Macroscope: End-Point Approach to Networked
Application Dependency Discovery

Lucian Popa Byung-Gon Chun lon Stoica
University of California Intel Labs Berkeley University of California
Berkeley byung-gon.chun@intel.com Berkeley
popa@cs.berkeley.edu istoica@cs.berkeley.edu

Jaideep Chandrashekar
Intel Labs Berkeley

jaideep.chandrashekar @intel.com

ABSTRACT

Enterprise and data center networks consist of a large number of
complex networked applications and services that depend upon each
other. For this reason, they are difficult to manage and diagnose. In
this paper we propose Macroscope, a new approach to extracting
the dependencies of networked applications automatically by com-
bining application process information with network level packet
traces. We evaluate Macroscope on traces collected at 52 laptops
within a large enterprise and show that Macroscope is accurate in
finding the dependencies of networked applications. We also show
that Macroscope requires less human involvement and is signifi-
cantly more accurate than state of the art approaches that use only
packet traces. Using our rich profiles of the application-service
dependencies, we explore and uncover some interesting character-
istics about this relationship. Finally, we discuss several usage sce-
narios that can benefit from Macroscope.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions

General Terms

Design, Measurement

Keywords

Application dependencies, end-point tracing

1. INTRODUCTION

Today’s enterprise networks and datacenters are extremely com-
plicated entities, running a large number of interdependent appli-
cations and services. A recent survey stated that companies such
as Citigroup and HP run applications in their networks, number-
ing in the thousands [2]. While this sheer number is remarkable,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CoNEXT’09, December 14, 2009, Rome, Italy.

Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

229

Nina Taft
Intel Labs Berkeley
nina.taft@intel.com

the actual complicating issue is the manner in which they are cou-
pled to each other. For example Microsoft Outlook, ostensibly an
email client, depends on services such as AD (active directory),
LDAP, DNS, network proxies, among others. When users in the
network cannot “see their email”, what should the network admin-
istrator look at? The key challenge facing these complicated de-
ployments is management related. It is estimated that up to 70%
of an enterprise’s IT cost goes toward maintenance and configura-
tion costs [15], i.e., tasks such as fault localization, performance
debugging, reconfiguration planning and dependency analysis.

Discovering (or mapping) dependencies between applications and
services has been recognized previously as an important task [5, 6,
9,12]. In much of this work, the dependency discovery task has re-
lied solely on network-level packet trace data, i.e., traces collected
in the network. For example, Sherlock [5] uses the time correlation
of packets between different services (in particular, the number of
co-occurrences in some time interval), and Orion [9] uses the spikes
of delay distribution of flow pairs. Using this data is advantageous
in some ways; it can be collected quite easily, without any impact
on the end-hosts. However, there are several limitations, described
below, of using only this data to extract the application and service
dependencies.

First, these techniques can be quite imprecise. Timing correla-
tions between independent services can create the illusion of causal-
ity, leading to false positives. Also, when background traffic per-
turbs the timing of network packets, or if there is a high variation
temporally in how the packets are observed, false negatives can
occur. Second, approaches solely based on packet traces cannot
uncover dependencies when the communication patterns are very
dynamic or infrequent; this is because the dependency extraction
methods require a large number of samples to converge. Third,
when only packet traces are used, some human intervention is re-
quired to extract the dependencies correctly. To state this differ-
ently, existing methods require some seed ground truth to extract
the application dependencies, in order to connect application level
information with the network level traces. This lays the accuracy
of the extracted dependencies completely at the feet of the human
operator.

In this paper, we propose a new approach to extracting the depen-
dencies of applications automatically. In contrast to previous meth-
ods, our approach involves a small amount of instrumentation at
the end-hosts. Specifically, we collect information at the end-hosts
about the particular applications that are generating network traffic
and join this with network packet traces. Further, we correlate this
information from multiple end-hosts to arrive at the application de-
pendencies. We argue that this extra information, which basically

serves to replace the human knowledge required to seed the de-
pendencies (in previous methods), can be easily collected and is
more reliable. For example, contemporary enterprise deployments
already feature a host of security and monitoring features installed
on end-hosts and it would be easy to add (lightweight) application
tracing code to these systems.

We present Macroscope, a system that automatically extracts
networked application dependency using network-level and appli-
cation level information. Macroscope consists of three compo-
nents: Tracers, a Collector, and an Analyzer. Tracers run on indi-
vidual end-hosts and log application-level process information by
periodically sampling TCP/UDP connection tables and join this in-
formation with network level packet traces. This allows individ-
ual network flows to be associated with the generating application.
These processed traces are then shipped to a centralized Collector.
The co-located Analyzer correlates the traces across the population
of end-hosts to finally extract the dependencies with various prop-
erties as will be described in later sections.

The extracted dependencies are critical for a number of manage-
ment related tasks: (1) they can aid in fault diagnosis by enumer-
ating all the key services used by an application, which allows the
network operators to focus on the relevant servers and services; (2)
the dependencies allow network operators to understand the impact
of any outages (planned or not) and to place resources to maxi-
mize utility; (3) learning the temporal dependencies of an appli-
cation can help operators determine the correct order in which to
restart services (many web services today are composed of a num-
ber of services, and ordering is critical) ; (4) knowing the correct
dependencies for an application can aid with detecting anomalies in
the application or service (some malware is known to replace ex-
isting executables with custom versions which make connections
not normally associated with the application). There are far more
compelling usage scenarios, where being able to discover and enu-
merate the application dependencies is a crucial step, than we can
enumerate here. However, we do revisit some of these in Section 5
and provide specifics of how the learned dependencies can be used.

We summarize the key contributions of this paper:

e We propose Macroscope, a novel method to identify the service-

level dependencies that applications rely on. We define a no-
tion of static dependencies and present a practical method for
extracting them. Our method uses application level data in
conjunction with network-level traces, to build application-
service dependency graphs at multiple levels of granularity.

e We evaluate our methodology with traces collected at 53 en-
terprise end-hosts. We show that Macroscope is accurate in
detecting application dependencies and that it outperforms
by a wide margin a state-of-the-art application dependency
extraction system that uses only packet traces (Orion [9]).
This quantifies the gains of bringing application level infor-
mation into the problem of dependency inference.

e With our rich profiles of the application-service relationship,
we carry out some exploratory assessment of over 150 appli-
cations. We uncover some interesting findings about these
relations, such as an elephants and mice phenomenon for
application-service dependencies, a surprisingly large num-
ber of single-service applications, and others. Finally, we
describe several management applications that could exploit
these properties for greater effectiveness.

The rest of this paper is organized as follows. Section 2 presents
Macroscope’s approach. Section 3 presents Macroscope’s system

230

architecture and the algorithms it implements. We evaluate Macro-
scope in Section 4, discuss a set of usage scenarios in Section 5 and
related work in Section 6, and finally conclude.

2. MACROSCOPE APPROACH

2.1 Dependency Definitions

We use the term application, denoted (app), as an application
executable (and assume the name is consistent across all the end-
hosts). An application instance refers to the application being run
on a particular end-host; we represent it by the tuple (app, PID,
IP), where PID is the process identifier and I P is the machine
network address. We break down the PI D instances by the I P to
increase the number of application instance samples. For example,
a process active for multiple days can be seen as a new instance
each new work day (e.g., user logs in the application) and we ap-
proximate this behavior by using IPs. We ignore the reuse of the
same PID as the process identifier space is quite large.

An application may use one or more services; the latter is identi-
fied by the tuple (protocol, port). Common services include DNS,
LDAP, HTTP, etc. A service instance is identified by the tuple
(IP', protocol, port), where I P’ represents the address of the ma-
chine on which it is running.

Next we define a dependency (or relation), which is an associ-
ation between one application and one service. A naive approach
would be to define the use of any service as a dependency (i.e., an
established connection to the service from the application); how-
ever, this definition is overly broad. Ideally, we want dependencies
to capture the “critical” services of an application, i.e., the services
that are used frequently and whose reachability predicts the success
or failure of the application. Knowing such dependencies can help
to locate faults and to improve application performance (e.g., by
replicating more of the critical and frequently used services). To
approximate this set of desirable associations, we introduce the no-
tion of a static dependency. Application app has a static depen-
dency on service S if the usage of S can be predicted before exe-
cuting app: (1) independently of user actions or other application
instances and (2) using only the application’s source code and con-
figuration files.'

A static dependency is denoted as the relation (app) — (protocol,
port). We name the relations of this type which do not represent
static dependencies as transient relations. To clarify, connections to
ephemeral ports, or to ports that are dynamically generated reflect
transient relations. Compared to static dependencies, the services
corresponding to transient relations are typically not actively man-
aged by the enterprise and their use is limited to a few application
instances. For these reasons, transient relations are less well-suited
than static dependencies for detecting faults, planning enterprise
resources and understanding application behavior.

By removing all connections pertaining to transient relations out
of the set of all the connections established by the application, we
can arrive at the set of static dependencies. In this paper we develop
simple heuristic methods to extract the (static) dependencies from
packet traces and application context data.

Multilevel Dependencies: Static dependencies provide a high-level

view of the interactions between applications and services. How-
ever, relations at a lower granularity are often useful. For this pur-

'In the context of this paper, the services corresponding to static
dependencies can be seen as actively managed by the enterprise
(as we shall see in §4, applications cannot directly communicate
outside our enterprise).

Application

Application !
instance

instance

Service .
Service

®(app1,pidl,ip1)
p(@pp2,pid2,ip1)

(ip1', port1,protocoll) &
(ip1', port2, protocol2)q

port1, protocoll

®app1, pid3,ip2)
®(app2,pidd,ip2)

»(ip2',port1, protocoll)e
’(ip2' ,port2, protocol2) e

port2, protocol2

'(ip2' ,port3, protocol3)
(ip3', port3, protocol3) e port3, protocol3

Figure 1: An example showing dependencies between applications and services. An oval represents an application or a service, and
a rectangle represents a host that may run multiple applications or services.

pose, we define the following levels of granularity of the relation
between applications and services:

1. app — (protocol,port); this captures the top level static
dependencies.

2. app — (IP’, protocol, port), specifies the individual ser-
vice instances used by an application.

3. (app, PID,IP) — (protocol, port), captures the general
services used by a specific application instance.

4. (app, PID,IP) — (IP',protocol, port), this finest level
of granularity captures the service instance used by a partic-
ular application instance.

Figure 1 illustrates an example for two applications, each with
two application instances, and three services, each with two in-
stances. There are no transient connections in this example. Static
dependencies are the connections between the applications and the
services (first and last columns). The connections between the ap-
plication instances in the second column and the service instances
in the third column belong to the level four above.

Conversely, the relation between applications and services can
also be regarded from the perspective of services, such as the appli-

cations that use one (or several) service(s), i.e.the mapping (protocol,

port) — app.

We point out that some static dependencies may actually hide
numerous distinct services offered on the same port; these ser-
vices can be offered by multiple hosts, which can belong to differ-
ent enterprises (in this cases the destination IPs could be viewed
as "ephemeral"”). The most striking example of this type is the
(tecp,80) HTTP service. Such static dependencies may be less
effective for the administrative purposes of fault isolation and re-
source planning; to help administrators, Macroscope can present
only the dependencies with intra-enterprise service instances. More
generally, in the future, we plan to consider aggregations of desti-
nation IPs, such as in [11], in which particular destination IPs are
grouped together to capture the service they represent. In an enter-
prise, an example would be “mail.intel.com”.

Dependency Profiling: In the dependency graph, each dependency
can also have associated a weight, such as the usage frequency (the
fraction of the application instances that use that dependency) or the
traffic volume on that dependency. Depending on usage scenarios,
we can use a different metric for the weights.

Finally, we can define a number of temporal relationships on the
dependencies. In this paper, we only consider the Causal Order
relation, defined as follows. Dependency A of application app

231

is “causally ordered before” dependency B if A is often accessed
before B by instances of app, and the accesses of A and B oc-
cur within a short time window W. Note that the remote-remote
dependency definition used in Orion [9] is similar to the relation
defined above. Unlike this definition, Orion does not consider the
flow directionality; in Macroscope, dependencies are always flows
initiated by the application to the service.

2.2 End-point Tracing vs Network Tracing

Macroscope’s approach of recording application context at end-
hosts has two important advantages over the approaches that use
only in-network monitoring for this purpose: (1) it is fully auto-
matic and (2) it is more accurate. The price we pay is the required
instrumentation of end hosts and the overhead incurred upon them.
However, although CPU and memory usage statistics were not col-
lected along with the traces used in this paper, qualitatively no user
noticed any slowdown in their machines.

Fully Automatic: By capturing the application names when sam-
pling the connection table, Macroscope can correctly associate ap-
plications with the connections being generated (and consequently,
accurate determine the application-service dependencies). In con-
trast, with approaches that solely rely on packet traces from the
network, the application information is supplied by a human who
seeds a small number of application-service dependencies (the de-
pendencies are grown transitively). Interestingly, we show in Sec-
tion 4 that many applications have only a single static dependency;
in these cases, automation serves no purpose for the approaches
using only packet traces.

Improved Accuracy: Macroscope detects more of the actual de-
pendencies. Previous works such as Orion [9] and Sherlock [5],
rely on relations between dependencies for their detection. In gen-
eral, this approach can only detect a subgraph of the real depen-
dency graph (i.e., only those dependencies that exhibit that par-
ticular relation can be detected); this detection is also quite noisy,
since it relies on co-occurrences in a timed window. In contrast,
the detection approach that we present in this paper, captures de-
pendencies of an application with high accuracy, regardless of their
relations to other dependencies. This detection is more accurate
even for the detecting dependencies with relations between them
because we can identify which are connections of the same appli-
cation.

Macroscope also reduces the rate of false positives (i.e., fake de-
pendencies). For example, Orion detects application dependencies
by hand picking a set of known (seed) dependencies, and finds other
services that are orderly dependent on these seeds (Orion uses a sin-

Host1
Central site
Host2
Bl | CEoPR D
Host m

Figure 2: Macroscope system architecture.

gle seed dependency). It is easy to see how this type of detection
can go wrong: assume application app has dependencies A and B
ordered, and application app ' has dependencies X and B ordered;
hand picking service B as a seed dependency for app may lead to
the wrong conclusion that app is also using X. Also, some applica-
tions have no “specific” service dependency; for example the win-
dows executable searchprotocolhost.exe, accesses only well known
services (Active Directory, EPMAP, DNS and Web). This situation
is almost guaranteed to lead to false positives (and potentially false
negatives) since these services are used by multiple applications
with other dependencies.

3. MACROSCOPE

We now describe the architecture, dependency extraction algo-
rithms, and prototype implementation of Macroscope.

3.1 System Architecture

Figure 2 shows the overall architecture or Macroscope, which
consists of Tracer, Collector, and Analyzer.

Tracer: The Tracer runs on end-hosts and has two components:
one that periodically samples and logs the OS connection table
and one that captures and logs packets. We have implemented the
Tracer for enterprise specific laptops running Microsoft Windows
XP.

The Tracer samples the TCP and UDP tables and appends this
information to a file. The sample contains the time of sampling,
application-level information such as application name and pro-
cess id and connection tuples (protocol, ports). The Tracer sam-
ples every five seconds using the GetExtendedTcpTable and
GetExtendedUdpTable calls. For UDP, the remote endpoint
is detected from the packet traces. The Tracer stores the data in
XML files.

The Tracer also captures packet level traces using WinPcap [3].
We collected the packets on the end-hosts because the data col-
lection effort supported multiple research projects, some of which
needed host mobility information. We point out that there are other
ways to implement the packet tracing component of Macroscope.
If the goal is to focus on dependencies that occur for applications
used in the enterprise setting, then packet traces could alternatively
be captured by network monitors located inside a corporate net-
work. Moreover, Macroscope does not require a strict time syn-
chronization between the in-network capturing device and the end
hosts because the reutilization of ports opened by clients is done on
a very large time scale (e.g., hours) and these are actually used to
synchronize the packet traces with the connection table samples.

Collector: The Collector aggregates data received from multiple

232

hosts and joins the application-level data with the network level
data. It first constructs flows (TCP/UDP sessions) from the packet
traces using Bro [1]. It then combines the data in the XML connec-
tion table samples with the flow data by joining connection tuples.
This data is used for analysis.

Analyzer: The Analyzer consists of a set of tools (implemented
in Python) for extracting dependencies, querying dependencies and
producing graphical visualizations of the dependencies. These are
detailed in the next section. Macroscope can visualize the static de-
pendencies at each of the level of granularities defined in Sec. 2.1,
for a single application or for a group of applications. In addi-
tion, we can produce visualizations of the dependencies weighted
by their usage frequency or traffic volumes, and depict the temporal
evolution of dependencies.

Caveats of sampling: Our design that samples application-level
data at end hosts has interesting tradeoffs. By increasing sampling
frequencies, we can obtain more accurate snapshots of application-
level data but this incurs higher resource overhead at end hosts.
With the five-second sampling period, the overhead is negligible,
but this sampling approach has some caveats.

First, the sampling can miss very short-lived flows. To compen-
sate for the loss of accuracy, we use simple statistic tools as shown
in the next section. Second, the connection sampling may hide in-
formation about the actual application. An application can use fork
such that the same application appears as having different types of
dependencies. Plug-ins (e.g., browser plug-ins) may also make ap-
plication dependencies vary from one instance to another. Also,
some connections could be delegated by applications to local OS
demons acting as proxies (e.g., some applications delegate DNS
queries to the Isass service).

Despite these caveats, the evaluation presented in Section 4 shows
that Macroscope achieves good performance for detecting applica-
tion dependencies.

3.2 Algorithm to Identify Static Dependencies

We now describe our algorithm for identifying the static depen-
dencies of an application. The inputs to this algorithm are all the
(sampled) connections outgoing from the application (the 5 tuple
connection information on IPs, ports, and protocol), along with the
process ID (PID) and the user identifier of the application instance
that initiated the connection.

We use a two-step algorithm. In the first step we classify appli-
cations into one of two types: either it only generates connections
produced from static dependencies, or it generates connections be-
longing to both static dependencies and transient relations. Appli-
cations that use transient connections are those that use ephemeral
ports and/or peering connections such as in P2P applications. It
turns out that we do have a number of applications with none, or
very few, transient connections. We separate our applications into
these two classes for the following reason. Those applications that
generate connections from both static dependencies and transient
relations will require a second processing step in which the tran-
sient and static components are further separated. However those
falling into the class that has only static dependencies need no fur-
ther processing in terms of identifying the static dependencies be-
cause all of the dependencies in this class are static.

The second step of our algorithm takes the data from the appli-
cations with connections arising from both static dependencies and
transient relations, and tries to distinguish them. To do this, we
make use of usage frequency information (defined below). A cen-
tral idea is that we assume that static dependencies are common
across instances of the same application, whereas transient con-
nections are not. We believe that our traces are large enough (in

number of application instances and users) so as to have enough
samples to differentiate these cases quite accurately. For example,
static dependencies use the same port every time while transient
connections typically use ephemeral ports. Frequently ephemeral
ports are randomly assigned (although not always) and thus their
usage frequency can be as low as 1/(#ephemeral ports) (the
number of ephemeral ports can be as high as 60,000) whereas the
port usage frequency for static dependencies will typically be much
higher.

Classifying applications: To separate our applications into the
two classes described above, we use the following simple approx-
imation method. Let N“ be the number of instances of applica-
tion ‘a’ in the traces, that we compute by counting the number
of distinct (PID,IP) tuples for a. N¢ denotes the number of
instances of N that used service s where s refers to a specific
(port, protocol) pair. Let S* denote the total number of services,
or (port,protocol) pairs observed by all instances of application
a in all the traces. We now define V) = N — N¢ to capture
the number of application instances that did not use service s. We
define the metric M“ tobe M* = /Y _(Va)?/Se.

This metric can be interpreted as follows. When all application
instances use all services, then M = 0. The larger M“ is, the
farther away the application is from being one with purely static
dependencies, i.e. it is more and more dominated by transient con-
nections. The maximum value of M“ = N“ — 1 occurs when each
service is used only once by one of the application instances. Note
that M * rapidly increases when transient connections are used. For
example, suppose each instance of an application a uses the same
10 static dependencies and has only 1 transient connection. Then
each of the transient connections will have its own variable entry
Vs and the value of M* will easily explode for traces with many
application instances.

We compute M*® for each application. We classify an applica-
tion as having only static connections, if M * lies below a threshold
defined as follows. Since M“ ranges from 0 to N — 1, we say that
if M* < T (N @ — 1) where T is a percentage, then the application
has no transient relations. For the value of 7" we use 85%. In Sec-
tion 4 we show that our classifying heuristic is somewhat resilient
to the value of the threshold 7', and thus we need not worry about
fine tuning its value. Clearly this heuristic does not mandate that
the number of transient connections for such applications needs to
be exactly zero. Our heuristic may still classify an application as
having only static dependencies even if a small number of transient
connections are made or if these are used by a lot of the application
instances. Labeling transient relations as static dependencies will
result in false positives for our method. But as we will see in Sec-
tion 4, Macroscope has very few false positives and there are quite
a number of applications with zero transient relations.

There are a variety of heuristics that could be defined to carry out
this step (e.g., set a threshold for the maximum number of static
dependencies, an application with more distinct service usage is
labeled as having transient connections); however, the one here is
intuitive, simple and works well.

Identify Static Dependencies: Having identified those applica-
tions that contain essentially only static dependencies, we can re-
move them from further dependency analysis. We now focus only
on the applications that generate connections due to both static de-
pendencies and transient relations. We extract the static dependen-
cies using the following method. First, we consider all services
listening on ports below 1024 as static dependencies (regardless of
their usage frequency). This is because these ports are not typically
used as ephemeral ports and thus there is a high likelihood that

233

these represent known maintained services. Second, any remaining
services, ie., (port, protocol) tuples, are labeled as static if they
satisfy two criteria on usage frequency.

Let U denote the set of all users, and U C U are the
users that employ application a. U C U® represent the users
that have connected to service s through application a. We label
application a as having a static dependency on service s, if both of
the following hold:

a a
U] >U and N >7T
Ul °

U and I are two thresholds. In our implementation, we picked
10% as the relative threshold for these two ratios. This value was
derived experimentally and works quite well for our data. However,
we also show in Section 4 that the method is not very sensitive to
this parameter.

We use both of these criteria for the following reasons. If we
considered application instances only, then a single user, that fre-
quently used a particular application could bias the ratio N¢/N*®
by generating a huge number of instances that use a particular ser-
vice. For example, such a user could contact a particular peer often,
and that peer can spuriously appear as a dependency (false positive)
if it is using the same ephemeral port to provide peering service. To
avoid this, we require that a minimum of users use the application
and the service as well. We elect not to employ user frequency
only since this detection can be inaccurate with long traces. When
using long traces, the same transient connection can occur in multi-
ple traces (since there is a finite number of ephemeral ports), which
would also result in false positives.

Adjustments due to sampling: Macroscope’s method of period-
ically sampling the connection table can miss very short connec-
tions. Thus, the usage frequency of short connections will be af-
fected, possibly leading to an undesired bias towards mislabeling
short connections as transient connections. For this reason, we
use an updated value for the usage frequency of a service based
on its detection probability (i.e., probability of being sampled by
the Tracer in the connection table). The detection probability is
dictated by the length of the connection to the service. If the av-
erage connection duration is d and Macroscope’s connection table
sampling period is W > d, we define the detection probability
pa = d/W. For those connections shorter than W, we boost the
usage frequency (ratio of instances using a service) by 1/pq. We
only apply this adjustment if multiple samples of the service us-
age are available, to avoid spurious boosts. This approach may be
slightly over-boosting when dependencies are regularly used mul-
tiple times by each instance, but this is acceptable since such de-
pendencies are likely to be static ones.

4. EVALUATION

The data traces used in this paper were captured on 52 employee
laptops (assigned to individual owners) in a large enterprise over
a period of 11 weeks. All the instrumented systems ran a stan-
dard corporate build of Windows XP SP2. Each of these systems
had a suite of enterprise applications (security and management re-
lated) installed on them. Users are free to install additional software
on their systems with the exception of p2p applications, which are
banned, except Skype. Data collection on the laptops proceeded
even as the users moved between home and work. Correspond-
ingly, trace files correspond to one of three modes: (i) inside the
corporate network, (ii) outside, but connected to the VPN and (iii)
outside and not on the VPN. Since we are chiefly interested in sce-

Web (80) LDAP AD (389)

Proxy Discovery (9090) \ l>(':t|ve Blecopiiozs)
—

Communicator.exe

SIP over TLS (5061) ¥ |\ proxy Service (911)

HTTPS (443)

\

EPMAP (135)

(a)
\ / \\4{\\\\4] \\/ MM ‘\\,

; WM,

Wiy

i) /éf)}’&" "":g'«: \&\\
R
WOV

o KR
.’ :.) ‘NV'\“ "~
AR
‘ ,%: /) iy ;Xw\c i§\ (\\
NN

"‘
f.\w.w %zé%%a?é‘ f ‘
{ ,,«,,*'\v',«‘««r,‘m\
TR
NN
N
)

\/\7

1
BigFix AD"logon

(©)

| I
LﬁP AD EPMAP

BigFix service(63422)

47‘4";\

BESClient.exe

EPMAP (135)
/‘2‘8%

4449%'/
Active Directory (1025)

1.7%

.4

LDAP AD (389)
AD logon and directory replication(1026)

(b)
Y
N
W

LY

il
‘«(
KD
,'0

, *

\ V//}',;:
e

i
Vil
H‘ "o‘;};‘ ’ \

{
i »%}" A \\\\

Wi,
Wi

I
’, "

Web Proxy Discovery AD EPMAP

(d)

Figure 3: Macroscope Sample Charts: (a) Static dependencies for MS Office Communicator, (b) Static dependencies for BigFix
BESClient (weighted by % of outgoing traffic volume), (¢) Instance level dependencies for BigFix BESClient (top application in-
stances, bottom service instances), (d) Distinct port connections for MS Outlook (top application instances, bottom services); red

lines denote static dependencies.

narios that aid the IT operators inside the enterprise, we only work
with the (subset of) data collected when the user is inside the cor-
porate network. 2

In this section, we first describe the capabilities that Macroscope
enables and present some sample visualizations (§4.1). We then
evaluate the accuracy of our dependency extraction methodology
and compare it to an established method (§4.2). Finally, we high-
light a few interesting results that are enabled by Macroscope (§4.3).

4.1 Macroscope Capabilities

Multi-level Dependencies: Macroscope can discover all the levels
of granularity of the application service relations defined in Sec-
tion 2.1. Filters can be applied to restrict only a subset of the ser-
vices to be used in these relations. For instance, we can restrict the
displayed services to only ones of static dependencies, use a subset
of the data (in duration or number of users) or show dependencies
based on time of day. Further, Macroscope can present these rela-
tions for a single application or for a set of applications.

As an example, Fig. 3(a) presents a visualization of the static de-
pendencies for MS Communicator as uncovered by Macroscope.
This chart was generated automatically, with the application name
provided as input. Seen in the figure, (tcp,911) represents an
HTTP proxy service used to communicate with hosts outside the
enterprise, while the service (tcp, 9090) is a proxy discovery ser-
vice that hosts use to locate the nearest proxy server.

At a different level of granularity (level 4 in § 2.1), Fig. 3(c)
is a visualization of all the service instances used by instances of

MLabeling the traces as inside/outside/VPN has been done at the
collection time, by querying a host resident proxy configuration
service and by considering the network interface being used. In the
absence of such support, this labeling could be done using knowl-
edge of enterprise IP address range and other information (e.g., in
our case, all connections outside the enterprise are done through a

proxy).

234

the BigFix client application; upper vertices correspond to appli-
cation instances (PID, IP) and the lower vertices represent ser-
vice instances (I P, protocol,port). In this figure, we see repli-
cated services corresponding to the static dependencies (no tran-
sient connections were observed); we also see that most applica-
tion instances have a regular pattern of using most static services
and load balancing between them. In contrast, the access pattern in
Fig. 3(d) is very different. Here, the black lines indicate transient
connections, while red lines capture the static dependencies. Note
that (i) there are few static dependencies relative to the transient
destinations, and (ii) access patterns vary a lot across instances.
There is an intuitive reason to expect a difference in access patterns
between figures 3(c) and 3(d); BigFix is an enterprise application
that runs without any user involvement while Outlook is almost
completely user driven.

Dependency Profiling: Macroscope’s procedure of joining infor-
mation creates rich data that enables the creation of profiles for
applications and their dependencies. In particular, Macroscope can
label static dependencies by their usage frequency and traffic vol-
ume (incoming/outgoing) but also find (temporal) relationships be-
tween static dependencies such as the causal ordering introduced in
Section 2.

Fig. 3(b) shows the static dependencies for the BigFix BES-
Client application, labeled by the percentage of outgoing traffic
each dependency contributed relative to the total outgoing traffic
of the application. As one can see, the outgoing traffic pattern of
this application is dominated by the BigFix service (it’s main pur-
pose) and by the traffic to the Active Directory service. Macroscope
can present this type of data from a selected subset of data (e.g., a
period in time, number of users) and also show the variation of the
weights in time. Finally, Macroscope can also show how much of
total incoming/outgoing traffic each application is responsible for
and how many rejected flows each application generates.

End-point + Packet Traces Packet traces only

Application True Static Macroscope Orion
Dependencies Best fn Best fp

tp fp fn tp* fp fn tp* fp fn
Communicator 8 8 0 0 8 17 0 4 3 4
PWconsole 8 7 0 1 6 19 2 1 0 7
FrameworkService 6 6 0 0 5 20 1 1 0 5
Outlook 8 8 10 0 8 11 0 8 11 0
BESClient 5 5 0 0 5 19 0 4 6 1
Winword 8 6 0 2 8 16 0 4 1 4
Isass 7 7 0 0 7 40 0 6 4 1
SearchProtocolHost 4 4 0 0 4 21 0 4 21 0
Skype 3 3 0 0 2 22 1 1 1 2
UNS 1 1 0 0 xt X X xt X X
userinit 1 1 0 0 xt X X xt X X
conf 2 2 1 0 1 0 1 1 0 1

*One of these true dependencies is manually added by the user.
TSince these applications have a single static dependency, this approach is not feasible.
Table 2: Accuracy of Static Dependency Detection
Executable App. Name/Description

Communicator.exe | MS Office Communicator
PWConsole.exe MS Office Live Meeting
Framework- McAfee VirusScan Framework Service:

Service.exe
Outlook.exe

component of a antivirus product
MS Outlook

BESClient.exe BigFix BESClient: remote
administration software

WinWord.exe MS Office Word

Isass.exe MS Local Security Authority Subsystem
Service: enforces Windows security

SearchProtocol- MS Windows Search Protocol Host:

Host.exe used for desktop and network search
Skype.exe Skype
UNS.exe Intel Active Management Technology

notifier service client

MS Windows Userinit Logon:

sets up network connections and shell
A process belonging to MS NetMeeting

userinit.exe

conf.exe

Table 1: Applications used to evaluate Macroscope’s accuracy
in detecting static dependencies

4.2 Accuracy of static dependency detection

To evaluate Macroscope’s accuracy in determining static depen-
dencies, we choose 12 applications for which we compare Macro-
scope with (1) manually verified (ground truth) static dependen-
cies and (2) we also compared it against the results returned by
Orion [9], the state of the art method for extracting dependencies
by only looking at packet traces. The 12 applications are listed in
Table 1. The choice for these applications was based on their pop-
ularity and our interests. The chosen applications represent a bal-
anced mix between applications which use transient connections
(7) and applications without transient connections (5).

In an ideal scenario, ground truth static dependencies would have
to be derived from a careful analysis of the application source code,
configuration files, and even the network itself. However, this is
quite impractical to realize since we do not have access to the
source code. In this paper, we instead rely on operator knowledge
and common sense to extract the confirmed static dependencies in
the data proceeding as follows. For every network flow, tagged
with an application name, observed in the traces: (i) we check the
destination server and port against a list of known servers and ports
used inside the enterprise (these are all the infrastructure servers
formally managed by the IT department); if we have a match, the

235

connection corresponds to a static dependency, else (ii) we attempt
to manually connect to the server and port (believing that infras-
tructure servers do not go away in a period of a few months) and
label the dependency as static if the connection succeeds; if that
does not work, as a last resort (iii) we asked the IT operators in our
enterprise to verify if they believed the service to be persistent. If
none of these methods classified the dependency as static, we as-
sumed it was transient. Note that this is is a conservative approach;
IT operators cannot keep track of the thousands of services that are
deployed and their answers are based on a best guess.

Our described approach may miss some short-lived extant static
dependencies due to sampling. Given that our traces were collected
over arelatively long period and that static dependencies should be
observed frequently, we believe that the missing dependencies are
very small in number. For example, for a 25ms dependency an ex-
pected number of approximately 200 occurrences are required for
one sample; assuming even only one usage per application instance
this would necessitate 200 application instances; many of the appli-
cations that we profile have seen a lot more instances.

Another artifact of the data collection process has to do with the
non-transparent proxy required to contact external destinations. All
connections to the outside are effected through a proxy, which has
the effect of collapsing all the static dependencies to outside desti-
nations on the proxy nodes.

Finally, while we expect the DNS service to be a static depen-
dency for most applications, we are unable to attribute DNS con-
nections correctly to some applications. This is because the win-
dows kernel delegates DNS lookups to a third party (1sass . exe).
Thus, in almost all the cases, the static dependencies of an applica-
tion do not include DNS.

To compare Macroscope’s accuracy in detecting static dependen-
cies to that of approaches based on packet traces only, we have im-
plemented Orion [9], the current state of the art approach in this
space. This implementation represents our best effort based on
the description in the paper and discussions with authors. We use
Bro [1] to generate flow information from the packet traces (but we
break flows using keepalive messages as in [9]).

Orion (along with Sherlock [5] and eXpose [12]) infer relation-
ships between services based on temporal co-occurrence. Appli-
cation context is not recorded; instead, applications are manually
associated (seeded) with a set of dependent services. For example,
suppose the services (tcp, 53), (tcp, 80) and (tcp, 443) are related
based on the co-occurrence. One can supply the knowledge that

50 -

— Distinct—port connections
*** Real Static Dep.
— Macroscope Static Dep.

— Distinct-port connections
*** Real Static Dep.
— Macroscope Static Dep.

160 1
140 1 — Distinct—port connections
120 | *** Real Static Dep.
100 1 — Macroscope Static Dep.
80
60 -
40
201

120 200 4
100 4
150 -
80
601 — Distinct-port connections 100 1
401 *** Real Static Dep.
— Macroscope Static Dep.
20
0

0 — T
0 5 10 15 20 25 30 35 40 45 50
Users

(a) Communicator

0 5 10 15 20 25 30 35 40 45 50
Users

(b) Outlook

0 5 10 15 20 25 30 35 40 45 50
Users

(c) FrameworkService

0 — T T
0 5 10 15 20 25 30 35 40 45 50
Users

(d) PWConsole

Figure 4: Convergence of dependency finding vs. Number of traces

120 Dependencies
— Macroscope

120 -Dependencies
— Macroscope
** Real

*** Real

100 100 1
801
601
40

0 T

0 01 02 03 04 05
| (instance threshold)
(b) U =10%

Misclassified as

18 -Dependencies 3 € >
— Macroscope having transient conn.
16
14 21
12
104 17
s
6 0 T T T T T |
4] 06 0.65 0.7 0.75 0.8 0.85 ON%
2] 14 T (threshold)
%% 01 02 03 04 05 # Misclassified as not
U (user threshold) -2- having transient conn.
() I =10% (d) Labeling apps. with transient con-

nections.

Figure 5: Sensitivity of static dependency detection. First three charts: Number of static dependencies identified by Macroscope for
different thresholds of / (instances) and U (users) for Microsoft Communicator. Last chart: accuracy of detecting the applications

with transient connections.

(tcp, 443) a dependency of the web browser traffic. With this seed,
the other two services (related to the seed) also become associated
with the web browser application.

Main Results: Table 2 synthesizes the evaluation of Macroscope’s
accuracy in detecting static dependencies by comparison with the
ground truth static dependencies and Orion’s results. In Table 2,
true positives (¢p) are the actual static dependencies detected by
the algorithms. False positives (fp) are dependencies identified as
static (by Macroscope or Orion) but which are not static dependen-
cies in reality. False negatives (fn) are static dependencies that
are not detected as such (are “missed”) by the applied algorithms.
For each application, we use two different seeds for Orion; one
which optimizes the number of false positives and the other op-
timizes for false negatives. Table 2 summarizes the results. The
number of true positives shown in Table 2 for Orion includes the
manually specified dependency. To detect the best seeds, we have
inspected the results of all the different static dependencies when
picked as seeds. For clarity, in Table 2 we use a single entry for
the services that are offered on both UDP and TCP (DNS, LDAP).
In this case, we count one false positive if the service is spuriously
detected as a dependency on at least one of the two transport pro-
tocols and count one false negative if none of the two are detected.
We aggregate the Orion delay distribution bins to reflect the depen-
dencies used in this paper and improve the Orion data set [9].
Table 2 shows that Macroscope has very few false positives or
false negatives: it detects over 95% of the static dependencies and
has a low number of false positives, amounting to about 18% of
the number of static dependencies. Also, Macroscope offers a sig-

236

nificant improvement compared to Orion: in the case of the best
seed pick for false negatives, Orion detects about 91% of depen-
dencies (the manual seeds were counted as actually detected), but
has a high false positive ratio, over 315% compared to the number
of actual static dependencies. In the case of the best seed pick for
false positives, Orion has fewer false positives, amounting to about
80% of the number of static dependencies, but detects only about
57% of the static dependencies. Any other seed results in worse
performance in at least one of the two metrics.

Itis expected that Macroscope would be superior to the approaches
that only use packet traces, because it has more information at its
disposal. Here we quantify that gain. The results show that Macro-
scope is able to maintain both low false positives and low false
negatives, whereas Orion in this case can attain at most one of these
goals.

Macroscope’s false positives occur due to mislabeling, resulted
from applying its algorithm. As shown, for most applications Macro-
scope has at most one false positive. Outlook stands out in the
table because of the large number of false positives. We discov-
ered that the connections to the mail server (all mail in the enter-
prise is delivered over an MS Exchange connection) tended to reuse
ephemeral ports and the connections were long lived; some of these
transient ports are used by up to 18 users (34% of all users) and up
to 15% of the instances, quite above the usage frequency of many
static services in general. Macroscope’s false negatives can occur
for two reasons: (1) lack of sampling of any connection to that
service, or (2) misclassification of Macroscope’s algorithm due to
infrequent usage, the cause for the false negatives in Table 2.

Sample Period | 5s 10s 20s 30s

1=U=10% | tp | 95% 85% 84% 82%
fp | 18% 16% 16% 16%

1=U=5% tp | 95% 92% 87% 85%
fp | 52% 46% 83% 82%

Table 3: Effect of sampling rate and filtering thresholds.

Sensitivity Analysis: We now evaluate the effect on detecting static
dependencies of the number of traces, of Macroscope’s parameters
(§ 3.2) and of the sampling rate.

Figure 4 presents the number of static dependencies of four ap-
plications as extracted from an increasing subset of user traces (a
user is represented by an individual laptop). The figure shows that
Macroscope converges towards the actual number of static depen-
dencies as more data is available.

Fig. 5 shows the number of identified static dependencies for
MS Office Communicator, given different values of the the instance
(I) and user (U) relative thresholds (parameters described in Sec-
tion 3.2). Both [and U are varied in the range 0%—50%. Fig. 5(a)
shows the number of identified static dependencies when I = U,
in Fig. 5(b) U is set to 10% and only [is varied, and in Fig. 5(c),
I is set to 10% and U is varied. As one can see, there is a knee of
the selection threshold above which the number of identified static
dependencies decreases very slowly (almost remains constant), but
may result in a few false negatives; in this context, our goal is to set
the threshold at the knee of this curve.

Fig. 5(d) evaluates the sensitivity of the algorithm that classifies
applications into using transient connections or not to its parameter
T (§3.2). Fig. 5(d) shows how many applications were misclas-
sified out of the 12 applications used in Table 2; a positive value
means misclassified as having transient connections while a nega-
tive value means misclassified as not having transient connections
(there are no cases when applications are misclassified both ways).
In the range of 0.8-0.9 for T the classification is flawless. A value
too high for 7" can lead to misclassifying applications as not having
transient connections which results in false positive dependencies,
while a value too low leaves the dependency detection up to the
second part of the algorithm, where infrequently used static depen-
dencies may turn into false negatives.

Table 3 shows the effects of the connection table sampling rate
together with the effects of Macroscope’s thresholds on the static
dependency extraction. The table presents the total number of true
positives and the total number of false positives detected by Macro-
scope relative to the total number of actual static dependencies
(ground truth); the results are computed by adding up (aggregat-
ing) all the dependencies for all the applications in Table 1. We
can see that Macroscope’s accuracy gradually degrades along with
the sampling frequency, and that using a lower threshold to select
static dependencies can increase the number of true positives at the
expense of an increased number of false positives.

4.3 Dependency Characteristics

Characterizing static dependencies: The distribution of the re-
lations between applications and services is very skewed. A few
applications depend on a lot of services, while most applications
depend on few services. Also, a few of the services are used by
a lot of applications, while most services are used by one applica-
tion. This type of analysis is unavailable to approaches using only
packet traces and we are not aware of previous works profiling the
application-service relation for all the applications used in a large
enterprise.

237

Application Description # of static
dependencies
outlook.exe MS Outlook 18
iexplore.exe MS Internet Explorer 11
x1service.exe Enterprise search engine 10

svchost.exe MS Windows component 9

dynamically loading DLLs

winproj.exe Component of MS Project 9

communicator.exe | MS Office Communicator 8

firefox.exe Mozilla Firefox 8

spoolsv.exe MS Windows service 7
managing spooled print jobs

mmc.exe MS Windows 7
Management Console

pwconsole.exe MS Office Live Meeting 7

Table 4: Top 10 applications with most static dep.

18 ¢ # Static services used by each app. 60] # Applications using each service
16
70
14 b
12 607
»
10 4 501
sl 40
Ld
6l 30 e
- L]
4 - 20 1
— %
24 a—— 107 o
L J
0 0 ,M

T T T T T T T 1
0 20 40 60 80 100 120 140 160
applications

0 10 20 30 40 50 60 70 80 90
services

(a) # Services used by each app. (b) # Apps using each service

Figure 6: Application-Service relation distribution.

Fig. 6(a) shows a chart of the distribution of the number of static
services used by each of the 159 applications present in the traces as
detected by Macroscope; as we have shown, detection is not perfect
but is quite accurate. The average number of static dependencies is
2.5, and the median is 1. There are 73 applications (out of 159) hav-
ing only one static dependency as detected by Macroscope. Among
these, most depend on: the proxy used to communicate with ma-
chines outside the enterprise (28 applications), Web (10), SSH (10),
HTTPS (5) and LDAP (3).

Table 4 presents the top ten applications with the most static de-
pendencies.

Conversely, Fig. 6(b) shows the number of applications using
each of the services of the static dependencies. The number of dis-
tinct services that applications statically depend on is 92, the aver-
age number of applications using one of these static dependencies
is 4.6, the maximum is 85 and the median is 1. 62 of these services
are specific to a single application. Examples of services used by a
single application include POP3 (tcp, 995) , Telnet (tcp, 23), NTP
(tep, 123), IMAP (tcp, 993), McAfee Update (tcp, 8440, 8442),
HTTP alternate (tcp, 8080), Intel UNS (tcp, 16993), etc.

Table 5 presents the top ten services associated with static de-
pendencies based on the number of different applications that use
them.

Besides characterizing the dependencies of the enterprise appli-
cations, these results also offer an extra motivation for our work.
The results show that: (1) end-point detection is necessary due to
the large number of applications using only a few services ; (2) it is
difficult to manually create a list of all the services to be verified for
faults (in fact only by profiling 12 applications we have identified a

Service Service Name # Apps. use it
(tep’, 911) Enterprise Proxy 85
(tcp’, 80) Web 64
(tep’, 443) HTTPS 36
(’tep’, 9090) | Proxy Discovery 30
(tep’, 135) EPMAP 23
(tep’, 389) LDAP AD 15
(tcp’, 1025) | Active Dir. (AD) 13
(tep’, 22) SSH 13
(tcp’, 3180) | MS SQL Svr. 8
(tep’, 21) FTP 5

Table 5: Top 10 services used by most applications

{11 /
| | |
Nl
)\ \ H ‘ ‘ .‘L L YL \ - J‘, L ‘J

o |
Active Direclory\\ \Vﬁ HTTPS
EPMAP DNS LDAP Proxy Service

Proxy Discovery

Figure 7: Static dependencies of 12 applications.

lot of services not on the engineering list of well known services)®;
and (3) isolating faults for most applications should be fast (due to
the small number of static dependencies).

Transient connections vs static dependencies: Out of the 159 ap-
plications encountered, our algorithm identifies 136 as not having
transient connections and 23 of these as having transient connec-
tions. For applications without transient connections, Macroscope
achieves its best accuracy in detecting static dependencies since
it detects no false positives and, for large traces, false negatives
should be very few. As a surprising side note, several transient
services (destinations of application outgoing connections using
ephemeral ports) are used by multiple applications, for example
three of these services are used by 6 different applications.

Inside vs Outside Services: Out of the 159 applications, 73 com-
municate only with internal services, 51 communicate only with
external services while 35 use both internal and external services.
This quantifies the level of service an enterprise IT management
department can provide its employees when it conducts fault isola-
tion, server replication, and so on (assuming it cannot fix problems
on external servers).

Multi-application dependencies: Fig. 7 shows the static depen-
dencies of all the 12 applications used in Table 2; the upper ver-
tices represent the applications while the lower vertices represent
services). There are quite a few common services among these ap-
plications, some of these are highlighted in the figure.

Profiled Dependencies: Fig. 8 shows the static dependencies for
the McAfee Virusscan Framework Service application, and each

31f this list were to be complete then Macroscope can classify con-
nections using this oracle and accuracy would be almost perfect
(with at most a few, not sampled, false negatives).

Proxy Discovery (9090)
0.4%
FTP(21) Proxy Service (911)
"\10.4% A%

Frameworkservice.exe

ﬁO.Z% \14,1%

Web(80) McAfee Update (8440)

McAfee Update (8442)

Figure 8: FrameworkService - weighted static dependencies by
usage frequency (#uses / #instances).

4 _Usage Frequency

— ('tcp’80)
— ('tcp’443)
087 — (tcp'911)
('tcp’9090)
0.6 (tcp'135)
0.4 -
0.2 -
0 T T

0 5 10 15 20 25 30 35 40

Time (x 2Days)

Figure 9: Communicator - dependency usage frequency in time
(2 day slices, curvefit).

dependency is labeled with its usage frequency (i.e., the ratio be-
tween the number of instances of the application for which Macro-
scope detected the use of the dependency and the total number of
instances of the application). Note that even if the usage frequency
of some dependencies is lower than the 10% threshold used to se-
lect static dependencies, they are considered static dependencies
because this application is classified as not using transient connec-
tions. From Fig. 8 one can see that the two update services are used
with comparable frequencies and that half of the instances used the
web.

An interesting feature of Macroscope is that it can trace the vari-
ation of dependencies in time. Fig. 9 shows the usage frequency for
the static dependencies of the Office Communicator for multiple 2
day periods; the usage frequency was extracted from each of the 2
day periods independently. As the chart shows, these weights are
fairly stable in time, which indicates that the application code based
and its usage pattern were constant throughout the traces. This fine
granularity detection is difficult to achieve when using only packet
traces due to the larger number of samples required for an accurate
measurement.

5. DISCUSSION AND FUTURE WORK
5.1 Macroscope Usage

As we showed previously, Macroscope can generate visualiza-
tions for the application and service dependencies at various granu-
larities and scopes. Here, we walk through some concrete use cases

238

where network operators can use the visualizations effectively to
solve a (network) management related activity. We intend the fol-
lowing discussion not as a particular prescription of how Macro-
scope should be used (the discussion is high level), but more as a
way to illustrate the different ways in which Macroscope can aid
network operators in carrying out their tasks more effectively.

Fault Localization: One of the common complaints registered
with IT helpdesks in enterprise networks relates to applications
(email, intranet apps, etc.) not functioning. In such a case, the de-
bugging process normally involves rebooting as a first step (which
almost always leads to a diatribe from the user about IT operators
and their limited knowledge). The situation could be very different
with Macroscope in place; the operator could generate a graph such
as Fig. 3(a) and compare the last snapshot of activity (where the
fault occurred) to a snapshot derived from a different time. Miss-
ing edges in the visualization graph are easily identified.

While this does not describe the entire troubleshooting process,

the fact is that a tool such as Macroscope allows the operators to
reason about the problem aided by the visualization, rather than
recite from a canned playbook (“step 1: reboot computer and try
again”). Macroscope can also generate application specific visual-
izations across a group of malfunctioning applications as shown in
Fig. 7 or across a group of users (as shown in Fig. 3(c)). If the IT
operator(s) receive a number of trouble tickets, such a visualization
can tell them what is working, and what else needs to be looked at.
Given this information, the operators can easily generate a plausi-
ble set of servers/services to check. The visualizations generated
by Macroscope can also improve efficiency; nodes in the graph can
be ordered by degree or weight and operators can search for faults
“greedily”.
Load Balancing, Replication and Capacity Planning: In most
modern enterprise networks, important infrastructure services are
replicated at each geographic site (to reduce latency and cut down
bandwidth costs). However, the utilizations across these servers
varies dramatically. A routine network maintenance task is that of
placing additional resources (servers, storage, etc) to improve per-
formance. Macroscope can issue queries that can inform how users
are “pinned” to servers across locations and to identify the loca-
tions that can benefit the most from an upgrade. By the same coin,
the visualizations can also inform network operators how many ap-
plications and users will be impacted by a single service outage.

Consider Figures 3(c) and 7. Clearly, not all the services are
equally significant. The network that wants to upgrade gets the
best “bang for the buck” by upgrading hardware (or managing the
utilization in some other way) for the services/servers that have a
lot of incident edges.

Detect Malicious or Misbehaving Applications: Macroscope can
enable operators to identify and pinpoint misbehaving or malicious
applications. In many malware instances, a popular application is
replaced by a trojaned version whose behavior is different from the
original application. Macroscope enables the building of applica-
tion “profiles” that can help detect these changes. To describe it at
a high level, the static dependencies and their associated properties
(usage frequency, traffic weight, destinations) essentially describe
the profile of an application. This profile can be built over time (and
for individual users). The historical computed profiles can be com-
pared to profiles generated from more recent data. Fig. 9 shows the
usage frequency of different services over a window of time (one
of the elements in the profile). It is very likely that a trojan appli-
cation that replaces it will perturb the usage frequency, which can
be detected. Moreover, Macroscope can detect applications doing
port scanning by looking at the number of rejected connections.

239

5.2 Future Work

Causal order of dependencies: Macroscope can evaluate the causal-
ity relation between dependencies. We say two dependencies A and
B are causally ordered (and write A->B) if A usually finishes just
before B is started (and the vice-versa is not true). In this context,
“before” means within a time window. These constructions allow
network operators to understand how services are composed, to set
an order among the services to be verified for faults and to improve
overall application responsiveness (the latency of the application is
related to the latency of the longest path in such a graph). We have
implemented this algorithm, but due to the unavailability of ground
truth for the causal order (to validate the results), we do not include
any such results in this paper.

Service side dependencies: If server side traces are available in ad-
dition to client side traces (used in this paper), our work can be ex-
tended to create complex dependency graphs, of depth higher than
one; e.g., not only capture that application A depends on service .S,
but also that S itself (the application implementing it) depends on
S1, and that Sy depends on S2, and so on.

Kernel-level tracing: Macroscope’s tracing method can be further
improved. The connection table sampling can be replaced with
fine granularity monitoring of system calls in the kernel. In this
way, UDP dependencies can be detected without the use of packet
level traces; however, packet level traces would still be useful for
profiling dependencies (e.g., associate them traffic volumes) and
for identifying unsuccessful connections. Also, by tracing inter-
process communications, this method may more easily detect the
dependencies accessed indirectly through the use of an OS service
such as Isass. The disadvantage of such a method may be the trac-
ing overhead, which is proportional to the network traffic (i.e., the
overhead is higher when the computer is busier), unlike the almost
constant overhead of the connection table sampling.

Identifying applications: In the future, the Tracer could identify
applications by using a hash of the executable file instead of the ex-
ecutable name, to avoid name collisions. However, this may thor-
oughly reduce the available samples, e.g., different compilers can
generate different executable files.

6. RELATED WORK

In recent years, extracting networked application dependencies
has been recognized as a critical task in the larger problem of man-
aging enterprise networks and data-centers. Previous efforts to ad-
dress this problem, notably Sherlock [5], eXpose [12], and Orion [9],
are based on network-level tracing. That is, they operate solely on
network traffic traces to extract the dependencies. Sherlock uses
time correlation of packets between different services and com-
putes conditional probability to decide dependencies [S]. eXpose
partitions the packet trace into time windows and looks for service
dependencies that occur within the same time window by comput-
ing a modified JMeasure from an activity matrix [12]. Orion com-
putes spikes of delay distribution of flow pairs and uses thresholds
to decide if two services depend each other [9]. Constellation [6]
uses machine learning algorithms to extract dependencies from the
timings of packets sent and received. These methods require no
modification or instrumenting of individual end-hosts and hence
can be deployed quite easily. However, as we show in this pa-
per, they require manual steps and can have high false negatives
and positives. In Macroscope, we take a different approach, choos-
ing to instrument end-hosts to collect application level data. Thus,
Macroscope is harder to deploy but the benefit is that we overcome
the challenges faced by methods relying only on network data.

To address the challenge of debugging distributed systems, re-
searchers have studied application [10] or middleware execution
paths [8] tracing. These systems focus on a particular distributed
system and require tracing in a particular tracing framework and
modification of applications; thus, they are hard to do in today’s
complex heterogeneous service environment. Project 5 [4] and
WAPS [17] aim to debug distributed systems by taking a black-
box debugging approach. They passively monitor messages and
infer causal execution paths from these message traces. Magpie [7]
and Pinpoint [8] take a gray-box debugging approach that combines
prior knowledge, observations, and inference. Pip [16] detects de-
viation of distributed systems by comparing actual behavior with
expected behavior. In contrast, Macroscope focuses on automatic
dependency extraction of networked applications for a large num-
ber of applications and services, and does this without application
modification.

Network monitoring and application traffic classification has been
studied extensively in the past. BLINC [14] classifies traffic by
using the behavioral patterns at the social, functional and appli-
cation level. Kannan et al. [13] proposed algorithms that semi-
automatically extract application session structures from network
connection-level traces. The term session denotes a set of connec-
tions related to a single application task (e.g., FTP session).

7. CONCLUSIONS

We have presented Macroscope, a system that applies end-point
tracing to detect application dependencies on services. Macroscope
is completely automatic, simple enough to be practical, accurate
in detecting static dependencies and enables application profiling.
In the future, we plan to develop network management algorithms
for fault isolation and service replication that incorporate Macro-
scope’s profiles of the dependency relationship between applica-
tions and services.

8. REFERENCES

[1] Bro. http://www.bro-ids.org/.

[2] Taming technology sprawl. http://online.wsj.com/
article/SB120156419453723637 .html?mod=
techno%logy main_promo_left.

[3] Winpcap. http://www.winpcap.org/.

[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In SOSP, 2003.

240

[5] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In ACM
SIGCOMM, 2007.

P. Barham, R. Black, M. Goldszmidt, R. Isaacs,

J. MacCormick, R. Mortier, and A. Simma. Constellation:
automated discovery of service and host dependencies in
networked systems. MSR-TR-2008-67, 2008.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In
OSDI, 2004.

M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox,
and E. Brewer. Path-based failure and evolution
management. In NSDI, 2004.

X. Chen, M. Zhang, Z. M. Mao, and V. Bahl. Automating
network application dependency discovery: Experiences,
limitations, and new solutions. In OSDI, 2008.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica.
X-Trace: A pervasive network tracing framework. In NSDI,
2007.

F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and

K. Papagiannaki. Exploiting temporal persistence to detect
covert botnet channels. In RAID’09.

S. Kandula, R. Chandra, and D. Katabi. What’s going on?
learning communication rules in edge networks. In ACM
SIGCOMM, 2008.

J. Kannan, J. Jung, V. Paxson, and C. E. Koksal.
Semi-automated discovery of application session structure.
In IMC, 2006.

T. Karagiannis, K. Papaginnaki, and M. Faloutsos. BLINC:
Multilevel traffic classification in the dark. In ACM
SIGCOMM, 2005.

Z. Kerravala. Configuration management delivers business
resiliency. In The Yankee Group, 2002.

P. Reynold, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. In NSDI, 2006.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat. WAPS5: Black-box performance debugging for
wide-area systems. In WWW, 2006.

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

(171

