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minimize f(x)

subject to x ∈ X,

where f : Rn → R ∪ {∞} may be discontinuous and:
! the functions are expensive black boxes, often produced

by simulations or output of MDO codes

! the functions provide few correct digits and may fail
even for x ∈ X

! accurate approximation of derivatives is problematic

! surrogate models s ≈ f and P ≈ X may be available

Rice 2004
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Goals – or validation of the method

NOMAD Algo(NLP ) ! x̂!

if f is continuously differentiable then ∇f(x̂) = 0
if f is convex then 0 ∈ ∂f(x̂)
if f is Lipschitz near x̂ then 0 ∈ ∂f(x̂)
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Clarke Calculus – for f Lipschitz near x

! Clarke generalized derivative at x in the direction v:

f ◦(x; v) = lim sup
y→x, t↓0

f(y + tv)− f(y)
t

.

! The generalized gradient of f at x is the set

∂f(x) := {ζ ∈ Rn : f ◦(x; v) ≥ vTζ for all v ∈ Rn}
= co{lim∇f(yi) : yi → x and ∇f(yi) exists }.

! f ◦(x; v) can be obtained from ∂f(x) :
f ◦(x; v) = max{vTζ : ζ ∈ ∂f(x)}.

Rice 2004



8

Outline

! Statement of the optimization problem

! The GPS and MADS algorithm classes

! GPS theory and limiting examples

! The MADS algorithm class
• An implementable MADS instance
• MADS theory
• Numerical results

! Discussion

Rice 2004



9

The two iterated phases of GPS and MADS

! The global search in the variable space is flexible
enough to allow user heuristics that incorporate
knowledge of the driving simulation model and facilitate
the use of surrogate functions.



9

The two iterated phases of GPS and MADS

! The global search in the variable space is flexible
enough to allow user heuristics that incorporate
knowledge of the driving simulation model and facilitate
the use of surrogate functions.

! The local poll around the incumbent solution is more
rigidly defined, but it ensures convergence to a point
satisfying necessary first order optimality conditions.



9

The two iterated phases of GPS and MADS

! The global search in the variable space is flexible
enough to allow user heuristics that incorporate
knowledge of the driving simulation model and facilitate
the use of surrogate functions.

! The local poll around the incumbent solution is more
rigidly defined, but it ensures convergence to a point
satisfying necessary first order optimality conditions.

! This talk focusses on the basic algorithm, and the
convergence analysis. In the next talks, Alison, Mark
and Gilles will talk about surrogates in the search.
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Positive spanning sets and meshes

! A positive spanning set D is a set of vectors whose
nonnegative linear combinations span Rn.

! The mesh is centered around xk ∈ Rn and its fineness is
parameterized by ∆m

k > 0 as follows

Mk = {xk + ∆m
k Dz : z ∈ N|D|}.

!
xk

Ex: D=[I; −I]

Rice 2004
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Basic pattern search algorithm for
unconstrained optimization

Given ∆m
0 , x0 ∈ M0 with f(x0) < ∞, and D,

for k = 0, 1, · · ·, do

1. Employ some finite strategy to try to choose xk+1 ∈ Mk

such that f(xk+1) < f(xk) and then set ∆m
k+1 = ∆m

k or
∆m

k+1 = 2∆m
k (xk+1 is called an improved mesh point);

2. Else if xk minimizes f(x) for x ∈ Pk, then set xk+1 = xk

and ∆m
k+1 = ∆m

k /2 (xk is called a minimal frame center).

Rice 2004
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k d : d ∈ [I;−I]};

2n points adjacent to xk in Mk.

∆m
k = 1

"xk
!

p1

!p2

!
p3

!
p4

∆m
k+1 = 1

2

"
xk+1

!p1

!p2

!p3

!
p4

∆m
k+2 = 1

4

"xk+2
!p1

!p2

!p3

!
p4

Always the same 2n = 4 directions, regardless of ∆k.
Rice 2004
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Pk = {xk + ∆m
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Here, only 14 different ways of selecting Dk, regardless of ∆k.
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Convergence results – unconstrained GPS

If all iterates are in a compact set, then lim inf
k

∆m
k = 0

! The mesh is refined only at a minimal frame center.

! There is a limit point x̂ of a subsequence {xk}k∈K of
minimal frame centers with {∆m

k }k∈K → 0.
{xk}k∈K is called a refining subsequence.

! f(xk) ≤ f(xk + ∆m
k d) ∀ d ∈ Dk ⊂ D with k ∈ K.

Let D̂ ⊆ D be the set of poll directions used infinitely
often in the refining subsequence.
D̂ is the set of refining direction.

Rice 2004
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subsequence (with limit x̂ and refining directions D̂)
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Convergence results – unconstrained GPS

If all iterates are in a compact set, then for any refining
subsequence (with limit x̂ and refining directions D̂)

! f is Lipschitz near x̂ ⇒ f ◦(x̂; d) ≥ 0 for every d ∈ D̂.

this says that the Clarke derivatives are non-negative on a finite set

of directions that positively span Rn.

f◦(x̂; d) := lim sup
y→x̂,t↓0

f(y + td)− f(y)
t

≥ lim
k∈K

f(xk + ∆kd)− f(xk)
∆k

! f is regular at x̂ ⇒ f ′(x̂; d) ≥ 0 for every d ∈ D̂.

! f is strictly differentiable at x̂ ⇒ ∇f(x̂) = 0.

Rice 2004
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GPS methods are directional, so the restriction to a finite
set of directions is a big limitation, particularly when
dealing with nonlinear constraints.
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Limitations of GPS

GPS methods are directional, so the restriction to a finite
set of directions is a big limitation, particularly when
dealing with nonlinear constraints.

GPS with empty search: The iterates stall at x0.

#$

%

&

f(x) = ‖x‖∞ ! x0 = (1, 1)T
$ #

%

&

Even with a C1 function, GPS may generate infinitely
many limit points, some of them non-stationary.

Rice 2004
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GPS convergence to a bad solution
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GPS convergence to a bad solution
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GPS iterates – with a bad strategy – converge to the
origin, where the gradient exists and is nonzero
(f is differentiable at (0, 0) but not strictly differentiable).

Rice 2004
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Outline

! Statement of the optimization problem

! The GPS and MADS algorithm classes

! GPS theory and limiting examples

! The MADS algorithm class
• An implementable MADS instance
• MADS theory
• Numerical results

! Discussion

Rice 2004
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Number of ways of selecting Dk increases as ∆p
k gets smaller.
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fΩ(x) :=
{

f(x) if x ∈ Ω,
+∞ otherwise.

This is a standard construct in nonsmooth optimization.
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Barrier approach to constraints

To enforce Ω constraints, replace f by a barrier objective

fΩ(x) :=
{

f(x) if x ∈ Ω,
+∞ otherwise.

This is a standard construct in nonsmooth optimization.

Then apply the unconstrained algorithm to fΩ.
This is NOT a standard construct in optimization
algorithms.

Quality of the limit solution depends the local
smoothness of f , not of fΩ.

Rice 2004
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A MADS instance

note: GPS = MADS with ∆p
k = ∆m

k .

An implementable way to generate Dk:

! Let B be a lower triangular nonsingular random integer
matrix.

! Randomly permute the lines of B

! Complete to a positive basis

• Dk = [B; −B] (maximal positive basis 2n directions). or
• Dk = [B; −

∑
b∈B b] (minimal positive basis n+1 directions).

• Use Luis’ talk to order the poll directions

Rice 2004
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Theorem 1. As k →∞, MADS’s polling directions form
a dense set in Rn (with probability 1).
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Dense polling directions

Theorem 1. As k →∞, MADS’s polling directions form
a dense set in Rn (with probability 1).

The ultimate goal is a way to be sure that the subset of
refining directions D̂ is dense.

Then the barrier approach to constraints promises strong
optimality under weak assumptions - the existence of a
hypertangent vector, e.g., a vector that makes a negative
inner product with all the active constraint gradients.

Rice 2004
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Theorem 2. Suppose that D̂ is dense in Ω.
• If either Ω = Rn, or x̂ ∈ int(Ω), then 0 ∈ ∂f(x̂).
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MADS convergence results

Let f be Lipschitz near a limit x̂ of a refining sequence.

Theorem 2. Suppose that D̂ is dense in Ω.
• If either Ω = Rn, or x̂ ∈ int(Ω), then 0 ∈ ∂f(x̂).

Theorem 3. Suppose that D̂ is dense in TH
Ω (x̂) 4= ∅.

• Then x̂ is a Clarke stationary point of f over Ω:
f ◦(x̂; v) ≥ 0,∀v ∈ TCl

Ω (x̂).

• In addition, it f is strictly differentiable at x̂ and if Ω is
regular at x̂, then x̂ is a contingent KKT stationary point
of f over Ω : −∇f(x̂)Tv ≤ 0,∀v ∈ TCo

Ω (x̂).

Rice 2004
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A problem for which GPS stagnates
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Our results
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Results for a chemE pid problem
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Constrained optimization

A disk constrained problem

min
x,y

x + y

s.t. x2 + y2 ≤ 6

How hard can that be?



32

Constrained optimization

A disk constrained problem

min
x,y

x + y

s.t. x2 + y2 ≤ 6

How hard can that be?

Very hard for GPS and filter-GPS with the standard 2n
directions with an empty search

Rice 2004
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Parameter fit in a rheology problem
Rheology is a branch of mechanics that studies
properties of materials which determine their
response to mechanical force.

MODEL :
Viscosity η of a material can be modelled as a
function of the shear rate γ̇i :

η(γ̇) = η0(1 + λ2γ̇2)
β−1

2

A parameter fit problem.

Rice 2004
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Observation Strain rate Viscosity
i γ̇i (s−1) ηi (Pa · s)
1 0.0137 3220
2 0.0274 2190
3 0.0434 1640 The unconstrained
4 0.0866 1050 optimization problem :
5 0.137 766
6 0.274 490
7 0.434 348 min g(η0,λ,β)
8 0.866 223 η0,λ,β

9 1.37 163 with
10 2.74 104

11 4.34 76.7 g =
∑13

i=1 |η(γ̇)− ηi|
12 5.46 68.1
13 6.88 58.2

Rice 2004
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Discussion

! MADS variant looks good as a 1st try,
and is more general than the instance shown here.

! Numerically, randomness is a blessing and a curse.

! MADS can handle oracular or yes/no constraints.

! The underlying mesh is finer in MADS than in GPS :
Good for general searches and surrogates.

! MADS is the result of nonsmooth analysis pointing up
the weaknesses in GPS.

Rice 2004



40

Later today...

! This is a meeting about surrogates,
but I did not talk about surrogates...
Alison will present in the next talk the use of a surrogate
in a specific mechanical engineering problem using
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Later today...

! This is a meeting about surrogates,
but I did not talk about surrogates...
Alison will present in the next talk the use of a surrogate
in a specific mechanical engineering problem using
GPS/MADS.

! MADS replaces GPS in our NOMADm and NOMAD
softwares. Gilles and Mark will present a demo of these
sofwares after lunch.

Rice 2004


