
Machine Maintenance with Workload Considerations

David L. Kaufman
Department of Industrial Engineering

University of Pittsburgh

1048 Benedum Hall, Pittsburgh, PA 15261

davidlk@engr.pitt.edu

412-383-5103

Mark E. Lewis
School of Operations Research and Information Engineering

Cornell University

226 Rhodes Hall, Ithaca, NY 14853

mel47@cornell.edu

607-255-0757

submitted June 19, 2006, revised December 11, 2006,

revised April 20, 2007



Abstract

Machine maintenance is modeled in the setting of a single-server queue. Machine deterioration corresponds

to slower service rates and failure. This leads to higher congestion and an increase in customer holding

costs. The decision-maker decides when to perform maintenance, which may be done preemptively; be-

fore catastrophic failures. Similar to classic maintenance control models, the information available to the

decision-maker includes the state of the server. Unlike classic models, the information also includes the

number of customers in queue. Considered are both a repair model and a replacement model. In the repair

model, with random replacement times, fixed costs are assumed to be constant in the server state. In the

replacement model, both constant and variable fixed costs are considered. It is shown in general that the

optimal maintenance policies have switching curve structure that is monotone in the server state. However,

the switching curve policies for the repair model are not always monotone in the number of customers in

the queue. Numerical examples and two heuristics are also presented.



1 Introduction

Traditional maintenance control models include what van Dijkhuizen and van Harten [36] refer to as the

“technical” state of the system (e.g., machine failure characteristics). These models do not however typically

include other important characteristics associated with the “operating” states of manufacturing systems (e.g.,

workload, inventory, due dates, etc.). For many systems, inparticular controlled queueing systems, it is

precisely the operational properties of the system that arecrucial when making maintenance decisions. For

example, when the system is heavily loaded, is it better to begin preventative maintenance or to postpone

repair until some of the congestion subsides? This questionis complicated by the fact that as machines

deteriorate, so does their ability to produce acceptable products; service rates become slower. The goal of

this paper is to gain a better understanding of questions related to maintenance when the decision-maker

has access to operating information and the machine’s ability to produce deteriorates over time. The main

contributions of the paper are as follows (under various assumptions):

• There exists an optimal maintenance policy that is monotonein the state of the server.

• On the other hand, the optimal maintenance policy need not bemonotone in the congestion level.

From a managerial perspective, this implies that the searchfor (and the storage of) optimal policies can

be reduced since only switching curve policies need to be considered. The second result serves as somewhat

of a warning since these switching curves need not be monotone in the number of customers in the system.

Moreover, we point out that in all of the examples that exhibit the non-monotonicity it is such that repair

is optimal when the system is empty, do not repair is optimal when the system has a single customer, and

repair is again optimal as the number of customers increases. Intuitively, this means that when the system is

empty, it is optimal in some cases to take advantage of the server idleness.

Considered are two models:repair andreplacement. The repair model has repair times that are random

with positive mean. The replacement model is similar but hasinstantaneous replacements. There are fixed

costs associated with repairs or replacements and costs areincluded that explicitly depend on the operational

state of the queue: linear customer holding costs.

Several textbooks include the well-known, fundamental maintenance control models of Derman [10, 11]

and Ross [24]. The deterioration of a machine is modeled as a discrete-time Markov chain. The machine

in states deteriorates to statej in the next stage with some probability. At each stage, the decision-maker

chooses one of two actions: either replace or do not replace (do nothing). Derman [10] considers a finite
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number of states with forced replacement at the worst state.Ross [24] considers a countable number of

states. Both show sufficient conditions for the optimal policy to be of “control limit” form. This simple

form aids in both computation and implementation of the optimal control. The optimality of control limit

policies in replacement models has been addressed more recently by So [33]. The reader is referred to the

survey papers [22], [29], [9], and [38].

Queueing models incorporating maintenance control decisions include those of Federgruen and So [12,

13]. In their models, a single server is either ‘up’ or ‘down.’ While the server is up, breakdowns occur

according to a Poisson process. In [12], when the server goes down, the decision-maker chooses either to

start repair immediately or to postpone. Optimal policies are characterized by a single threshold: a repair is

initiated if and only if the number of customers in the systemexceeds the threshold. In [13], there are two

different repair options. Roughly, one is faster and the other is slower but less expensive. Again, optimal

policies are monotone: the more expensive, faster repair ischosen if and only if the number of customers in

the system exceeds some threshold. Also related to these papers is [14] where a vacation model is considered

and again monotone threshold policies are optimal, ‘D-policies.’ These papers are fundamentally different

than the models we consider because they do not include multiple functioning server states, and, therefore,

preventive maintenance is precluded.

The non-queueing production/maintenance literature can be split into two categories: 1) papers that

study how failures or fixed maintenance policies affect traditional production/inventory policies, but do not

consider optimal maintenance control; 2) papers that include optimal maintenance control decisions, but that

may or may not jointly incorporate optimal production decisions. The present work is related to category 2.

The papers in category 2 include [18], [7], and [34]. These models each assume a single functioning state.

Other related papers with multiple functioning states (butperhaps not multiple yield rates) include [36], [35],

[3], [31, 32], and [30]. As for category 1, Iravani and Duenyas [15] consider a single-machine make-to-stock

system. Included in the model are multiple functioning states for the facility where production rates change

with the deterioration of the system. By comparing optimal heuristic policies based on the production rates

of the facility in different deterioration states to heuristics based on average production rates, Iravani and

Duenyas [15] argue that it is important for firms to collect information on how the production rates change

as a function of deterioration states. The models we consider also incorporate yield information, but in the

setting of a queue. For other non-queueing production/maintenance literature, the reader is referred to the

references in [15] and [42, 43].
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The queueing network studied in Seshadri and Pinedo [28] captures the effects of productivity loss

through service rate reductions and downtime by allowing the work per unit time to depend on an efficiency

factor. The queueing models most closely related to ours arethose of Koyanagi and Kawai [17] and Yao,

in Chapter 3 of [42]. Both of these works include multiple server states. An important assumption that is

made in [17] is that at the beginning of maintenance, the customers in the system are rejected and so are

the customers arriving during maintenance. We make no such assumptions. Yao [42] also includes multiple

server deterioration states; however, they are modeled differently. The lifetime of the server depends on the

number of customers served since the last (non-instantaneous) repair. If the technical state of the server,

the number of service completions since last repair, reaches some stateL, then repair is mandatory. More

important than this modeling difference is the fact that Yao[42] assumes a single service rate. The fact that

deteriorations may result in reduced service rates is an important characteristic for the models we consider.

Conditions are shown in [42] for optimal policies that are monotone in the technical state of the server: for

a fixed number in queue,q, there exists an optimal server-state thresholds∗(q) such that it is optimal to start

repair if and only if the state of the server is worse thans∗(q). Similar results are shown here in Sections3

and4. Yao [42] does not address whether or not the optimal policy for his model is monotone inq.

Reliability issues have recently received increased attention in the controlled queueing research com-

munity as Flexible Manufacturing Systems (FMS) have becomemore prevalent. An important benefit of

flexible servers is that they can alleviate congestion due tofailures and loss of resources. Earlier works on

reliability and FMS include [37], [39], and [21]. More recently, the models of Andradottir et al. [1] and Wu

et al. [40, 41] incorporate reliability in the control of agile servers; however, they do not include preventive

maintenance of the servers. They model servers that are either ‘up’ or ‘down,’ and they do not incorporate

maintenance control decisions. The focus in the present work is instead on models of maintenance control.

The remainder of the paper is organized as follows. Section2 contains formal definitions of the models.

Results for the repair model are given in Section3; the main results are presented in Theorem3.2. Section

4 contains the results for the replacement model; the main results are Theorem4.2 and Proposition4.10.

Additional examples and two heuristics are considered in Section 5. Section5 also concludes the paper.

2 Model Formulations

Consider a single queue being served by a single machine (server). While the server state iss, the machine

works at rateµs, s ∈ {0, 1, . . . , B}. It is assumed that server state zero is a repair state withµ0 ≡ 0, and

0 < µ1 ≤ µ2 ≤ · · · ≤ µB < ∞. Customers arrive to the queue according to a Poisson process with
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rateλ > 0. The service requirements for the customers are i.i.d. and exponentially distributed with mean

1. Note that this implies that the service time for a customerthat receives service at rateµ throughout is

exponentially distributed with rateµ.

So long as the machine is not being repaired, the machine in server states deteriorates asynchronously

(independent of the work it is doing) down to server state(s − 1) in a random amount of time. Assume

that deterioration times for such transitions out of serverstates are i.i.d. and exponentially distributed with

means1/ms > 0. If repairs are not done preemptively, as soon as the server state reaches 0, repairs are

initiated to bring the server state back up toB. The replacement model has instantaneous repair times while

the repair model has random, not necessarily exponentiallydistributed, repair times. Rather, assume that

they are i.i.d. with general distributionG(·) that has finite first and second moments. Denote the mean repair

time by1/m0 > 0.

The costs associated with operating the system are holding costsh per customer per unit time and fixed

repair/replacement costsK ≥ 0. Repairs can be initiated preemptively; that is, before themachine fails by

reaching server state 0. It is assumed that both the queue length and the server state are perfectly observable

to the decision maker at all times.

The problem is modeled as a semi-Markov decision process (SMDP). Let Π be the set of all non-

anticipating policies. A policyπ ∈ Π prescribes when to repair the server, given the number of customers

in the system (the queue length process) and the state of the server (the server state process). For a fixed

policy π ∈ Π andt ≥ 0, letQπ(t) andSπ(t) represent the queue length process and the server state process

at time t, respectively. Denote the set of decision epochs (underπ) by D = {σn, n ≥ 0}. The decision

epochs during non-repair times form a Poisson process with rateΨ ≡ λ + ΣB
s=1 (µs +ms). This follows

from the exponential distribution assumptions anduniformization(see [19]). Without loss of generality,

assume thatΨ = 1. The (random) timesD then include server deteriorations, repair completions, and, for

non-repair times, customer arrivals and departures, anddummytransitions due to uniformization. The state

of the “embedded” process after thenth transition is given byXπ
n = (Qπ(σn), Sπ(σn)), n ≥ 0. That

is, the state spaceX = Z
+ × {0, 1, . . . , B}, whereZ

+ is the set of non-negative integers. A change in

the server state process corresponds to a change for the embedded process. However, a change in the queue

length process may not coincide with a change in the embeddedprocess since the queue length may increase

during a repair. From an optimization standpoint, this is ofno consequence since the two processes coincide

at decision epochs.
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The sets of feasible actions for statex = (q, s) are

Ax =

{

{R} if s = 0,

{D,R} else,

whereR indicates repair andD indicates do not repair. Let

k(s, a) =







0 if a = D,

K if a = R.
(2.1)

Let {(Xπ
n , A

π
n), n ≥ 0} be the sequence of states of the embedded process and the actions chosen. Suppose

δt is the number of decision epochs up to timet; it is assumed thatt = 0 is a decision epoch. Define

gπ
t (x) = Ex

{

δt−1
∑

i=0

k (Sπ(σi), A
π
i ) +

∫ t

0
hQπ(u)du

}

, (2.2)

vπ
n,θ(x) = Ex

{

n−1
∑

i=0

[

e−θσik (Sπ(σi), A
π
i ) +

∫ σi+1

σi

e−θuhQπ(u)du

]

}

, (2.3)

whereθ > 0 is the discount factor. The expression (2.2) defines the expected total cost incurred by time

t when the initial state isx. Likewise, (2.3) defines the expected total discounted cost incurred by thenth

decision epoch. The expressions in (2.4) and (2.5) below define the infinite horizon expected discounted

cost and average cost underπ, respectively.

vπ
θ (x) = lim

n→∞
vπ
n,θ(x), (2.4)

gπ(x) = lim sup
t→∞

gπ
t (x)

t
. (2.5)

Define the optimal valuesvθ(x) = infπ∈Π v
π
θ (x), g(x) = infπ∈Π g

π(x), where any policy that achieves the

infimum of the respective criteria is deemed optimal.

In either model considered below, we provide conditions under which there exists an optimal policy that

is monotone in the server states. This type of policy is often called aswitching curvepolicy.

Definition 2.1 Suppose in each statex ∈ X there are but two actions,D andR. A (deterministic) stationary

policy is aswitching curve policyif it may be described by a curve inX that separatesX into two connected
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regions. In one region the policy calls for actionD to be used, while in the other region actionR is used.

Furthermore, a switching curve policy is called amonotone switching curve policyif the curve dividingX

into two regions is monotone.

Although typically more general, for the purposes of this paper we say that a policy that is monotone ins

hasswitching curve structure that is monotone ins.

3 The Repair Model

This section is devoted to the repair model. The main resultsare that there exists an optimal policy that is

monotone in the server states, but not necessarily in the number of customers in the system. That is, there

exists an optimal policy that has switching curve structurethat is monotone ins (see Figure1).

Forθ ≥ 0, let

Cθ(q, a) =

{

hq/(θ + 1) if a = D,

K + h
∫∞
0

∫ u

0

[

e−θt (q + λt) dt
]

G(du) if a = R,
(3.1)

pθ(j) =

∫ ∞

0
e−θt e

−λt(λt)j

j!
G(dt). (3.2)

The functionCθ(q, a) is the one-stage expected discounted cost incurred when theprocess is in state(q, s)

and actiona is chosen. Recall thatΨ = 1. In (3.1), whena = R, λt is the expected number of customer

arrivals withint time units. The functionpθ(j) is the discounted probability that exactlyj customers arrive

during a repair. For the discounted cost case, withθ > 0 and (q, s) ∈ X, define the discounted cost

optimality equations (DCOE):

fD
θ (q, s) = Cθ(q,D) +

1

θ + 1

[

λvθ(q + 1, s) + µsvθ((q − 1)+, s)

+ msvθ(q, s − 1) + (1 − λ− µs −ms)vθ(q, s)
]

, s ∈ {1, 2, . . . , B}, (3.3)

fR
θ (q) = Cθ(q,R) +

∞
∑

j=0

pθ(j)vθ(q + j,B), (3.4)

vθ(q, s) = min
{

fD
θ (q, s), fR

θ (q)
}

, s ∈ {1, 2, . . . , B}, (3.5)

vθ(q, 0) = fR
θ (q), (3.6)
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wherey+ represents the positive part ofy. Similarly, define the average cost optimality inequalities (ACOI):

fD(q, s) = −g +C0(q,D) + λw(q + 1, s) + µsw((q − 1)+, s)

+ msw(q, s− 1) + (1 − λ− µs −ms)w(q, s), s ∈ {1, 2, . . . , B}, (3.7)

fR(q) = −
g

m0
+ C0(q,R) +

∞
∑

j=0

p0(j)w(q + j,B), (3.8)

w(q, s) ≥ min
{

fD(q, s), fR(q)
}

, s ∈ {1, 2, . . . , B}, (3.9)

w(q, 0) ≥ fR(q). (3.10)

It is proved next that under a sufficient stability conditionthere existsw andg that satisfy (3.7) - (3.10).

Any stationary policy that minimizes the right-hand side of(3.5) is θ-discounted cost optimal with optimal

valuesvθ. Furthermore, any stationary policy minimizing the right hand side of (3.9) is average cost optimal

andg(x) = g for every initial statex.

To arrive at the sufficient stability condition, consider the following policy. Forℓ ∈ {1, 2, . . . , B} and

(q, s) ∈ X we call the stationary policyφℓ that uses the decision rule

φℓ(q, s) =

{

D if s ≥ ℓ,

R if s < ℓ

theserver-state threshold policywith thresholdℓ. Note thatφℓ is a switching curve policy where the action

is repair if and only ifs < ℓ (independent ofq). The next proposition states that the limiting queue length

process is finite under policyφℓ provided that the arrival rate is less than the average service capacity.

Proposition 3.1 Let ℓ ∈ {1, 2, . . . , B}. If

λ <

∑B
s=ℓ µs/ms

1/m0 +
∑B

s=ℓ 1/ms

, (3.11)

then there exists an invariant probability measureϕ such thatlimt→∞ Ex[Qφℓ(t)] = Eϕ[Qφℓ(0)] < ∞,

and gφℓ(x) < ∞, for all x ∈ X. Furthermore, for the Markov chain induced byφℓ, the class of states

Xℓ = {(q, s)|q ∈ Z
+, s ∈ {ℓ − 1, ℓ, . . . , B}} are ergodic (aperiodic and positive recurrent) and the states

X \ Xℓ are transient.
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Proof: See Section7.1 in the Appendix.

Theorem 3.2 For either the discounted cost criterion or the average costcriterion suppose

λ < max
l∈{1,2,...,B}

{

∑B
s=l µs/ms

1/m0 +
∑B

s=l 1/ms

}

. (3.12)

The following then hold.

1. There exists an optimal stationary policy that has switching curve structure that is monotone ins.

2. There may not exist an optimal switching curve policy thatis a monotone switching curve policy

(monotone in bothq ands).

The proof of Theorem3.2is divided into several pieces. The first states the intuitive result that it is better

to start in a state with fewer customers and a higher service rate. This implies the first result of the theorem

for the discounted cost case and implies the existence of a “minimal” state(0, B) where the value functions

(under each criterion) are minimized.

Proposition 3.3 For (q1, s1), (q2, s2) ∈ X, supposeq1 ≤ q2 ands1 ≥ s2. Then,vθ(q1, s1) ≤ vθ(q2, s2).

Proof: The result is proved via a sample-path argument by considering two processes. Process 1, which

starts with a better server state and fewer initial customers, mimics the actions of the policy governing

Process 2 by repairing at the same times (the policy employedby Process 1 is potentially non-stationary).

Furthermore, Process 2 only sees customer departures if Process 1 sees potential (there may not be a cus-

tomer to serve) departures. The result is that both processes see the same fixed costs while Process 2 sees

higher holding costs.

Suppose Process 1 starts in state(q01, s
0
1) at time 0 (the superscript ‘0’ indicates time 0). Process 2 starts

in state(q02 , s
0
2) whereq01 ≤ q02 ands01 ≥ s02. Process 2 follows an arbitrary policyπ2 ∈ Π. Denote the

policy under which Process 1 mimics Process 2 repairs byπ1. We will now show how to construct Process

2 so thatπ1 ∈ Π; recall it needs to be non-anticipating.

Assume that the two processes are defined on the same probability space. Both processes see the same

customer arrivals and sequence of repair times. Recall thatthere are no decision epochs during repair

times. For non-repair times, deteriorations and customer departures are constructed by thinning a Poisson

process with rateΨ = 1. We must construct the processes so that the probability of service and server state
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transitions in Process 1 (2) areµs1
(µs2

) andms1
(ms2

), respectively. The dummy transitions should then

be1 − µsi
−msi

for Processi, i = 1, 2. Consider first the case whens02 > 0. Suppose there is an event

for the Poisson process at timet and that att− (just prior to the event) Process 1 is in state(q1, s1) and

Process 2 is in state(q2, s2). Suppose for now thats1 > s2 > 0. With probability (1 − µs1
−ms1

−ms2
)

there is a dummy transition for both processes; with probability ms1
there is a deterioration in Process

1 and a dummy transition for Process 2; with probabilityms2
there is a deterioration in Process 2 and a

dummy transition for Process 1; with probabilityµs1
there is a potential departure for Process 1. In this

case, with probabilityµs2
/µs1

there is a potential departure for Process 2 as well, otherwise there is a

dummy transition. Note that the probability of a dummy transition in Process 2 is1 − µs1
−ms1

−ms2
+

ms1
+µs1

(

1 −
µs2

µs1

)

= 1−µs2
−ms2

. Similarly, for Process 1 there is a dummy transition with probability

1−µs1
−ms1

−ms2
+ms2

= 1−µs1
−ms1

as desired. Fors1 = s2 > 0, a potential departure occurs in both

processes with probabilityµs1
and a deterioration occurs in both Process 1 and Process 2 with probability

ms1
. In this case, sinceπ1 calls for repair only whenπ2 repairs, whens1 = s2 the two processes are coupled

in their server state processes; both processes see the samedeteriorations and potential customer departures

from that time forward. It is not necessary to consider caseswheres1 < s2 because these states are never

reached.

In either case, under the construction above, Process 1 always maintains a service rate that is at least

as high as that of Process 2. Moreover, Process 2 never has a customer departure without a corresponding

potential departure for Process 1. Thus, Process 1 incurs total holding costs that are less than or equal to

those incurred by Process 2. The total repair costs are the same for both processes. Thus,vπ1

θ (q01 , s
0
1) ≤

vπ2

θ (q02, s
0
2). Policyπ1 is a (randomized) non-anticipating policy and henceπ1 ∈ Π. Sinceπ2 is an arbitrary

policy, it follows thatvθ(q
0
1 , s

0
1) ≤ vθ(q

0
2, s

0
2).

It remains to consider the case whens02 = 0. In this case, suppose Process 1 also repairs in state(q01, s
0
1).

Both processes incur fixed costsK at time zero. Under the construction above, after time zero Processes 1

and 2 remain coupled in the server state and the result follows as in the case whens1 = s2.

To complete the proof of Theorem3.2 we need to show that the DCOE and ACOI have solutions, that

the average cost solution can be obtained via limits from thediscounted cost value functions, and that the

structure of an optimal policy is the same in both cases. To this end, we provide conditions under which the

following set of conditions hold (see [26]).

• SENSM1: There exist∆ > 0 andǫ > 0 such that for every state and action, there is a probability of
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at leastǫ that the transition time will be greater than∆.

• SENSM2: There existsB such thatτ(i, a) ≤ B for everyi anda, whereτ(i, a) is the mean transition

time out of statei when actiona is chosen.

• SENSM3: vθ(i) <∞ for every statei andθ > 0.

• SENSM4: There existsθ0 > 0 and non-negative numbersMi such thatwθ(i) ≤ Mi for every statei

and0 < θ < θ0, wherewθ(i) = vθ(i) − vθ(0), for a distinguished state0. For every statei, there

exists an actiona(i) such that
∑

j Pij(a(i))Mj < ∞, wherePij is the probability of transitioning to

statej from statei when actiona(i) is chosen.

• SENSM5: There existsθ0 > 0 and a non-negative numberN such that−N ≤ wθ(i) for everyi and

0 < θ < θ0.

Proposition 3.4 Under (3.12) the following hold.

1. For θ > 0, vθ(x) satisfies the DCOE (3.3) - (3.6) and any stationary policy that minimizes the right-

hand side of (3.5) is θ-discounted cost optimal.

2. There exists a constantg and a limit pointw(q, s) = limk→∞[vθk
(q, s) − vθk

(0, B)], whereθk ↓ 0,

such that(g,w) satisfy the ACOI (3.7) - (3.10).

3. Any stationary policy that achieves the minimum in the ACOI (3.9) with (g,w) defined as above is

average cost optimal. Moreover, the optimal average cost isg(x) = g, for every initial statex ∈ X.

4. The optimal average cost may be computed byg = limθ↓0 θvθ(x) for anyx ∈ X.

Proof: BecauseΨ <∞ and repair times have a positive mean, SENSM1 holds and it follows that there are

only a finite number of decision epochs in a finite time interval, i.e., the processes are regular. SENSM2 is

satisfied since the transition ratesm0 andΨ are uniformly bounded above. SENSM3-4 require the stability

results. Let the distinguished state,0, be (0, B). Under (3.12), Proposition3.1 implies that there exists

ℓ ∈ {1, 2, . . . , B} such that the average cost for policyφℓ is finite with a single ergodic classXℓ ⊃ (0, B).

Note thatXℓ can be reached by any transient state in one (repair) transition. SENSM3-4 then follow from

Lemma 2 of [26]. SENSM5 holds since, by Proposition3.3, the distinguished state(0, B) has the lowest

cost, implying thatwθ(q, s) ≥ 0.
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SENSM1 and SENSM3 are the assumptions of Theorem 1 of [26], which implies Result 1. SENSM1-5

and linear holding costs imply that Proposition 4 of [26] holds. In turn, Results 2 - 4 then follow from

Theorem 2 of [26]; Result 2 is contained in the proof of the theorem, which references [25].

The following is immediate from Proposition3.3and Result 2 of Proposition3.4.

Corollary 3.5 For (q1, s1), (q2, s2) ∈ X, supposeq1 ≤ q2 ands1 ≥ s2. Then, under (3.12), w(q1, s1) ≤

w(q2, s2).

We are now ready to prove the first result of Theorem3.2.

Proof of Statement 1 of Theorem3.2. Consider the average cost criterion. From Corollary3.5,

w(q, s) ≥ w(q, s + 1), s ∈ {1, 2, . . . , B}. From Proposition3.4, the ACOI are satisfied and any policy

that satisfies the ACOI is average cost optimal. Letq ∈ Z
+ ands ∈ {1, 2, . . . , B−1}. Assume that repair is

optimal in state(q, s+ 1). Suppose that repair is not optimal in state(q, s). Then by (3.9), w(q, s) < fR(q)

andw(q, s + 1) ≥ fR(q). This impliesw(q, s + 1) ≥ fR(q) > w(q, s), a contradiction to Corollary3.5.

Therefore, if repair is optimal in state(q, s + 1), repair is also optimal in state(q, s). The proof is similar

for the discounted cost criterion.

It seems intuitive that if it is optimal to repair in state(q, s), then it would also be optimal to repair

in state(q + 1, s). Such intuition is in line with the work of Federgruen and So [12] where when there

are more customers in the system the decision-maker is more likely to start repair immediately as opposed

to postponing. Similarly, in [13], when there are more customers in the system the decision-maker is more

likely to choose faster, more expensive repairs; the optimal policies are monotone in the number of customers

in the system. It was originally conjectured by the authors that this would continue to hold in the current

models. However, surprisingly, this is not the case.

For all of the repair model numerical examples in this paper it is assumed that the repair times are expo-

nentially distributed. All of the numerical examples are for the average cost criterion. For the calculations,

the queue length is truncated. Since any feasible stationary policy is unichain, the results of [23], Chapter 8,

apply under queue length truncation and the computations can be done using either policy iteration or value

iteration. The next (counter-)example completes the proofof Theorem3.2.

Proof of Statement 2 of Theorem3.2.

Example 3.6 Suppose that the parameter settings are:K = 0; h = 1; λ = 1; B = 4; µ1 = 1/2, µ2 = 1,

µ3 = 3/2, µ4 = 2; ms = 1/5, s ∈ {0, 1, . . . , 4}. Figure1 displays the optimal repair policy.
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Figure 1: Example of an optimal non-monotone switching curve policy. The optimal repair policy for

Example3.6.

The optimal repair policy in Figure1 is not monotone. This is evident by an initial decrease in the

switching curve betweenq = 0 and q = 1. We note that there is not a tie; for example, it is not also

optimal to choose action0 in state(0, 2). Fors = 2, when there are zero customers in the system, there is

actually more incentive to repair than when there are one or two customers in the system. As the number of

customers increases, then so again does the incentive to repair. It should also be noted that in every example

we considered that if an example does not have an optimal monotone switching curve, the non-monotonicity

occurred atq = 0. In essence, when there are zero customers in the system, server capacity is not being

used, so there is less penalty for downtime during repairs ascompared to when customers are present.

4 The Replacement Model

In this section we consider the replacement model where the fixed costs are positive (and may vary as a

function of the server state). Thus, replaceK withK(s) in (2.1), whereK(s) is a strictly positive function on

{0, 1, . . . , B}. Since all non-repair times are exponentially distributed, all decision epochs occur according

to a Poisson process with uniform rateΨ = 1. The model then is an MDP, not a more general SMDP. Due

to the memoryless property of the exponential distribution, it should be clear that do not replace is optimal

whens = B; otherwise, under replace a fixed costK(B) > 0 would be incurred for an instantaneous

transition back to the same state.
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Figure 2: Example of an optimal replacement policy. The optimal replacement policy for Example4.1.

The DCOE for the replacement model (with server state dependent costs) are:

fθ(q, s) =
1

θ + 1

[

hq + λvθ(q + 1, s) + µsvθ((q − 1)+, s)

+ msvθ(q, s− 1) + (1 − λ− µs −ms), vθ(q, s)
]

, s ∈ {1, 2, . . . , B}, (4.1)

vθ(q,B) = fθ(q,B), (4.2)

vθ(q, s) = min {fθ(q, s), K(s) + fθ(q,B)} , s ∈ {1, 2, . . . , B − 1}, (4.3)

vθ(q, 0) = K(0) + fθ(q,B). (4.4)

For the average cost criterion, the replacement model ACOI are:

f(q, s) = −g + hq + λw(q + 1, s) + µsw((q − 1)+, s)

+ msw(q, s − 1) + (1 − λ− µs −ms)w(q, s), s ∈ {1, 2, . . . , B}. (4.5)

w(q,B) ≥ f(q,B), (4.6)

w(q, s) ≥ min {f(q, s), K(s) + f(q,B)} , s ∈ {1, 2, . . . , B − 1}, (4.7)

w(q, 0) ≥ K(0) + f(q,B). (4.8)

Consider the following illustrative example.

Example 4.1 For the replacement model, suppose the parameter settings are: K(s) = K = 20/ψ; h = 1;

λ = .4; B = 4; µ1 = 1/4, µ2 = 1/2, µ3 = 3/4, µ4 = 1; ms = 1/2, s ∈ {1, 2, . . . , 4}. Figure 2 displays

the optimal replacement policy.

Several observations from Figure2 are worth noting. First, the optimal policy is a monotone switching

curve. Second, whenq = 0 or s = B do not replace is optimal. Third, asq gets large, it is optimal to replace

in states where the service rate is less thanµB ; the switching curve levels off atB − 1. With the exception

of the monotonicity of the switching curve, each of these arestated in general in the following theorem, the

main theorem of the section. Again the proof is divided into several parts.
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Theorem 4.2 SupposeK(s) = K for all s. Under the discounted cost criterion or under

λ < max
l∈{1,2,...,B}

{

∑B
s=l µs/ms

∑B
s=l 1/ms

}

(4.9)

and the average cost criterion, the following hold.

1. There exists an optimal policy with switching curve structure that is monotone ins.

2. Do not replace is optimal fors > 0 if either q = 0 or µs = µB .

Suppose now thatK(s) is allowed to vary withs. In the discounted case there existsθ0 such that for all

0 < θ < θ0, or in the average cost case under(4.9), the following holds.

3. There exists a (finite)q0 ∈ Z
+ such that forq ≥ q0 replace is optimal in(q, s) if µs < µB and do not

replace is optimal ifµs = µB; that is, for largeq, it is optimal to replace as soon as the service rate

deteriorates to a rate strictly less thanµB , but no sooner.

Statement 2 of Theorem4.2implies that forq = 0 there is little incentive to replace. Since replacements

are instantaneous, it seems reasonable to wait until customers are in the system. Given the observation from

Theorem3.2 that optimal switching curves in repair models may not be monotone atq = 0, the question is

raised: are the optimal switching curves for replacement problems monotone? Statement 3 of Theorem4.2

provides a partial answer to this question asq approaches infinity. Furthermore, all of the examples we ran

exhibited an optimal monotone switching curve. To date we donot have a proof that this holds in general.

We first show that the optimality equations are satisfied. We use the optimality equations to prove that a

switching curve policy that is monotone ins is optimal and that do not replace is optimal when the queue is

either empty or serving at the highest rate. We then prove that the switching curve is monotone inq when

q becomes large. This will complete the proof of Theorem4.2. To end the section, monotonicity ins is

extended under a set of sufficient conditions to cases where replacement costsK(s) vary withs. Numerical

examples illustrate that the optimal policies may not be monotone ins when the sufficient conditions are not

met. The first result is analogous to Proposition3.3 for repair models.

Proposition 4.3 For (q1, s1), (q2, s2) ∈ X, supposeq1 ≤ q2 ands1 ≥ s2. Then,

vθ(q1, s1) ≤ vθ(q2, s1), (4.10)

vθ(q1, s1) ≤ vθ(q2, s2) + max
s∈{0,1,...,B−1}

K(s) − min
s∈{0,1,...,B−1}

K(s). (4.11)
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Proof: The proof is via precisely the same sample-path argument as that for Proposition3.3; let all repair

times be zero. Expression (4.10) follows directly since Processes 1 and 2 are always coupledin the server

state. For expression (4.11), note that once Processes 1 and 2 couple in the server state,they remain coupled.

The two processes couple in the server state when they both replace, simultaneously, for the first time.

The holding costs are always lower for Process 1; however, the first replacement cost may be higher for

Process 1 than Process 2 ifK(s) is not non-increasing ins. (Assume that Process 1 does not actually

replace and pay a positive fixed cost ifs = B.) The difference between the cost of the first replacement

for Process 1 and that of Process 2 is bounded above by the differencemaxs∈{0,1,...,min{s1,B−1}}K(s)

−mins∈{0,1,...,min{s2,B−1}}K(s).

Proposition 4.4 For the replacement model, the following hold.

1. For θ > 0, vθ(x) satisfies the DCOE (4.1) - (4.4) and any stationary policy that minimizes the right-

hand side of (4.3) is θ-discounted cost optimal.

Moreover, under(4.9)

2. There exists a constantg and a limit pointw(q, s) = limk→∞[vθk
(q, s) − vθk

(0, B)], whereθk ↓ 0,

such that(g,w) satisfy the ACOI (4.5) - (4.8).

3. Any stationary policyπ∗ that achieves the minimum in the ACOI (4.7) with (g,w) defined as above is

average cost optimal with average costg. Moreover, the average cost optimality equalities (ACOE)

(the ACOI with “=” replacing “ ≥”) hold at any state that is positive recurrent under the Markov

chain induced byπ∗.

4. The optimal average cost may be computed byg = limθ↓0 θvθ(x) for anyx ∈ X.

Proof: For the discounted cost case, since the model is an MDP, Result 1 follows from Propositions 1.5

and 1.7 of Chapter 3 of [2] and does not require a stability condition. For the averagecost case, [27] requires

thatSEN1-3hold. The conditions are analogous to the semi-Markov conditions SENSM3-5, respectively.

Consider the policyφℓ. The fluid limit analysis in Section7.1 in the Appendix also applies to the

replacement model underφℓ by removing the states{0, . . . , ℓ − 1}. The same analysis implies stability

for the analogous replacement process{X(t), t ≥ 0} on state spaceX = Z
+ × {ℓ, . . . , B}. This in turn

implies that, under (4.9), φℓ induces an irreducible ergodic Markov chain onXℓ = Z
+ × {ℓ− 1, ℓ, . . . , B}.
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Furthermore, the long-run average queue length of such a process is finite. Hence, the long-run average

holding costs are finite. Since the fixed costs are bounded, the long-run average replacement costs are also

finite, andgφℓ(x) < ∞ for all x ∈ Xℓ. It follows from [27] C.2.2(iv) and C.1.4(v) that the expected time

and cost to reach the distinguished state(0, B) for the first time starting in any positive recurrent stateXℓ is

finite. In turn, since replacement costs are finite, the expected time and cost to reach(0, B) starting from a

transient state, withs ∈ {1, 2, . . . , ℓ − 2}, is also finite. Therefore, under (4.9), φℓ satisfies the assumption

of Proposition 7.5.3 of [27], and SEN1-2 hold.

By Proposition4.3, −maxi∈{0,1,...,B−1}K(i) ≤ vθ(q, s) − vθ(0, B), for all (q, s) ∈ X. Since

maxi∈{0,1,...,B−1}K(i) > 0, SEN3 holds for the distinguished state(0, B). Applying Theorems 7.2.3 and

7.4.3 of [27] then yields the desired Results 2-4.

The following corollary is immediate from Proposition4.3and Result 2 of Proposition4.4.

Corollary 4.5 For (q1, s1), (q2, s2) ∈ X supposeq1 ≤ q2 ands1 ≥ s2. Then, under (4.9),

w(q1, s1) ≤ w(q2, s2) + max
s∈{0,1,...,B−1}

K(s) − min
s∈{0,1,...,B−1}

K(s). (4.12)

This leads to the proof of the first statement of Theorem4.2.

Proof of Statement 1 of Theorem4.2. Consider the average cost criterion. SinceK(s) = K, Corollary

4.5 impliesw(q, s) ≥ w(q, s+ 1), s ∈ {1, 2, . . . , B − 1}. From Proposition4.4, the ACOI are satisfied and

any policy that satisfies the ACOI is average cost optimal. From (4.7),

w(q, s) ≥ min {f(q, s), K + f(q,B)} , s ∈ {1, 2, . . . , B − 1}.

Let q ∈ Z
+ ands ∈ {1, 2, . . . , B − 2}. Assume that replace is optimal in state(q, s + 1). Suppose that

replace is not optimal in state(q, s). Thenw(q, s) < K + f(q,B) andw(q, s + 1) ≥ K + f(q,B). This

impliesw(q, s + 1) ≥ K + f(q,B) > w(q, s); a contradiction. Therefore, if replace is optimal in state

(q, s+ 1), replace is also optimal in state(q, s). The proof is similar for the discounted cost criterion.

Proof of Statement 2 of Theorem4.2. Supposes ∈ {1, 2, . . . , B − 1} andq = 0. From (4.1) we have

fθ(0, s) = (θ + 1)−1
[

λvθ(1, s) + µsvθ(0, s) +msvθ(0, s − 1) + (1 − λ− µs −ms)vθ(0, s)
]

= (θ + 1)−1
[

λvθ(1, s) +msvθ(0, s − 1) + (1 − λ−ms)vθ(0, s)
]

.
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From (4.3) and (4.4) we get

fθ(0, s) ≤ (θ + 1)−1
[

λ[K + fθ(1, B)] +ms[K + fθ(0, B)] + (1 − λ−ms)[K + fθ(0, B)]
]

= (θ + 1)−1
[

K + λfθ(1, B) + µBfθ(0, B) + (1 − λ− µB)fθ(0, B)
]

= (θ + 1)−1
[

K + λfθ(1, B) + µBfθ(0, B) +mBfθ(0, B − 1)

+ (1 − λ− µB −mB)fθ(0, B) +mB(fθ(0, B) − fθ(0, B − 1))
]

= (θ + 1)−1K + fθ(0, B) + (θ + 1)−1mB(fθ(0, B) − fθ(0, B − 1))

≤ K + fθ(0, B),

where the last inequality follows since Proposition4.3implies thatfθ(0, B)−fθ(0, B−1) ≤ 0. From (4.3)

and Result 1 of Proposition4.4, it follows that do not replace is optimal in state(0, s).

Consider nowq ∈ {1, 2, . . .} ands ∈ {1, 2, . . . , B − 1} such thatµs = µB (as discussed, the result

holds fors = B). From the DCOE we have

fθ(q, s) = (θ + 1)−1
[

hq + λvθ(q + 1, s) + µBvθ(q − 1, s) +msvθ(q, s− 1)

+ (1 − λ− µB −ms)vθ(q, s)
]

≤ (θ + 1)−1
[

hq + λ[fθ(q + 1, B) +K] + µB[fθ(q − 1, B) +K] +ms[fθ(q,B) +K]

+ (1 − λ− µB −ms)[fθ(q,B) +K]
]

= (θ + 1)−1
[

hq +K + λfθ(q + 1, B) + µBfθ(q − 1, B) +mBfθ(q,B − 1)

+ (1 − λ− µB −mB)fθ(q,B) +mB(fθ(q,B) − fθ(q,B − 1))
]

= (θ + 1)−1K + fθ(q,B) + (θ + 1)−1mB(fθ(q,B) − fθ(q,B − 1))

≤ K + fθ(q,B),

where the last inequality follows since Proposition4.3implies thatfθ(q,B)−fθ(q,B−1) ≤ 0. From (4.3)

and Result 1 of Proposition4.4, it follows that do not replace is optimal in state(0, s). The proof for the

average cost criterion is similar.

Lemma 4.6 For (q, s) ∈ X,

vθ(q + 1, s) − vθ(q, s) ≥ h

q
∑

n=1

(

1

θ + 1

)n

,

w(q + 1, s) − w(q, s) ≥ hq.
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Proof: Consider the same sample-path argument as in the proof of Proposition4.3. Suppose that Process

1 starts in state(q, s) and Process 2 starts in state(q + 1, s). Recall that Process 1 mimics Process 2 by

replacing at the same times so that both processes have the same replacement costs and both processes see

the same (potential) departures. The only differences in costs are due to the holding costs. The queue length

under Process 1 is never larger than the queue length under Process 2. Furthermore, note that the difference

in queue lengths between the two processes is exactly one before the first time that the system under Process

1 empties. Hence, the difference in queue lengths is exactlyone for at leastq decision epochs. The result

follows.

Proof of Statement 3 of Theorem4.2. Consider the discounted cost criterion. The caseµs = µB is proved

by Statement 2 of Theorem4.2. Consider a state(q, s) whereq > 0, s ∈ {1, 2, . . . , B − 1}, andµs < µB.

Suppose that do not replace is optimal in state(q, s). Then, by (4.2) and (4.3)

K(s) + vθ(q,B) − vθ(q, s) ≥ 0, (4.13)

and by (4.1)

vθ(q, s) = (θ + 1)−1(hq + λvθ(q + 1, s) + µsvθ(q − 1, s) + (µB − µs)vθ(q, s)

+msvθ(q, s − 1) +mBvθ(q, s) + (1 − λ− µB −ms −mB)vθ(q, s)).

Then,

vθ(q,B) − vθ(q, s) = (θ + 1)−1(λ(vθ(q + 1, B) − vθ(q + 1, s)) + µs(vθ(q − 1, B) − vθ(q − 1, s))

+(µB − µs)(vθ(q − 1, B) − vθ(q, s)) +ms(vθ(q,B) − vθ(q, s − 1))

+mB(vθ(q,B − 1) − vθ(q, s))

+(1 − λ− µB −ms −mB)(vθ(q,B) − vθ(q, s)))

≤ (θ + 1)−1

(

(µB − µs)(vθ(q − 1, s) − vθ(q, s)) + max
s∈{0,1,...,B−1}

K(s)

)

,

by Proposition4.3. It follows from Lemma4.6that

K(s) + vθ(q,B) − vθ(q, s) ≤ K(s) − h(µB − µs)

q−1
∑

n=1

(

1

θ + 1

)n+1

+ max
s∈{0,1,...,B−1}

K(s)/(θ + 1).

Thus,

lim
q→∞

(K(s) + vθ(q,B) − vθ(q, s)) ≤ K(s) − h(µB − µs)/θ + max
s∈{0,1,...,B−1}

K(s)/(θ + 1),

18



4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0         5         10        15        20

s

q

Figure 3: Example of an optimal replacement policy that is non-monotone in the server states. The optimal

replacement policy for Example4.7.

which, sinceµs < µB, goes to−∞ asθ ↓ 0. Therefore, whenq is large we have a contradiction to (4.13)

for θ close to 0, and replace is optimal in state(q, s). The proof for the average cost criterion is similar.

We remark that this result does not hold for the repair model.Indeed, in Example3.6(see Figure1) the

switching curve levels off asq becomes large, but do not replace is optimal in server state3 while µ3 < µB.

4.1 Switching Curves whenK(s) is a Function ofs

The main results for monotonicity ins so far, Statement 1 for Theorems3.2and4.2, depend on the replace-

ment cost being constant for alls. In this section we consider the model withK(s) variable ins. We begin

with the observation that whenK(s) varies withs, there may not exist an optimal policy that is monotone

in s.

Example 4.7 For the replacement model, suppose the parameter settings are the same as in Example4.1

except the replacement costs areK(0) = K(1) = K(2) = 60/ψ; K(3) = K(4) = 20/ψ. Figure 3

displays the optimal replacement policy.

The optimal switching curve is not monotone ins. Forq = 3 there is an interesting pattern. Replace is

optimal whens = 3 where it is cheaper thans = 2 or s = 1. At s = 2 do not replace is optimal, but at

s = 1 replace is optimal because the service rate is too low. We note that there are no ties for the optimal

actions.

To study monotone optimal policies, we find it useful to consider the value functions inductively. For

all (q, s) ∈ X, let v0,θ(q, s) = K(s). Forn ∈ {1, 2, . . .}, define the discrete-time finite horizon optimality
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equations (FHOE):

fn,θ(q, s) = (θ + 1)−1
[

hq + λvn−1,θ(q + 1, s) + µsvn−1,θ((q − 1)+, s)

+ msvn−1,θ(q, s − 1) + (1 − λ− µs −ms)vn−1,θ(q, s)
]

, s ∈ {1, 2, . . . , B},

vn,θ(q,B) = fn,θ(q,B),

vn,θ(q, s) = min {fn,θ(q, s),K(s) + fn,θ(q,B)} , s ∈ {1, 2, . . . , B − 1},

vn,θ(q, 0) = K(0) + fn,θ(q,B).

The proofs of the following two lemmas are given in Section7.2 in the Appendix.

Lemma 4.8 For all q ∈ Z
+,

vn,θ(q, s) ≤ vn,θ(q + 1, s), s ∈ {0, 1, . . . , B}, n ≥ 0, (4.14)

fn,θ(q, s) ≤ fn,θ(q + 1, s), s ∈ {1, 2, . . . , B}, n ≥ 1. (4.15)

Lemma 4.9 AssumeK(s) is convex on{0, 1, . . . , B−1}; that is,K(s−1)−K(s−2) ≤ K(s)−K(s−1)

for s ∈ {2, 3, . . . , B − 1}. Suppose one of the following conditions holds:

1. K(s) ≤ K(s− 1) andms−1 ≥ ms + θ, s ∈ {2, . . . , B − 1};

2. K(s) ≥ K(s− 1) andms−1 ≤ ms + θ, s ∈ {2, . . . , B − 1}.

Then, the following hold for allq ∈ Z
+.

vn,θ(q, s) − vn,θ(q, s− 1) ≤ K(s) −K(s− 1), s ∈ {1, 2, . . . , B − 1}, n ≥ 0, (4.16)

fn,θ(q, s) − fn,θ(q, s− 1) ≤ K(s) −K(s− 1), s ∈ {2, 3, . . . , B − 1}, n ≥ 1. (4.17)

Proposition 4.10 AssumeK(s) is convex on{0, 1, . . . , B − 1}. Suppose

1. for the discounted cost criterion, one of the conditions of Lemma4.9holds, or

2. for the average cost criterion,(4.9) holds and any of the following conditions hold:

(a) ms−1 = ms, s ∈ {2, 3, . . . , B − 1};

(b) K(s) ≤ K(s− 1) andms−1 ≥ ms, s ∈ {2, 3, . . . , B − 1};

(c) K(s) ≥ K(s− 1) andms−1 ≤ ms, s ∈ {2, 3, . . . , B − 1}.

Then, there exists an optimal policy with switching curve structure that is monotone ins.
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Proof: First consider the discounted cost criterion. We would liketo show that if do not replace is optimal

in state(q, s− 1) then do not replace is also optimal in state(q, s); or, by (4.3),

fθ(q, s− 1) ≤ K(s− 1) + fθ(q,B) ⇒ fθ(q, s) ≤ K(s) + fθ(q,B), s ∈ {2, 3, . . . , B − 1}. (4.18)

Note that we only need to considers < B since do not replace is optimal whens = B. A sufficient

condition guaranteeing that (4.18) holds is

fθ(q, s) − fθ(q, s− 1) ≤ K(s) −K(s− 1), s ∈ {2, 3, . . . , B − 1}. (4.19)

Sincev0,θ(q, s) = K(s) is a bounded function, Propositions 1.5 and 1.7 of Chapter 3 of [2] imply that

limn→∞ vn,θ(q, s) = vθ(q, s) andlimn→∞ fn,θ(q, s) = fθ(q, s). Hence, by Lemma4.9, (4.19) holds under

either of the hypotheses of Lemma4.9. Therefore, the result holds for the discounted cost criterion.

For the average cost criterion, it is sufficient to show that

w(q, s) − w(q, s − 1) ≤ K(s) −K(s− 1), s ∈ {2, 3, . . . , B − 1}. (4.20)

To see that this is sufficient, assume that replace is optimalin state(q, s), s ∈ {2, 3, . . . , B − 1}, and

suppose that replace is not optimal in state(q, s − 1). By Proposition4.4, the ACOI are satisfied. From

(4.7),w(q, s) ≥ K(s)+f(q,B) andw(q, s−1) < K(s−1)+f(q,B). This impliesw(q, s)−w(q, s−1) >

K(s)−K(s− 1), which would contradict (4.20). Therefore, (4.20) is sufficient to guarantee that if replace

is optimal in state(q, s) then replace is also optimal in state(q, s − 1).

We now prove that (4.20) holds under either of the Conditions (a), (b), or (c). The proof is a sample-

path argument that requires only a slight modification to that for Proposition3.3. Consider two processes.

Process 1 starts in state(q, s), s ∈ {2, 3, . . . , B − 1}. Process 2 starts in(q, s − 1) and uses the optimal

policy. Process 1 follows a potentially suboptimal policy that mimics Process 2 replacements. In order to

show that (4.20) holds, it is sufficient to show that the difference of total (non-discounted) costs for Process

1 minus the total costs for Process 2 is bounded above byK(s) −K(s− 1).

The only difference in the construction here as compared to Proposition 3.3 is the way that server

deteriorations are constructed. If the server state for Processi is si, then a potential deterioration oc-

curs for both processes at ratemax(ms1
,ms2

). For Processi, given a potential deterioration there is

an actual deterioration with probabilitymsi
/max(ms1

,ms2
) and a dummy transition with probability

(max(ms1
,ms2

) − msi
)/max(ms1

,ms2
). Under this construction,s1 ≥ s2 until Process 2 replaces for

the first time, after which the two processes couple in the server state ands1 = s2. Again both processes
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see the same arrivals and there are never more customers in the system under Process 1 than under Pro-

cess 2; Process 1 has lower holding costs. The only difference in replacement costs is due to the first

replacement. Since deteriorations are exponentially distributed, the processes will eventually replace, with

probability one. Suppose that the server state under Process i just before the first replacement iss′i; s
′
1 ≤ s

ands′2 ≤ s− 1. To show (4.20), it is sufficient to show that

K(s′1) −K(s′2) ≤ K(s) −K(s− 1), s ∈ {2, 3, . . . , B − 1}. (4.21)

Under Condition (a): the two processes deteriorate in theirserver states at precisely the same times, and

s′1 = s′2 + 1. Hence,K(s′1) − K(s′2) = K(s′2 + 1) − K(s′2), and (4.21) follows from convexity. Under

Condition (b): sincems−1 ≥ ms, Process 1 does not deteriorate unless Process 2 also deteriorates, and

s′1 ≥ s′2 + 1. Eithers′1 = s′2 + 1 andK(s′1) − K(s′2) = K(s′2 + 1) − K(s′2), or s′1 > s′2 + 1 ≥ 1 and,

sinceK(s) ≤ K(s − 1) for s ∈ {2, 3, . . . , B − 1},K(s′1) −K(s′2) ≤ K(s′2 + 1) −K(s′2). In either case,

(4.21) then follows from convexity. Under Condition (c): sincems−1 ≤ ms, Process 2 does not deteriorate

unless Process 1 also deteriorates. So,0 ≤ s′1 − s′2 ≤ 1. In the cases′1 = s′2 + 1, (4.21) follows from

convexity. Otherwise,s′1 = s′2, K(s′1) − K(s′2) = 0, and (4.21) follows sinceK(s) −K(s − 1) ≥ 0 for

s ∈ {2, 3, . . . , B − 1}.

5 Additional Numerical Examples and Conclusions

This section includes additional examples under the average cost criterion and introduces some simple

heuristics. The previous results stand to reduce computation of optimal policies, yet the non-monotonicity

(in either q or s) might leave them somewhat difficult to implement. Consideragain Example3.6. The

optimal repair policy is displayed again in Figure4(a). Recall that a server-state threshold policy is charac-

terized by a thresholdℓ; the chosen action is repair (replace) if and only ifs < ℓ (regardless of the number

of customers in the system). The optimal average cost for Example 3.6 is 14.7024. The best server-state

threshold policy hasℓ = 3; see Figure4(b). The threshold policy has an average cost of 15.0895, only

2.63% more than the optimal cost.

One might conjecture from this example that in fact one coulduse the optimal server-state threshold

policy in place of the optimal policy without much loss in terms of cost. Moreover, if we are willing to

do the work of computing it, a 2-level heuristic policy (defined formally below) may further improve the

heuristic in terms of cost. Two questions that we would like to consider are:
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4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0         5         10        15        20

s

q

(a) The optimal repair policy.

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0         5         10        15        20

s

q

(b) The best server-state threshold policy, within 2.63% ofoptimal.

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0         5         10        15        20

s

q

(c) The best 2-level policy, within 1.13% of optimal.

Figure 4: Optimal repair policy and heuristics for Example3.6.

• Can the non-monotonicity inq discussed in Example3.6be ignored?

• In the cases that it can be ignored, what kind of “smoothing” should be done?

If we smooth any “kinks” in the optimal policy depicted in Figure4(a), we arrive at the server-state threshold

policy in Figure4(b). If we only smooth out all but one kink in Figure4(a), we have the2-levelheuristic

policy depicted in Figure4(c) defined by two levelsℓ1 andℓ2 and a queue thresholdT : if q < T , repair

(replace) if and only ifs < ℓ1, otherwise, ifq ≥ T , repair (replace) if and only ifs < ℓ2. Note that it is not

assumed thatℓ1 ≤ ℓ2. As one may expect, the best 2-level heuristic for Example3.6 hasℓ1 = 2, ℓ2 = 3,

andT = 11. The average cost is 14.8688, 1.13% more than the optimal cost.

If the observations from this example consistently hold true, the decision-maker would be able to com-

pletely ignore the non-monotonicity inq with minimal effect on the cost. The next example shows that

this in fact is not always the case. Perhaps more importantlyit shows that restricting attention to 2-level

heuristics based on visual inspection can cause significantincreases in cost.
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4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0         5         10        15        20

s

q

Figure 5: Optimal repair policy for Example5.1.

Example 5.1 For the repair model, suppose the parameter settings are:K = 0; h = 1; λ = .3; B = 4;

µ1 = 1/2, µ2 = 1/2, µ3 = 3/4, µ4 = 1; m0 = 1/5, ms = 1/10, s ∈ {1, 2, . . . , 4}. Figure5 displays the

optimal repair policy.

The optimal average cost is 1.1612. The best server-state threshold policy hasℓ = 3 and an average cost

of 1.2200, 5.07% more than the optimal cost. As for 2-level heuristics, suppose we fixℓ1 = 1 andℓ2 = 3. It

turns out that the best 2-level heuristic with these two levels hasT = 5 and average cost of 1.3245, 14.06%

above the optimal cost. This is more than the best server-state threshold policy. In fact, the 2-level heuristic

that is best overall hasℓ1 = ℓ2 = 3, i.e., it is the best threshold policy with average cost 5.07% more than

optimal.

Recall the replacement model of Example4.1, Figure2. The optimal policy for this example has an

average cost of 1.6290. The best server-state threshold policy hasℓ = 3 and an average cost of 1.8724,

15.01% more than optimal. The best 2-level heuristic hasℓ1 = 1, ℓ2 = 3, andT = 2 with an average cost

of 1.6581, only 1.79% above optimal. The server-state threshold policy does not perform well. The 2-level

heuristic performs much better.

One might consider the 2-level heuristics to be viable alternatives to the optimal policies. However, there

are some difficulties. Example5.1 shows that choosing the 2-level heuristic by visual inspection can have

dire consequences. This coupled with the fact that computing the optimal 2-level heuristic may be more

difficult than computing the optimal policy make it less thandesirable.

In summary, there are three observations resulting from these numerical examples. First, it is important

to keep track of the workload information. Without it, important state-action pairs may be ignored. Second,

when optimal switching curves are non-monotone and decrease in q, such as in Examples3.6 and 5.1,

the effects of the decreases on the optimal average cost may be significant depending on how closely the

heuristics can smooth the optimal policies. Finally, in some situations 2-level heuristics perform significantly

better than server-state threshold policies.
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In conclusion, we have considered two models for machine maintenance: repair and replacement. For

both models we have shown in some generality that the optimalmaintenance policies have switching curve

structure. Indeed, for the repair model monotonicity in theserver state is proven for generally distributed re-

pair times. For the replacement model monotonicity ins holds for constant replacement costs and continues

to hold, under some sufficient conditions, when replacementcosts vary withs.

While the optimal policies are monotone ins, optimal repair decisions are not, in general, monotone

in q. As congestion in the system grows so may the incentive to perform maintenance. On the other

hand, there may be more incentive to repair when the system isempty compared to when there are a few

customers present. In between is where the policy remains unclear although our numerics seem to confirm

the conjecture that the policy is monotone whenq > 0. For the replacement model we can only guarantee

monotonicity inq for “large” q. Of course there is no waya priori to know whenq is large enough.

The results developed in this paper allow a decision-maker to store only the switching curve, and not

the space. As networks of single-server queues are developed, this stands to simplify the lookup table for

optimal policies and hopefully makes their implementationeasier. Finally, we would like to point out that

although the server state is assumed to be discrete, we believe that similar results could be obtained from a

continuous server state model.
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7 Appendix

7.1 Stability

In this section, fluid limit analysis and results of Dai [5] and Dai and Meyn [6] are used to prove Proposition

3.1. The result is first proved forℓ = 1. Recallφ1: do not repair until the server state processS(t)

deteriorates out of server state1 (when repair is forced), independent of the number of customers in the

system. It is assumed that all processes in this section operate under this policy; the dependence of quantities

onφ1 is suppressed.

For the analysis, it is constructive to augment the state space by a third process,R(t), the residual repair

process, defined as the time remaining until the current repair in progress at timet is completed. Define the

Markovian state of the system at timet under policyφ1 as

X(t) = (Q(t), S(t), R(t)).

WhenS(t) > 0, and a repair is not in progress,R(t) = 0. As soon as the server-state process enters state 0,

there is a jump inR(t). Assume thatR(t) is right continuous. Note that after a (random) jump to a positive

value, the trajectory ofR(t) is decreasing at rate 1 until it reaches 0 again. In between positive jumps,

the trajectory ofR(t) is deterministic. That is, it is “piecewise-deterministic.” Similar to the processes

considered in [5], {X(t), t ≥ 0} is a piecewise-deterministic Markov process, with state spaceX = {Z+ ×

{0}× [0,∞)}∪{Z+ ×{1, . . . , B}×{0}}. It follows from [8] p. 362 that{X(t), t ≥ 0} is a strong Markov

process.

For a statex = (q, s, r) ∈ X , define the norm ofx to be|x| ≡ q + s+ r. Consider the scaled process

Q̄x(t) ≡
1

|x|
Qx(|x|t),

where the superscript now denotes the dependence on the initial statex = X(0). Similar law-of-large-

numbers type scalings for other processes will also be denoted with the bar symbol. Letting|x| → ∞, any

limit point Q̄(t) is called afluid limit of the queue length process. We will show that every fluid limit is a

solution to a set of equations known as thefluid model. The fluid model is said to bestableif there exists
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a fixed timet0 such thatQ̄(t) = 0 for all t ≥ t0. That is, the fluid model is stable if the queue eventually

drains and once drained stays empty.

Let the customer inter-arrival times beξ(n), n = 1, 2, . . ., and the service requirements beη(n), n =

1, 2, . . .. Recall that it is assumed thatξ andη are sequences of i.i.d. exponential random variables with

means1/λ and 1, respectively. Let the deterioration times out of server states beγs(n), n = 1, 2, . . ., i.i.d.

random variables with mean1/ms; s ∈ {0, 1, . . . , B}. The inter-arrival times, service requirements, and

deterioration times are all mutually independent. The times γ0 are actually repair times, not deterioration

times. Define the cumulative processes

E(t) = max{n ≥ 0 : ξ(1) + ξ(2) + · · · + ξ(n) ≤ t}, t ≥ 0,

D(t) = max{n ≥ 0 : η(1) + η(2) + · · · + η(n) ≤ t}, t ≥ 0,

Zs(t) = max{n ≥ 0 : γs(1) + γs(2) + · · · + γs(n) ≤ t}, t ≥ 0, s ∈ {1, 2, . . . , B},

Z0(t) = max{n ≥ 0 : R(0) + γ0(1) + γ0(2) + · · · + γ0(n− 1) ≤ t}, t ≥ 0.

Let Y x
s (t) be the cumulative amount of time the server is in states in [0, t) given the initial statex. Then

Zs(Y
x
s (t)), s ∈ {1, 2, . . . , B}, is the number of transitions froms to s − 1 completed in[0, t). Z0(Y

x
0 (t))

is similar. LetIx
s (t) be the cumulative amount of time that there are no customers in the system while the

server state iss, and letT x
s (t) = Y x

s (t) − Ix
s (t). T x

s (t) is the cumulative amount of time that there are

customers in the system while the server state iss, by timet. LetW x(t) be the cumulative work done by

time t, so thatW x(t) = µ0T
x
0 (t) + µ1T

x
1 (t) + · · ·+ µBT

x
B(t); the fluid limit results do not requireµ0 = 0.

The definitions above imply the following system of equations:

Qx(t) = Qx(0) + Ex(t) −Dx(W x(t)), (7.1)

Qx(t) ≥ 0, (7.2)

B
∑

s=0

Y x
s (t) = t, (7.3)

T x
s (t) + Ix

s (t) = Y x
s (t), s = 0, 1, . . . , B, (7.4)

W x(t) =

B
∑

s=0

µsT
x
s (t), (7.5)

Y x
s (t), Ix

s (t), T x
s (t), andW x(t) are non-decreasing and start from 0, (7.6)
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∫ ∞

0
Qx(t)d

(

B
∑

s=0

Ix
s (t)

)

= 0, (7.7)

|[Zs(Y
x
s (u)) − Zs(Y

x
s (t))] − [Zl(Y

x
l (u)) − Zl(Y

x
l (t))]| ≤ 1, t ≤ u, s, l ∈ {0, 1, . . . , B}. (7.8)

Note that (7.7) is the non-idling constraint and guarantees that the idle time increases only if the total queue

length is zero. The constraints (7.8) result from the cyclic nature of the deteriorations and repairs under the

policy that only repairs when the machine fails. They followsince over any interval of time, the number of

transitions out of server states differs from the number of transitions out of any other server statel by at

most 1 (recall the definition ofφ1). These constraints are similar to constraints for pollingmodels presented

in [6].

The next proposition, a variant of Theorem 4.1 in [5], presents the fluid model and establishes conver-

gence of the scaled processes. This convergence isuniform on compact sets (u.o.c).

Proposition 7.1 The following holds with probability one. For any sequence of initial states{xj} ∈ X with

|xj | → ∞ andR̄xj(0) → 0, there exists a subsequence{xi}, {i} ⊆ {j}, with |xi| → ∞ such that

(Q̄xi(0), S̄xi(0), R̄xi(0)) → (Q̄(0), 0, 0), (7.9)

(Q̄xi(t), T̄ xi(t), Ȳ xi(t)) → (Q̄(t), T̄ (t), Ȳ (t)) u.o.c., (7.10)

where(Q̄(t), T̄ (t), Ȳ (t)) satisfies the following set of equations:

Q̄(t) = Q̄(0) + λt− W̄ (t), (7.11)

Q̄(t) ≥ 0, (7.12)

B
∑

s=0

Ȳs(t) = t, (7.13)

T̄s(t) + Īs(t) = Ȳs(t), s = 0, 1, . . . , B, (7.14)

W̄ (t) =

B
∑

s=0

µsT̄s(t), (7.15)

Ȳs(t), Īs(t), T̄s(t), andW̄ x(t) are non-decreasing and start from 0, (7.16)

∫ ∞

0
Q̄(t)d

(

B
∑

s=0

Īs(t)

)

= 0, (7.17)

ms

[

Ȳs(u) − Ȳs(t)
]

−ml

[

Ȳl(u) − Ȳl(t)
]

= 0, t ≤ u, s, l ∈ {0, 1, . . . , B}. (7.18)
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Proof: Notice that 1
|xj|

Qxj(0) ≤ 1, 1
|xj|

Sxj(0) ≤ 1, 1
|xj|

Rxj(0) ≤ 1, so there exists a subsequence

along which each of these converge. Also note,0 ≤ Sxj(0) ≤ B, so limSxj/|xj | → 0 as expected.

Therefore, there exists a subsequence|xi| → ∞ such that (7.9) holds. For any0 ≤ t1 ≤ t2, and each

s, we have0 ≤ Ȳ x
s (t2) − Ȳ x

s (t1) ≤ t2 − t1. That is, {Ȳ x
s (t), |x| ≥ 1} is uniformly Lipschitz, and

hence equicontinuous. Settingt1 = 0 andt2 = t yields uniform bounds0 ≤ Ȳ x
s (t) ≤ t. Therefore, by

the Arzelá-Ascoli theorem, any subsequence ofȲ x
s (t) has a u.o.c. convergent subsequence. The families

{T̄ x
s (t), |x| ≥ 1} and{Īx

s (t), |x| ≥ 1} can be shown to have a u.o.c. convergent subsequence in the same

manner. Similar to the proof of Lemma 4.2 in [5] we have

Ē(t) = λt, (7.19)

D̄(t) = 1t, (7.20)

Z̄s(t) = mst, s ∈ {0, 1, . . . , B}. (7.21)

Equation (7.11) follows from (7.19), (7.20), and (7.1), where the random time change is valid by Theorem

5.3 of [4]. From (7.8), [Zs(Y
x
s (u)) − Zs(Y

x
s (t))] differs from [Zl(Y

x
l (u)) − Zl(Y

x
l (t))] by at most one.

In the fluid limit, this difference is negligible. Therefore, (7.18) follows from (7.8) and (7.21); again, the

random time change is valid by Theorem 5.3 of [4]. Equations (7.12)–(7.16) are a consequence of (7.2)–

(7.6) and (7.17) follows from (7.7) and Lemma 4.4 of [5].

The remainder of this section is dedicated to completing theproof of Proposition3.1.

Proof of Proposition 3.1. First consider the caseℓ = 1. We want to show that the fluid model forφ1

is stable. The non-idling constraint (7.17) implies that whenQ̄(t) > 0, Īs = 0 for all s. Hence, when

Q̄(t) > 0, from (7.14), Ȳs(t) = T̄s(t), s ∈ {0, 1, . . . , B}. BecauseT̄s(t), Īs(t), andȲs(t) are Lipschitz

continuous, they are absolutely continuous and differentiable almost everywhere. Taking the derivative

with respect tot, ˙̄Ys(t) = ˙̄Ts(t) whenQ̄(t) > 0. From (7.18) it follows thatms
˙̄Ys(t) = ml

˙̄Yl(t), which

impliesms
˙̄Ts(t) = ml

˙̄Tl(t), s, l ∈ {0, 1, . . . , B}. Substituting into (7.13) gives ms

m0

˙̄Ts(t)+ ms

m1

˙̄Ts(t)+ · · ·+

ms

mB

˙̄Ts(t) = 1, or ˙̄Ts(t) = (1/ms)(1/m0 + 1/m1 + · · · + 1/mB)−1, s ∈ {0, 1, . . . , B}. So, from (7.11),

for Q̄(t) > 0,

˙̄Q(t) = λ−

B
∑

s=0

µs/ms

1/m0 + 1/m1 + · · · + 1/mB
.
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The fluid limit of the queue length process drains when˙̄Q(t) < 0. The queue will drain when (3.11) holds

for ℓ = 1. Furthermore, under (3.11) with ℓ = 1, Lemma 5.2 of [5] implies that once the fluid limit is

drained, it will remain drained. Therefore, the fluid model is stable.

It follows from Theorem 4.2 of [5] that {X(t), t ≥ 0} is positive Harris recurrent and a stationary

distribution exists if the sublevel set{x : |x| ≤ κ} is a petiteset for anyκ > 0. The proof of this fact

follows in much the same manner as Lemma 3.7 of [20] and is omitted for brevity; the interested reader is

referred to [16], Lemma 3.5 for complete details.

Since{X(t), t ≥ 0} is positive recurrent, so is the semi-Markov process (SMP) induced by the policy

φ1. Moreover, since the transition rates are bounded below, the embedded (discrete-time) Markov chain is

also positive recurrent. Irreducibility and aperiodicityof this Markov chain are trivial.

It remains to show thatgφ1 < ∞. Using the same analysis for the residual service times in [6] for the

repair processR(t), we get from Theorem 4.1 of [6] that lim supt→∞
E

φ1
∫ t

0
Q(u)du

t
< ∞. Since we have

linear holding costs, the long-run average holding cost rate is finite. The long-run average number of repairs

is less than the long-run average number of renewals for a renewal process with average inter-arrival time

1/m0. This together with the assumption thatK <∞ imply gφ1 <∞ as desired.

The result forℓ > 1 follows by simply relabeling states 1 and 0 in the analysis above asℓ andℓ − 1,

respectively. The states withs ∈ {0, 1, . . . , ℓ − 2}, for which repair is chosen, are transient since they are

visited at most once. Since the amount of time spent in one of these transient states is finite with probability

1, the long-run average cost for starting in a transient state is the same as it is for starting in any recurrent

state.

7.2 Replacement Model Properties

Proof of Lemma 4.8. The proof is by induction onn. Forn = 0, v0,θ(q, s) − v0,θ(q + 1, s) = 0; (4.14)

holds. Assume that (4.14) holds forn. Considern+ 1. Fors ∈ {1, 2, . . . , B},

fn+1,θ(q, s) − fn+1,θ(q + 1, s)

= (θ + 1)−1
[

− h+ λ(vn−1,θ(q + 1, s) − vn−1,θ(q + 2, s))

+ µs(vn−1,θ((q − 1)+, s) − vn−1,θ(q, s)) +ms(vn−1,θ(q, s− 1) − vn−1,θ(q + 1, s − 1))

+ (1 − λ− µs −ms)(vn−1,θ(q, s) − vn−1,θ(q + 1, s))
]

≤ 0,
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where the inequality follows by the induction assumption. Hence, (4.15) holds forn + 1 given that (4.14)

holds forn. This implies, fors = 0,

vn+1,θ(q, 0) − vn+1,θ(q + 1, 0) = fn+1,θ(q,B) − fn+1,θ(q + 1, B) ≤ 0.

Fors ∈ {1, 2, . . . , B},

vn+1,θ(q, s) − vn+1,θ(q + 1, s)

= min {fn+1,θ(q, s),K(s) + fn+1,θ(q,B)} − min {fn+1,θ(q + 1, s),K(s) + fn+1,θ(q + 1, B)}

≤ max {fn+1,θ(q, s) − fn+1,θ(q + 1, s), fn+1,θ(q,B) − fn+1,θ(q + 1, B)}

≤ 0,

since (4.15) holds forn+ 1. Hence, (4.14) holds forn+ 1. Therefore, by induction, (4.14) and (4.15) hold

for all n ≥ 1.

Proof of Lemma 4.9. The proof is by induction onn. Forn = 0, v0,θ(q, s) − v0,θ(q, s − 1) = K(s) −

K(s− 1); (4.16) holds. Assume that (4.16) holds forn. Considern+ 1. Fors ∈ {2, 3, . . . , B − 1},

fn+1,θ(q, s) − fn+1,θ(q, s− 1)

= (θ + 1)−1
[

λvn,θ(q + 1, s) + µsvn,θ((q − 1)+, s) +msvn,θ(q, s − 1)

+ (1 − λ− µs −ms)vn,θ(q, s) − λvn,θ(q + 1, s − 1) − µs−1vn,θ((q − 1)+, s − 1)

− ms−1vn,θ(q, s− 2) − (1 − λ− µs−1 −ms−1)vn,θ(q, s− 1)
]

≤ (θ + 1)−1
[

λ(vn,θ(q + 1, s − 1) + [K(s) −K(s− 1)])

+ µs(vn,θ((q − 1)+, s − 1) + [K(s) −K(s− 1)]) +msvn,θ(q, s − 1)

+ (1 − λ− µs −ms)(vn,θ(q, s− 1) + [K(s) −K(s− 1)])

− λvn,θ(q + 1, s − 1) − µs−1vn,θ((q − 1)+, s− 1) −ms−1vn,θ(q, s− 2)

− (1 − λ− µs−1 −ms−1)vn,θ(q, s− 1)
]

,

where the inequality follows from the induction assumption. After again applying the induction assumption,

this expression reduces to

fn+1,θ(q, s) − fn+1,θ(q, s− 1) ≤ (θ + 1)−1
[

(µs − µs−1)(vn,θ((q − 1)+, s− 1) − vn,θ(q, s− 1))

+ ms−1[K(s− 1) −K(s− 2)] + (1 −ms)[K(s) −K(s− 1)]
]

.
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SinceK(s) is convex,K(s− 1) −K(s− 2) ≤ K(s) −K(s− 1), and

fn+1,θ(q, s) − fn+1,θ(q, s − 1) ≤ (θ + 1)−1(µs − µs−1)(vn,θ((q − 1)+, s− 1) − vn,θ(q, s − 1))

+ (θ + 1)−1(1 − (ms −ms−1))[K(s) −K(s− 1)]. (7.22)

The first term on the right hand side of (7.22) is non-positive by (4.14) andµs ≥ µs−1. Hence,

fn+1,θ(q, s) − fn+1,θ(q, s − 1) ≤ (θ + 1)−1(1 − (ms −ms−1))[K(s) −K(s− 1)]. (7.23)

Whenms−1 ≥ (≤)ms + θ, (θ+1)−1(1− (ms −ms−1)) ≥ (≤) 1. So, under either Condition 1 or 2, (4.17)

holds forn+ 1 given that (4.16) holds forn.

To complete the proof, we need to show that (4.16) holds forn+ 1. Fors = 1,

vn+1,θ(q, 1) − vn+1,θ(q, 0) = min{fn+1,θ(q, 1),K(1) + fn+1,θ(q,B)} −K(0) − fn+1,θ(q,B)

≤ K(1) −K(0).

Fors ∈ {2, 3, . . . , B − 1},

vn+1,θ(q, s) − vn+1,θ(q, s − 1)

= min{fn+1,θ(q, s),K(s) + fn+1,θ(q,B)} − min{fn+1,θ(q, s− 1),K(s − 1) + fn+1,θ(q,B)}

≤ max{fn+1,θ(q, s) − fn+1,θ(q, s− 1),K(s) −K(s− 1)}

≤ K(s) −K(s− 1),

where the last inequality follows since (4.17) holds forn+ 1. Hence, (4.16) holds forn+ 1. Therefore, by

induction, (4.16) and (4.17) hold for alln ≥ 1.
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