers are present.

4 The Replacement Model

In this section we consider the replacement model where xiee ftosts are positive (and may vary as a
function of the server state). Thus, repld€eavith K (s) in (2.1), whereK (s) is a strictly positive function on
{0,1,..., B}. Since all non-repair times are exponentially distributdtidecision epochs occur according
to a Poisson process with uniform rabe= 1. The model then is an MDP, not a more general SMDP. Due
to the memoryless property of the exponential distribytibehould be clear that do not replace is optimal
whens = B; otherwise, under replace a fixed cdstB) > 0 would be incurred for an instantaneous

transition back to the same state.
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Figure 2: Example of an optimal replacement policy. Theroptireplacement policy for Exampiel

The DCOE for the replacement model (with server state degerzbsts) are:

folg,s) = 04_% [hq + Mvg(q +1,8) + psvp((g — 1), s)

+ mgvg(q, s — 1)+(1—)\—,us—m8),vg(q,s)}, se{l,2,...,B},

UG(qu) = f@(Q7B)7
UG(Q7S) = min{f@(Q78)> K(S) +f9(Q7B)}7 s € {1727"' B — 1}7

’Ug((],o) = K(O)—I_f@(qu)
For the average cost criterion, the replacement model AC®I1 a

flg,s) = —g+hqg+ w(g+1,s)+ psw((qg—1)7,s)

+m8w(q78_1)+(1_/\_ﬂs_ms)w(qu)v 86{1727"'

w(q, B)

v

f(g; B),
min{f(q,s), K(s)+ f(q,B)}, s€{1,2,...,B —1},

K(0) + f(g, B).

v

w(g; s)

w(gq,0)

v

Consider the following illustrative example.

B,

(4.1)
(4.2)
(4.3)

(4.4)

(4.5)
(4.6)
4.7)

(4.8)

Example 4.1 For the replacement model, suppose the parameter settiegd&(s) = K = 20/v¢; h = 1;

A=4;B=4;u1 =1/4, uo =1/2, us = 3/4, ug = 1, ms = 1/2, s € {1,2,...,4}. Figure 2 displays

the optimal replacement policy.

Several observations from Figufeare worth noting. First, the optimal policy is a monotonetshing

curve. Second, whep= 0 or s = B do not replace is optimal. Third, ggets large, it is optimal to replace

in states where the service rate is less thanthe switching curve levels off @& — 1. With the exception

of the monotonicity of the switching curve, each of thesestiaged in general in the following theorem, the

main theorem of the section. Again the proof is divided irdeesal parts.
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Theorem 4.2 Supposés (s) = K for all s. Under the discounted cost criterion or under

B
A<  max M (“9)
(12,8} | Yoo, 1/my

and the average cost criterion, the following hold.
1. There exists an optimal policy with switching curve s that is monotone ig.
2. Do not replace is optimal fog > 0 if eitherqg = 0 or us = pup.

Suppose now thak (s) is allowed to vary withs. In the discounted case there exiggssuch that for all

0 < 6 < 6y, orin the average cost case undér9), the following holds.

3. There exists a (finite), € Z* such that forg > ¢, replace is optimal inq, s) if us < up and do not
replace is optimal ifus = pp; that is, for largegq, it is optimal to replace as soon as the service rate

deteriorates to a rate strictly less thars, but no sooner.

Statement 2 of Theorer2implies that forg = 0 there is little incentive to replace. Since replacements
are instantaneous, it seems reasonable to wait until cessoane in the system. Given the observation from
Theorem3.2that optimal switching curves in repair models may not be otame at; = 0, the question is
raised: are the optimal switching curves for replacemeolblerms monotone? Statement 3 of Theorefh
provides a partial answer to this questionyagproaches infinity. Furthermore, all of the examples we ran
exhibited an optimal monotone switching curve. To date waatchave a proof that this holds in general.

We first show that the optimality equations are satisfied. ¥éethe optimality equations to prove that a
switching curve policy that is monotone éris optimal and that do not replace is optimal when the queue is
either empty or serving at the highest rate. We then provetiigaswitching curve is monotone inwhen
q becomes large. This will complete the proof of Theorérd To end the section, monotonicity inis
extended under a set of sufficient conditions to cases wkptaagement cost& (s) vary with s. Numerical
examples illustrate that the optimal policies may not be otome ins when the sufficient conditions are not

met. The first result is analogous to Propositio&for repair models.
Proposition 4.3 For (¢1, $1), (g2, s2) € X, supposey; < g2 ands; > so. Then,

vo(qi,s1) < vo(gqe, s1), (4.10)

ve(qr,s1) < wvp(qe,s2) +  max  K(s)— K(s). (4.11)

min
s€{0,1,...,B—1} s€{0,1,...,B—1}

14



Proof: The proof is via precisely the same sample-path argumeihiasar Propositior8.3; let all repair
times be zero. Expressiod.(0 follows directly since Processes 1 and 2 are always coupléte server
state. For expressiod.(L1), note that once Processes 1 and 2 couple in the serverte@teemain coupled.
The two processes couple in the server state when they bpldices simultaneously, for the first time.
The holding costs are always lower for Process 1; howeverfitbt replacement cost may be higher for
Process 1 than Process 2Af(s) is not non-increasing is. (Assume that Process 1 does not actually
replace and pay a positive fixed costit= B.) The difference between the cost of the first replacement

for Process 1 and that of Process 2 is bounded above by tregediffernaxc o1, minfs;,B—1}} K (5)

_minsE{O,l,...,min{sg,B—l}} K(S) u

Proposition 4.4 For the replacement model, the following hold.

1. Forf > 0, vy(z) satisfies the DCOEA(]) - (4.4) and any stationary policy that minimizes the right-

hand side of4.3) is #-discounted cost optimal.
Moreover, unde(4.9)

2. There exists a constaptand a limit pointw(q, s) = limj_.[ve, (¢, s) — vg, (0, B)], wheredy, | 0,

such that(g, w) satisfy the ACOI4.5) - (4.9).

3. Any stationary policyr* that achieves the minimum in the AC@I{) with (¢, w) defined as above is
average cost optimal with average cgstMoreover, the average cost optimality equalities (ACOE)
(the ACOI with “=" replacing “ >") hold at any state that is positive recurrent under the Mawk

chain induced byr*.

4. The optimal average cost may be computed bylimg o fvg(x) for anyz € X.

Proof: For the discounted cost case, since the model is an MDP, Refallows from Propositions 1.5
and 1.7 of Chapter 3 oP] and does not require a stability condition. For the averaagt case,q7] requires
thatSEN1-3hold. The conditions are analogous to the semi-Markov ¢mm$i SENSM3-5, respectively.
Consider the policy,. The fluid limit analysis in Sectiorm.1 in the Appendix also applies to the
replacement model under, by removing the state§0,...,¢ — 1}. The same analysis implies stability
for the analogous replacement proc€s§(¢),t > 0} on state spac&” = Z* x {/,...,B}. This in turn

implies that, under4.9), ¢, induces an irreducible ergodic Markov chain®p= Z* x {{ —1,¢,..., B}.

15



Furthermore, the long-run average queue length of such @gsas finite. Hence, the long-run average
holding costs are finite. Since the fixed costs are boundedptig-run average replacement costs are also
finite, andg?’ (z) < oo for all 2 € X,. It follows from [27] C.2.2(iv) and C.1.4(v) that the expected time
and cost to reach the distinguished st@teB) for the first time starting in any positive recurrent states
finite. In turn, since replacement costs are finite, the ebgoetime and cost to readh, B) starting from a
transient state, with € {1,2,...,¢ — 2}, is also finite. Therefore, undet.Q), ¢, satisfies the assumption
of Proposition 7.5.3 of7], and SEN1-2 hold.

By Proposition4.3, — max;c o1, p—1} K (i) < va(g,s) — ve(0, B), for all (¢, s) € X. Since
max;eo,1,...,5-1} K (7) > 0, SEN3 holds for the distinguished stdte ). Applying Theorems 7.2.3 and
7.4.3 of R7] then yields the desired Results 2-4. [

The following corollary is immediate from Propositidn3 and Result 2 of Propositiofh.4.
Corollary 4.5 For (q1,5s1), (g2, s2) € X supposey; < g2 ands; > so. Then, under4.9),

< K(s) — i K(s). 4.12
wlans) s i)t gma KO iy B (@12

This leads to the proof of the first statement of Theoref

Proof of Statement 1 of Theorem4.2. Consider the average cost criterion. Sircés) = K, Corollary
4.5impliesw(q, s) > w(q,s+1),s € {1,2,..., B — 1}. From Propositiort.4, the ACOI are satisfied and
any policy that satisfies the ACOI is average cost optimaint¢.7),

w(q,s) > min{f(q,s), K+ f(¢,B)}, s€{1,2,...,B—1}.

Letq € Z* ands € {1,2,..., B — 2}. Assume that replace is optimal in stdtes + 1). Suppose that
replace is not optimal in staig, s). Thenw(q,s) < K + f(q, B) andw(q,s + 1) > K + f(q, B). This
impliesw(q,s + 1) > K + f(q,B) > w(q, s); a contradiction. Therefore, if replace is optimal in state

(¢, s+ 1), replace is also optimal in state, s). The proof is similar for the discounted cost criterion.m

Proof of Statement 2 of Theorem4.2. Supposes € {1,2,..., B — 1} andg = 0. From @.1) we have

f6(0> 8) = (9 + 1)_1 [/\UG(L 3) + ﬂsU9(0> 8) + msU9(0> S — 1) + (1 — A= Hs — ms)’”@(O? 8)]

= (0+1)"[\vg(L,s) +msvp(0,8 — 1) + (1 — X — my)ve(0, 5)].
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From (4.3 and ¢.4) we get
fo(0,8) < (0+ 1) ALK + fo(1, B)] + ma[K + fo(0, B)] + (1 = A — my)[K + fs(0, B)]]
= 0+ 1)7E + Mo(1,B) + pupfo(0, B) + (1 = X — up) fo(0, B)]
= (0+ 1)K +Afo(1,B) + ppfo(0, B) + mpfo(0, B — 1)
+ (L= X = pp —mp) fo(0, B) + mp(fo(0, B) — fo(0, B —1))]
= (0+1)7'K + f5(0,B) + (0 + 1) 'mp(fe(0, B) — fo(0, B — 1))
< K+ f4(0,B),

where the last inequality follows since PropositiBimplies thatfy (0, B) — f»(0, B —1) < 0. From @.3)
and Result 1 of Propositiof.4, it follows that do not replace is optimal in stai@ s).

Consider nowy € {1,2,...} ands € {1,2,...,B — 1} such thatus = up (as discussed, the result
holds fors = B). From the DCOE we have

fola,s) = (0+1)""[hg+ Avg(qg+1,5) + ppve(qg — 1, 8) + mevg(q, s — 1)

+ (1= X = pp — ms)vg(q, s)]

IN

(0+ 1) [hg + Mfo(a + 1, B) + K] + pslfolg = 1, B) + K] +ms(fo(q, B) + K]
+ (1 =X = pup —my)[folg, B) + K]
= (0+1) 7 [hg+ K+ Molg+1,B) + upfolg — 1,B) + mpfolq, B — 1)
+ (1= X~ pp —mp) fola, B) + mp(folg, B) — folq, B —1))]
= (0+1)7'K + foa. B) + (0 + 1) 'mp(folq, B) — fola, B~ 1))

< K—i-fg(Q,B),

where the last inequality follows since Propositiaimplies thatfy(q, B) — fo(q, B—1) < 0. From @.3)
and Result 1 of Propositio#.4, it follows that do not replace is optimal in staf@ s). The proof for the

average cost criterion is similar. [

Lemma 4.6 For (g, s) € X,

q n
1
vo(d+1,8) —volas) = h ( ) ,
1
w(g+1,s) —w(q,s) > hg.
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Proof: Consider the same sample-path argument as in the proof pbsitmn4.3. Suppose that Process

1 starts in statéq, s) and Process 2 starts in stdie+ 1, s). Recall that Process 1 mimics Process 2 by
replacing at the same times so that both processes havenigereplacement costs and both processes see
the same (potential) departures. The only differencesstsare due to the holding costs. The queue length
under Process 1 is never larger than the queue length unoleed2r2. Furthermore, note that the difference
in queue lengths between the two processes is exactly ongelibe first time that the system under Process
1 empties. Hence, the difference in queue lengths is exaotyfor at least decision epochs. The result

follows. ]

Proof of Statement 3 of Theorem4.2. Consider the discounted cost criterion. The gase- 15 is proved
by Statement 2 of Theorerh2. Consider a statéy, s) whereq > 0, s € {1,2,...,B — 1}, andus < pp.
Suppose that do not replace is optimal in state). Then, by ¢.2) and @.3)

K(s)+wvg(q,B) —vg(q,s) > 0, (4.13)
and by ¢.1)
vo(q,s) = (0+1)" (hg+ Mvg(q+1,8) + p1sve(q — 1,8) + (s — 1) e (g, 5)
+msvp(q, s — 1) + mpug(q, s) + (1 = XA — pp — ms — mp)vg(q; s)).
Then,
vo(¢, B) —vg(a,5) = (0+1)" (A(valg+ 1, B) —vp(q+1,5)) + ps(va(q — 1, B) — vg(q — 1, 5))

+(uB — ps)(vo(q — 1, B) — va(q, s)) +ms(ve(q, B) — vg(q, s — 1))
+mp(vg(q, B — 1) —vy(q, s))

+(1 =X —pup —ms —mp)(vg(q, B) —va(q, s)))

< 0407 (- m)lnla — 19) —vlas) +_ max | K(9))

by Propositiordd.3. It follows from Lemma4.6 that

q—1 1 n+1
K(s)+vo(q, B) —vg(q,s) < K(s)—h(up — ps) <¢9—+1> + se{O,Ilr,l.E.i.},{B—l}K(S)/(e +1).

Thus,

Jim (K(s) +vo(q, B) —vo(q:5)) < K(s) = h(pp — ps)/0 + el K(s)/(6+1),
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replacement policy for Example7.

which, sinceus < pp, goes to—oo asé | 0. Therefore, whem is large we have a contradiction t.{3

for 6 close to 0, and replace is optimal in stéges). The proof for the average cost criterion is similam

We remark that this result does not hold for the repair mddeleed, in Exampl8.6 (see Figurel) the

switching curve levels off ag becomes large, but do not replace is optimal in server 3tafgile 113 < 5.

4.1 Switching Curves whenk (s) is a Function of s

The main results for monotonicity inso far, Statement 1 for Theorer®@s2 and4.2, depend on the replace-
ment cost being constant for all In this section we consider the model wiifis) variable ins. We begin
with the observation that whel (s) varies withs, there may not exist an optimal policy that is monotone

in s.

Example 4.7 For the replacement model, suppose the parameter settimgtha same as in Exampiel
except the replacement costs &g0) = K (1) = K(2) = 60/v¢; K(3) = K(4) = 20/v. Figure 3

displays the optimal replacement policy.

The optimal switching curve is not monotonesinFor ¢ = 3 there is an interesting pattern. Replace is
optimal whens = 3 where it is cheaper than= 2 or s = 1. At s = 2 do not replace is optimal, but at
s = 1 replace is optimal because the service rate is too low. We thatt there are no ties for the optimal
actions.

To study monotone optimal policies, we find it useful to cdesithe value functions inductively. For

all (¢,s) € X, letvgp(q,s) = K(s). Forn € {1,2,...}, define the discrete-time finite horizon optimality
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equations (FHOE):
faola,s) = (0+1)7'[hg+ Mon_10(a+1,8) + psvn_10((g — )T, )
+ msvn—lﬂ(qu s = 1) + (1 — A= Hs — ms)vn—lﬂ(qa 3)]7 ERS {17 27 cee JB}7
'Un,@(q’B) = fn,@(Q7B)7

Un,@(Qv S) = min {fn,@((L S),K(S) + fn,@((LB)}v ERS {1727' .. 7B - 1}7

'Un,@(q’ 0) = K(O) + fn,@(% B)
The proofs of the following two lemmas are given in Sectiohin the Appendix.

Lemma 4.8 Forall ¢ € Z,

Uno(q,s) < wne(g+1,s), s€{0,1,...,B}, n>0, (4.14)

fro(a,s) < faelg+1,s), se{l1,2,...,B}, n>1. (4.15)

Lemma 4.9 AssuméX (s) is convex o0, 1,...,B—1}; thatis, K(s—1)— K(s—2) < K(s)—K(s—1)

fors € {2,3,..., B — 1}. Suppose one of the following conditions holds:
1. K(s) < K(s—1)andms_; >ms+6,s€{2,...,B—1};
2. K(s) > K(s—1)andms_; <mgs+60,s€{2,...,B—1}.

Then, the following hold for alf € Z™.

Un,@(Q7 S) - Un,@(Q7S - 1) < K(S) - K(S - 1)7 s € {1727 s 7B - 1}7 n = 07 (416)

fno(a,s) — fnolg,s —1) < K(s) = K(s—1), s€{2,3,...,B—1}, n> 1. (4.17)
Proposition 4.10 AssumeX (s) is convex o{0,1,..., B — 1}. Suppose
1. for the discounted cost criterion, one of the conditiohsemma4.9 holds, or
2. for the average cost criterior4.9) holds and any of the following conditions hold:

(@ ms—1 =ms,s€{2,3,...,B—1};
(b) K(s) < K(s—1)andms_; > mg, s €{2,3,...,B—1};

() K(s) > K(s—1)andms_1 <mg,s€{2,3,...,B—1}.
Then, there exists an optimal policy with switching curvadtire that is monotone is.
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Proof. First consider the discounted cost criterion. We would ftkehow that if do not replace is optimal

in state(q, s — 1) then do not replace is also optimal in st&ges); or, by @.3),
folg,s =1) < K(s— 1)+ fo(g,B) = folg,s) < K(s) + fo(q,B), s €{2,3,...,B—1}. (4.18)

Note that we only need to consider< B since do not replace is optimal when= B. A sufficient

condition guaranteeing that.(L8 holds is
folg,s) — folg,s —1) < K(s) — K(s—1), s€{2,3,...,B —1}. (4.19)

Sincevyp(q,s) = K(s) is a bounded function, Propositions 1.5 and 1.7 of Chaptefr [2]dmply that
limy, o0 Un0(q, 5) = vo(q, s) andlim, . fn.0(q,s) = fo(q,s). Hence, by Lemma.9, (4.19 holds under
either of the hypotheses of Lemma. Therefore, the result holds for the discounted cost aoiter

For the average cost criterion, it is sufficient to show that
w(q,s) —w(q,s —1) < K(s) —K(s—1), s€{2,3,...,B—1}. (4.20)

To see that this is sufficient, assume that replace is optimstate(q, s), s € {2,3,...,B — 1}, and
suppose that replace is not optimal in stafes — 1). By Proposition4.4, the ACOI are satisfied. From
(4.7,w(q,s) > K(s)+ f(¢,B) andw(q,s—1) < K(s—1)+ f(q, B). Thisimpliesw(q, s) —w(q,s—1) >
K(s) — K(s — 1), which would contradict4.20). Therefore, 4.20) is sufficient to guarantee that if replace
is optimal in statd g, s) then replace is also optimal in stdig s — 1).

We now prove that4.20 holds under either of the Conditions (a), (b), or (c). Thegbris a sample-
path argument that requires only a slight modification ta tbaProposition3.3. Consider two processes.
Process 1 starts in state, s), s € {2,3,...,B — 1}. Process 2 starts ify, s — 1) and uses the optimal
policy. Process 1 follows a potentially suboptimal polibyat mimics Process 2 replacements. In order to
show that ¢.20 holds, it is sufficient to show that the difference of totabi-discounted) costs for Process
1 minus the total costs for Process 2 is bounded abouv& By — K (s — 1).

The only difference in the construction here as comparedrépdsition 3.3 is the way that server
deteriorations are constructed. If the server state focdds is s;, then a potential deterioration oc-
curs for both processes at rateax(ms,,ms,). For Process, given a potential deterioration there is
an actual deterioration with probability:s, / max(ms,, ms,) and a dummy transition with probability
(max(msg,,ms,) — ms,)/ max(ms,, ms,). Under this constructions; > s until Process 2 replaces for

the first time, after which the two processes couple in theesestate and; = s». Again both processes
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see the same arrivals and there are never more customers gystem under Process 1 than under Pro-
cess 2; Process 1 has lower holding costs. The only differémeceplacement costs is due to the first
replacement. Since deteriorations are exponentiallyibliged, the processes will eventually replace, with
probability one. Suppose that the server state under Progest before the first replacementsds s} < s

ands, < s — 1. To show @.20), it is sufficient to show that
K(s)) — K(sh) < K(s) — K(s—1), s€{2,3,...,B—1}. (4.21)

Under Condition (a): the two processes deteriorate in thetiver states at precisely the same times, and
sh = s4 + 1. Hence,K(s}) — K(s) = K(sh + 1) — K(s}), and @.21) follows from convexity. Under
Condition (b): sincens;_1 > ms, Process 1 does not deteriorate unless Process 2 alscodstsj and

sy > sh+ 1. Eithers| = s, + 1 andK(s}) — K(s}) = K(sh + 1) — K(s,), ors} > s5 +1 > 1 and,
sinceK(s) < K(s—1)fors e {2,3,...,B— 1}, K(s}) — K(s5) < K(s, + 1) — K(s4). In either case,
(4.21) then follows from convexity. Under Condition (c): sinee,_; < mg, Process 2 does not deteriorate
unless Process 1 also deteriorates. (8¢, s; — s;, < 1. In the cases| = s, + 1, (4.2]) follows from
convexity. Otherwises| = s5, K(s}) — K(s5) = 0, and @.21) follows sinceK (s) — K(s — 1) > 0 for
se{2,3,...,B—1}. n

5 Additional Numerical Examples and Conclusions

This section includes additional examples under the aeecagt criterion and introduces some simple
heuristics. The previous results stand to reduce computati optimal policies, yet the non-monotonicity
(in eitherq or s) might leave them somewhat difficult to implement. Considgain Example3.6. The
optimal repair policy is displayed again in Figuté). Recall that a server-state threshold policy is charac-
terized by a threshold; the chosen action is repair (replace) if and only i ¢ (regardless of the number
of customers in the system). The optimal average cost fompi@3.6is 14.7024. The best server-state
threshold policy hag = 3; see Figured(b). The threshold policy has an average cost of 15.0895, only
2.63% more than the optimal cost.

One might conjecture from this example that in fact one caudd the optimal server-state threshold
policy in place of the optimal policy without much loss inres of cost. Moreover, if we are willing to
do the work of computing it, a 2-level heuristic policy (defthformally below) may further improve the

heuristic in terms of cost. Two questions that we would likednsider are:
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(a) The optimal repair policy.
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(b) The best server-state threshold policy, within 2.63%pifmal.
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(c) The best 2-level policy, within 1.13% of optimal.

Figure 4: Optimal repair policy and heuristics for Examplé.

e Can the non-monotonicity ip discussed in Example.6 be ignored?
e In the cases that it can be ignored, what kind of “smoothirgiusd be done?

If we smooth any “kinks” in the optimal policy depicted in kige4(a), we arrive at the server-state threshold
policy in Figure4(b). If we only smooth out all but one kink in Figurga), we have the&-levelheuristic
policy depicted in Figurel(c) defined by two leveld; and/, and a queue thresholfl: if ¢ < T, repair
(replace) if and only is < ¢, otherwise, ifg > T, repair (replace) if and only i < /5. Note that it is not
assumed that; < /5. As one may expect, the best 2-level heuristic for Exandptehasté; = 2, o = 3,
andT = 11. The average cost is 14.8688, 1.13% more than the optimal cos

If the observations from this example consistently hol@ tthe decision-maker would be able to com-
pletely ignore the non-monotonicity i with minimal effect on the cost. The next example shows that
this in fact is not always the case. Perhaps more importéinglgows that restricting attention to 2-level

heuristics based on visual inspection can cause significergases in cost.
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Figure 5: Optimal repair policy for Exampiel

Example 5.1 For the repair model, suppose the parameter settings &fe= 0; h = 1; A = .3; B = 4;
w1 =1/2,u =1/2, ug = 3/4, py = 1, mg = 1/5, mg = 1/10, s € {1,2,...,4}. Figure5 displays the

optimal repair policy.

The optimal average cost is 1.1612. The best server-stashibld policy hag = 3 and an average cost
of 1.2200, 5.07% more than the optimal cost. As for 2-levelris¢ics, suppose we figg = 1 andly = 3. It
turns out that the best 2-level heuristic with these twolklasl = 5 and average cost of 1.3245, 14.06%
above the optimal cost. This is more than the best servier-#teeshold policy. In fact, the 2-level heuristic
that is best overall hag = ¢, = 3, i.e., it is the best threshold policy with average cost %07ore than
optimal.

Recall the replacement model of Examgld, Figure2. The optimal policy for this example has an
average cost of 1.6290. The best server-state threshaldy pels¢ = 3 and an average cost of 1.8724,
15.01% more than optimal. The best 2-level heuristichas 1, /5 = 3, andT = 2 with an average cost
of 1.6581, only 1.79% above optimal. The server-state limiespolicy does not perform well. The 2-level
heuristic performs much better.

One might consider the 2-level heuristics to be viable a#tves to the optimal policies. However, there
are some difficulties. Exampke 1 shows that choosing the 2-level heuristic by visual indpactan have
dire consequences. This coupled with the fact that comgutie optimal 2-level heuristic may be more
difficult than computing the optimal policy make it less thaesirable.

In summary, there are three observations resulting frosetinemerical examples. First, it is important
to keep track of the workload information. Without it, impemt state-action pairs may be ignored. Second,
when optimal switching curves are non-monotone and deeregmag, such as in Example3.6 and 5.1,
the effects of the decreases on the optimal average cost enaighificant depending on how closely the
heuristics can smooth the optimal policies. Finally, in s@ituations 2-level heuristics perform significantly

better than server-state threshold policies.
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In conclusion, we have considered two models for machinet@aance: repair and replacement. For
both models we have shown in some generality that the optima@itenance policies have switching curve
structure. Indeed, for the repair model monotonicity ingbever state is proven for generally distributed re-
pair times. For the replacement model monotonicity frolds for constant replacement costs and continues
to hold, under some sufficient conditions, when replaceroesis vary withs.

While the optimal policies are monotone én optimal repair decisions are not, in general, monotone
in ¢. As congestion in the system grows so may the incentive ttopermaintenance. On the other
hand, there may be more incentive to repair when the systamjgy compared to when there are a few
customers present. In between is where the policy remaiclsamalthough our numerics seem to confirm
the conjecture that the policy is monotone when 0. For the replacement model we can only guarantee
monotonicity ing for “large” ¢. Of course there is no way priori to know wheny is large enough.

The results developed in this paper allow a decision-maketdre only the switching curve, and not
the space. As networks of single-server queues are dewgltpe stands to simplify the lookup table for
optimal policies and hopefully makes their implementat@sier. Finally, we would like to point out that
although the server state is assumed to be discrete, wedéhat similar results could be obtained from a

continuous server state model.
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7 Appendix

7.1 Stability

In this section, fluid limit analysis and results of D&] pnd Dai and Meyn§] are used to prove Proposition
3.1 The result is first proved fof = 1. Recall$;: do not repair until the server state procets)
deteriorates out of server statgqwhen repair is forced), independent of the number of cuetenn the
system. Itis assumed that all processes in this sectiomtgpender this policy; the dependence of quantities
on ¢, is suppressed.

For the analysis, it is constructive to augment the stateespg a third process;(t), the residual repair
process, defined as the time remaining until the currenir@pprogress at time is completed. Define the

Markovian state of the system at timender policyy; as

WhenS(t) > 0, and a repair is not in progresB(t) = 0. As soon as the server-state process enters state 0,
there is a jump inR(t). Assume thafz(¢) is right continuous. Note that after a (random) jump to atpesi
value, the trajectory ofRR(t) is decreasing at rate 1 until it reaches 0 again. In betwesitiy® jumps,

the trajectory ofR(t) is deterministic. That is, it is “piecewise-deterministi€imilar to the processes
considered ing], {X(¢),t > 0} is a piecewise-deterministic Markov process, with statesg’ = {Z* x

{0} x [0,00)}U{Z" x {1,..., B} x {0}}. It follows from [8] p. 362 that{ X (¢),t > 0} is a strong Markov
process.

For a stater = (¢, s,r) € X, define the norm of to be|z| = ¢ + s + r. Consider the scaled process

1 x

Q1) = @ (e,

where the superscript now denotes the dependence on tleé stéttex = X (0). Similar law-of-large-
numbers type scalings for other processes will also be ddnwith the bar symbol. Letting:| — oo, any
limit point Q(t) is called afluid limit of the queue length process. We will show that every fluidtlisia

solution to a set of equations known as fhed model The fluid model is said to bstableif there exists
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a fixed timet, such thatQ(t) = 0 for all t > ¢,. That is, the fluid model is stable if the queue eventually
drains and once drained stays empty.

Let the customer inter-arrival times §én), n = 1,2,..., and the service requirements @), n =
1,2,.... Recall that it is assumed thatandn are sequences of i.i.d. exponential random variables with
meansl /A and 1, respectively. Let the deterioration times out of sestates be~,(n),n = 1,2,.. ., i.i.d.
random variables with meatyms; s € {0,1,..., B}. The inter-arrival times, service requirements, and
deterioration times are all mutually independent. The simgare actually repair times, not deterioration

times. Define the cumulative processes

E(t) = max{n>0:£(1)+£(2)+ - +&(n) <t}, t =0,

) = max{n>0:n(1)+n2)+---+n(n) <t}, t>0,

Zs(t) = max{n >0:v(1) +7s(2)+---+s(n) <t}, t>0, se€{1,2,...,B},
)

= max{n >0:R(0)+v(1) +7((2)+ - +vrn-—-1) <t} t>0.

Let Y;*(¢) be the cumulative amount of time the server is in staite [0, ¢) given the initial stater. Then
Zs(YE(t)), s € {1,2,..., B}, is the number of transitions fromto s — 1 completed in0,¢). Zy(Y(t))

is similar. LetIZ(t) be the cumulative amount of time that there are no custometreeisystem while the
server state is, and let7*(t) = Y (t) — I¥(t). TZ(t) is the cumulative amount of time that there are
customers in the system while the server state sy timet¢. Let W?(t) be the cumulative work done by
timet, so thatW™(t) = poT (t) + Ty (t) + - - - + peTE(t); the fluid limit results do not requirgy = 0.

The definitions above imply the following system of equagion

Q*(t) = Q*(0) + E*(t) — D*(W*(1)), (7.1)
Q*(t) =0, (7.2)
B

PR EGES (7.3)

s=0

T:(t)_‘_lg(t) :stx(t)v SZO?L"'aBa (74)
B

We(t) = uTi (), (7.5)
s=0

YE(t), IZ(t), TS (t), andW?(t) are non-decreasing and start from O, (7.6)
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o B
A Q%w<§23@>=0, (7.7)
s=0

[Zs(Y5 (u) = Zs(YF

s

)] = [Z(Y*(w) = 2 @) <1, t<u, s,0€{0,1,...,B}. (7.8)

Note that {.7) is the non-idling constraint and guarantees that the idle increases only if the total queue
length is zero. The constraintg.g) result from the cyclic nature of the deteriorations andanepunder the
policy that only repairs when the machine fails. They follsivce over any interval of time, the number of
transitions out of server statediffers from the number of transitions out of any other sestatel by at
most 1 (recall the definition af;). These constraints are similar to constraints for polfimgpels presented
in [6].

The next proposition, a variant of Theorem 4.1 5, jpresents the fluid model and establishes conver-

gence of the scaled processes. This convergenag@fisrm on compact sets (u.0.c)

Proposition 7.1 The following holds with probability one. For any sequentimitial states{xz;} € X with

|z;| — oo and R%(0) — 0, there exists a subsequenge }, {i} C {j}, with |=;| — oo such that

(Q"(0),8%(0),R"(0)) — (Q(0),0,0), (7.9)
(t),Y(t)) u.o.c, (7.10)

where(Q(t), T(t), Y (t)) satisfies the following set of equations:

Q(t) = Q(0) + Xt — W (1), (7.11)
Q(t) > 0, (7.12)
B
PR AGES? (7.13)
s=0
Ts(t) + I(t) = Y(t), s=0,1,...,B, (7.14)
B
W(t) = nsT(t), (7.15)
s=0
Yi(t), Is(t), Ts(t), andW?(t) are non-decreasing and start from 0, (7.16)
0o B
/0 Q(t)d(ZIs(t)> 0, (7.17)
=0
ms [Ys(u) = Ys(t)] —my [Vi(u) = V()] =0, t<wu, s,l€{0,1,...,B}. (7.18)
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Proof:  Notice that Q™ (0) < 1, ;75%(0) < 1, ;;R%(0) < 1, so there exists a subsequence
along which each of these converge. Also ndéte< S%(0) < B, solimS% /|z;| — 0 as expected.
Therefore, there exists a subsequepgé — oo such that 7.9) holds. For any0 < ¢; < ¢9, and each
s, we have0 < YZ(tg) — YE(t1) < to — t1. Thatis, {YZ(¢),|z| > 1} is uniformly Lipschitz, and
hence equicontinuous. Setting = 0 andt, = ¢ yields uniform bound$) < Y*(¢) < t. Therefore, by
the Arzela-Ascoli theorem, any subsequencé’$ft) has a u.o.c. convergent subsequence. The families
{T2(t),|x| > 1} and{I%(t), || > 1} can be shown to have a u.o.c. convergent subsequence imtlee sa

manner. Similar to the proof of Lemma 4.2 ] jve have

E(t) = M, (7.19)
D(t) = 1t, (7.20)
Zs(t) = mgt, s€{0,1,...,B}. (7.21)

Equation 7.11) follows from (7.19), (7.20), and {.1), where the random time change is valid by Theorem
5.3 of [4]. From (7.8), [Zs(Y(u)) — Zs(YF(t))] differs from [Z;(Y,*(u)) — Z;(Y;"(t))] by at most one.

In the fluid limit, this difference is negligible. Therefor€r.18 follows from (7.8) and (7.21); again, the
random time change is valid by Theorem 5.3 4ff [Equations {.12—(7.16) are a consequence of.p)—

(7.6) and (7.17) follows from (7.7) and Lemma 4.4 ofd]. [

The remainder of this section is dedicated to completingptbef of Propositior3. 1.
Proof of Proposition 3.1 First consider the caseé = 1. We want to show that the fluid model fox
is stable. The non-idling constraint.(7) implies that whenQ(t) > 0, I, = 0 for all s. Hence, when
Q(t) > 0, from (7.14), Y,(t) = Ts(t), s € {0,1,..., B}. Becausely(t), Is(t), andY;(t) are Lipschitz

continuous, they are absolutely continuous and diffeadidi almost everywhere. Taking the derivative

with respect ta, ffs(t) = Ts(t) whenQ(t) > 0. From (7.18) it follows thatm,Y(t) = mlf’l(t), which

impliesm, T, (t) = mT}(t), s,1 € {0,1, ..., B}. Substituting into .13 gives

M T (t) + B T(t) +- -+

s Ts(t) =1, orfs(t) = (1/ms)(1/mo + 1/my + -+ +1/mp)~t, s € {0,1,..., B}. So, from {.11),

mp

for Q(t) > 0,

B
. oy ,US/mS
Qt) = A ;1/m0+1/m1+---+1/m3'
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The fluid limit of the queue length process drains Wkﬁa(m) < 0. The queue will drain wher(11) holds
for £ = 1. Furthermore, under3(11) with £ = 1, Lemma 5.2 of p] implies that once the fluid limit is
drained, it will remain drained. Therefore, the fluid modestable.

It follows from Theorem 4.2 of§] that { X (¢),¢ > 0} is positive Harris recurrent and a stationary
distribution exists if the sublevel s¢t: : |x| < x} is apetiteset for anyx > 0. The proof of this fact
follows in much the same manner as Lemma 3.726f nd is omitted for brevity; the interested reader is
referred to 6], Lemma 3.5 for complete detalils.

Since{X (t),t > 0} is positive recurrent, so is the semi-Markov process (SMByced by the policy
¢1. Moreover, since the transition rates are bounded bel@wethbedded (discrete-time) Markov chain is
also positive recurrent. Irreducibility and aperiodiaitfithis Markov chain are trivial.

It remains to show thaj®' < co. Using the same analysis for the residual service times]ifof the

E%1 [! d .
M < 00. Since we have

repair processi(t), we get from Theorem 4.1 of] that lim sup,_, .
linear holding costs, the long-run average holding costisafinite. The long-run average number of repairs
is less than the long-run average number of renewals forewamprocess with average inter-arrival time
1/my. This together with the assumption thidt< oo imply g?* < oo as desired.

The result for/ > 1 follows by simply relabeling states 1 and 0 in the analysisvabas/ and? — 1,
respectively. The states withe {0, 1,...,¢ — 2}, for which repair is chosen, are transient since they are
visited at most once. Since the amount of time spent in onleesi transient states is finite with probability

1, the long-run average cost for starting in a transienesgathe same as it is for starting in any recurrent

state. |

7.2 Replacement Model Properties

Proof of Lemma 4.8. The proof is by induction om. Forn = 0, v ¢(q,s) —voe(q + 1,5) = 0; (4.14)
holds. Assume thati(14) holds forn. Considem + 1. Fors € {1,2,..., B},

frt1,0(a:8) = fag10(g+ 1, 5)
=0+ 1) [~ h+ Avp-10(g+1,8) — vu_10(q +2,5))
+ ps(vn—10((q — )7, 8) —vn_10(q,8)) + ms(vn_10(q,8 — 1) —vp_10(g+ 1,5 — 1))
+ (1= X — s — M) (Vn—1,0(q, ) — vn—1,6(q + 1,5))]

<0

)
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where the inequality follows by the induction assumptiorenkke, £.15 holds forn + 1 given that ¢.14)

holds forn. This implies, fors = 0,

Un+1,0(¢,0) = vpy1,0(q +1,0) = frt16(q, B) = fuy1,0(¢+1,B) <O0.

Fors € {1,2,..., B},

Un—i—l,@(% 8) - Un-l—l,@(q + 17 S)
= min {fn11,0(q,5), K(s) + far1,0(q, B)} —min{fny16(q+1,5), K(s) + foy16(¢+1,B)}
< max { fr41,6(¢,8) = far1,0(@ +1,5), fuy10(¢, B) = fur10(¢ +1,B)}

<0,

since @.19 holds forn + 1. Hence, 4.14) holds forn + 1. Therefore, by induction4(14) and @.15 hold
foralln > 1. ]
Proof of Lemma 4.9. The proof is by induction om. Forn = 0, vg4(q,s) — vog(g,s — 1) = K(s) —
K(s—1); (4.16 holds. Assume that}(16) holds forn. Considem + 1. Fors € {2,3,...,B — 1},
frt10(a,8) = fav10(g,8 — 1)
= (0+ 1) [Monglg + 1,8) + svpo((a — 1), 8) + myvnp(q, s — 1)
+ (1= X — s — ms)vnp(q,8) — Avnalg+ 1,8 — 1) — ps—1vne((g— 1), s — 1)
— M 10n0(q: s —2) — (1 = X = pg—1 — ms—1)vp (g, s — 1]
<(O+1) " [None(g+1,s— 1)+ [K(s) — K(s — 1)])
+ ps(vno((g—1)T,s = 1)+ [K(s) — K(s — 1)]) + msvn (g, s — 1)
+ (1= A= ps = ms)(vno(q,s — 1) + [K(s) = K(s —1)])
— Mpglg+1,8—1) — ps—1v,0((q — Dt s—1)— Ms—10n0(q, s — 2)
— (1= X = o1 — me—1)vp (g, s — 1)],

where the inequality follows from the induction assumptigifter again applying the induction assumption,

this expression reduces to
fn+1,€(Q7 3) - fn+1,9(Q7 S — 1) < (0 + 1)_1 [(,us - Ns—l)(vnﬂ((q - 1)+7 s — 1) - vnﬂ(Qa s — 1))
+me_1[K(s —1) = K(s —2)] + (1 — my)[K(s) — K(s — 1)]].
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SinceK (s) is convex,K (s — 1) — K(s —2) < K(s) — K(s — 1), and

fas10(0,8) = farro(g,s —1) < (0 4+1)" s — ps—1)(ne((g— )T, s — 1) —v,0(g,5 — 1))
+(0+1)7HA — (mg —me1))[K(s) — K(s —1)]. (7.22)

The first term on the right hand side 0f.22) is non-positive by4.14) andus > us_1. Hence,

Far16(a,8) = farro(a,s = 1) < (0+1)7 (1~ (my —me1))[K(s) = K(s = 1)l (7.23)

Whenmg,_1 > (<) ms+0, (0+1)"1(1 — (ms —ms_1)) > (<) 1. So, under either Condition 1 or 2,.(.7)
holds forn + 1 given that ¢.16) holds forn.

To complete the proof, we need to show thatlg) holds forn + 1. Fors = 1,

Unt1,0(4,1) = vng1,0(q,0) = min{fni10(q,1), K(1) + frs1,0(¢, B)} = K(0) = fat1,6(q, B)

< K(1) - K(0).
Fors € {2,3,...,B — 1},

Vn1,0(¢,8) — Unt1,0(q,5 — 1)
= min{ fny1,6(¢,8), K(5) + for1,0(¢, B)} —min{fny16(q,8 — 1), K(s — 1) + far10(q, B)}
< max{ fry1,0(¢,8) = fatro(g, s —1),K(s) — K(s — 1)}

< K(s) - K(s — 1),

where the last inequality follows sincé.(7) holds forn + 1. Hence, 4.16) holds forn 4 1. Therefore, by
induction, @.16) and @.17) hold for alln > 1. [
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