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Why shafts?

Motors rotate

Rotational linkages from motor are the simplist
Transmit power/Kinetics

Movement/kinematics

Linear shafts, used for alignment and guides, are not what is
being discussing.



Shaft Materials

 Deflection primarily controlled by geometry, not material
 Stress controlled by geometry, not material
« Strength controlled by material property



Shaft Design

Material Selection (usually steel, unless you have good reasons)
Geometric Layout (fit power transmission equipment, gears,
pulleys)

Stress and strength

o Static strength

> Fatigue strength

Deflection and rigidity

- Bending deflection

> Torsional deflection

> Slope at bearings and shaft-supported elements

o Shear deflection due to transverse loading of short shafts
Vibration due to natural frequency (whirl)



Shaft Materials

» Shafts are commonly made from low carbon, CD or HR steel,
such as AISI 1020-1050 steels.

e Fatigue properties don’t usually benefit much from high alloy
content and heat treatment.

» Surface hardening usually only used when the shaft is being
used as a bearing surface.



Shaft Materials

» Cold drawn steel typical for d < 3 in.

» HR steel common for larger sizes. Should be machined all over.
e Low production quantities

> Lathe machining is typical

> Minimum material removal may be design goal
» High production quantities

> Forming or casting is common

> Minimum material may be design goal



Shaft Layout

o Issues to consider for
shaft layout

- Axial layout of
components

° Supporting axial
loads (bearings)

> Providing for torque

transmission
(gearing/sprockets)

> Assembly and
Disassembly (repair
& adjustment)
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Axial Layout of Components

(a) (b)

Fan

(©) (d)
Fig. 7-2
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Supporting Axial Loads

» Axial loads must be supported through a bearing to the frame.

o Generally best for only one bearing to carry axial load to
shoulder

» Allows greater tolerances and prevents binding
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Providing for Torgue Transmission

» Common means of transferring torque to shaft
o Keys
> Splines
o Setscrews
> Pins
> Press or shrink fits
o Tapered fits
» Keys are one of the most effective
o Slip fit of component onto shaft for easy assembly
> Positive angular orientation of component
> Can design key to be weakest link to fail in case of overload



Assembly and Disassembly
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Fig. 7-6
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Assembly and Disassembly
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Shaft Design for Stress

 Stresses are only evaluated at critical locations
 Critical locations are usually

> On the outer surface

> Where the bending moment is large

> Where the torque is present

> Where stress concentrations exist



Shaft Stresses

Standard stress equations can be customized for shafts for
convenience

Axial loads are generally small and constant, so will be ignored
In this section

Standard alternating and midrange stresses
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Shaft Stresses

o Combine stresses into von Mises stresses
o Alternating (amplitude) von Mises stress
- Mean (static) part von Mises stress
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Oqp = (Gﬂ —I_BTH] — |:( Td3 ) +3 ( Td3
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Shaft Stresses

 Substitute von Mises stresses into failure criteria equation. For

example, using modified Goodman line,
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 Solving for d is convenient for design purposes
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Shaft Stresses

Similar approach can be taken with any of the fatigue failure
criteria

Equations are referred to by referencing both the Distortion
Energy method of combining stresses and the fatigue failure
locus name. For example, DE-Goodman, DE-Gerber, etc.

In analysis situation, can either use these customized equations
for factor of safety, or can use standard approach from Ch. 6.

In design situation, customized equations for d are much more
convenient.



Shaft Stresses

o DE-Gerber

I

n

where

SA
md3S,

4

4

S3nA
TS,

I +

I +

A= \JAK Mo+ 3(KpsTo)

1;2]
1;2])”3

B = \JA(K;Mp)* + 3(Kp, )2

(7-9)

(7-10)

Shigley’s Mechanical Engineering Design



Shaft Stresses

= DE-ASME Elliptic
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Shaft Stresses for Rotating Shaft

 For rotating shaft with steady, alternating bending and torsion

> Bending stress is completely reversed (alternating), since a
stress element on the surface cycles from equal tension to
compression during each rotation

o Torsional stress is steady (constant or static)
> Previous equations simplify with M_ and T, equal to O



Checking for Yielding in Shafts

Always necessary to consider static failure, even in fatigue

situation

Soderberg criteria inherently guards against yielding

ASME-Elliptic criteria takes yielding into account, but is not
entirely conservative

Gerber and modified Goodman criteria require specific check for

yielding
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Checking for Yielding in Shafts

» Use von Mises maximum stress to check for yielding,
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Example 7-1

At a machined shaft shoulder the small diameter ¢ is 1.100 in, the large diameter D
i1s 1.65 in, and the fillet radius 1s O0.11 in. The bending moment is 1260 Ibf + in and
the steady torsion moment is 1100 Ibf + in. The heat-treated steel shaft has an ultimate
strength of S, = 105 kpsi and a yield strength of S, = 82 kpsi. The reliability goal
for the endurance limit is 0.99.

(a) Determine the fatigue factor of safety of the design using each of the fatigue
failure criteria described in this section.

(b) Determine the yielding factor of safety.
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Example 7-1 (continued)
(a) D/d =1.65/1.100 = 1.50, r/d =0.11/1.100 = 0.10, K, = 1.68 (Fig. A—15-9),
K;s = 1.42 (Fig. A-15-8), ¢ = 0.85 (Fig. 6-20), Gshear = 0.88 (Fig. 6-21).
From Eq. (6-32),
Kf=1+0.851.68—1)=1.58
Kps=140.88(1.42 — 1) = 1.37

Eq. (6-8): S, = 0.5(105) = 52.5kpsi
Eq. (6-19): k, = 2.70(105)~%265 — (.787
1.100\ ~1%7
L (6=20): ky = [ —— = 0.870
Eq. (6-20) b (0.30)
ke =kg =ks =1
Table 6—6: k, = 0.814

Se = 0.787(0.870)0.814(52.5) = 29.3 kpsi
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Example 7-1 (continued)

For a rotating shaft, the constant bending moment will create a completely reversed
bending stress.

M, = 1260 1bf - in I, = 1100 Ibf - in M,=1T,=0

Applying Eq. (7-7) for the DE-Goodman criteria gives

1 16 [[4(1.58-1260)2]" . [3(1.37- 1100)2]"* ol
n (1) 29300 105 000 -
n=1.63 DE-Goodman Answer

Similarly, applying Egs. (7-9), (7-11), and (7-13) for the other failure criteria,
n =187 DE-Gerber Answer
n=1.88 DE-ASME Elliptic ~ Answer

n=1.56 DE-Soderberg Answer
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Example 7-1 (continued)

For comparison, consider an equivalent approach of calculating the stresses and apply-
ing the fatigue failure criteria directly. From Eqs. (7-5) and (7-6),

- 1/2
32.1.58-1260\°
o = ( I )] = 15235 psi
a .

T /16-1.37-1100\21"
o) = 3( — ) = 9988 psi
7 (l.1)

Taking, for example, the Goodman failure critera, application of Eq. (6-46)
gives

! ! 15 235 00§88
— =44 _m _ = 0.615
n e ut 29 3{]{] 105000

n=1.63 Answer

which is identical with the previous result. The same process could be used for the other
failure criteria.
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Example 7-1 (continued)

(b) For the yielding factor of safety, determine an equivalent von Mises maximum
stress using Eq. (7-15).

2 27 1/2
y =[(32(1.58)(1260)) +3(16(1.3?)(1100))} T

e 7 (1.1)° 7 (1.1)°
S, 82 000
ny = Yy — — 4.50
Y o 18220

max

For comparison, a quick and very conservative check on yielding can be obtained

by replacing o, .. with o, + o, . This just saves the extra time of calculating o, if

o, and o, have already been determined. For this example,

Sy 82000
o/ +o, 1523549988

Ny =

which is quite conservative compared with n, = 4.50.

Shigley’s Mechanical Engineering Design



Estimating Stress Concentrations

o Stress analysis for shafts is highly dependent on stress
concentrations.

» Stress concentrations depend on size specifications, which are
not known the first time through a design process.

 Standard shaft elements such as shoulders and keys have
standard proportions, making it possible to estimate stress
concentrations factors before determining actual sizes.



Estimating Stress Concentrations

Table 7-1

First Iteration Estimates for Stress-Concentration Factors K, and K,,.

Warning: These factors are only estimates for use when actual dimensions are not yet
determined. Do not use these once actual dimensions are available.

Bending Torsional Axial

Shoulder fillet—sharp (r/d = 0.02) 2.7 22 3.0
Shoulder fillet—well rounded (r/d = 0.1) 17 1.5 1.9
End-mill keyseat (r/d = 0.02) 2.14 3.0 —
Sled runner keyseat 1.7 - —
Retaining ring groove 5,0 3.0 5.0

Missing values in the table are not readily available.
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Example 7-2

This example problem is part of a larger case study. See Chap. 18 for the full
context.

A double reduction gearbox design has developed to the point that the general
layout and axial dimensions of the countershaft carrying two spur gears has been
proposed, as shown in Fig. 7-10. The gears and bearings are located and supported
by shoulders, and held|in place by retaining rings. The gears transmit torque
through keys. Gears have been specified as shown, allowing the tangential and
radial forces transmitted through the gears to [the shaft to be determined as
follows.

Wi, = 5401bf WL, = 24311bf
W5, = 197 1bf WI, = 8851bf

54 —

where the superscripts t and r represent tangential and radial directions,
respectively; and, the subscripts 23 and 54 represent the forces exerted
by gears 2 and 5 (not shown) on gears 3 and 4, respectively.

Proceed with the next phase of the design, in which a suitable material
is selected, and appropriate diameters for each section of the shaft are
estimated, based on providing sufficient fatigue and static stress capacity
for infinite life of the shaft, with minimum safety factors of 1.5.
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Example 7-2 (continued)
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Fig. 7-10
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Example 7-2 (continued)

Solution W

Perform free body diagram y l W3

analysis to get reaction forces T Ws,
at the bearings.

T = Whids/2) = 540(12/2) =

By

32401bt - 1n.

Ra, = 115.01bf
R sy = 356.71bf y / W
Ry, = 1776.0 Ibf | — L bl
Rpy = 725.31bf RO Ry,
/ I e
| R
I | [ 1
From XMy, find the torque in T i T
the shaft between the gears, | 3240 s
L
[T



Example 7-2 (continued)

655

Generate shear-moment
diagrams for two planes
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Example 7-2 (continued)

| 3651

Combine orthogonal planes as Mror
vectors to get total moments,

eg., at J. V/3996% + 1632% =
4316 Ibf - in.

Start with point I, where the bending moment is high, there is a stress con-
centration at the shoulder, and the forque is present.

Atl, M, = 3651 1bf - in, T, = 32401bf - in, M,, = T, = 0

Assume generous fillet radius for gear at I.
From Table 7-1, estimate K, = 1.7, K,, = 1.5. For quick, conservative first
pass, assume Ky = K,, K5 = K,
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Example 7-2 (continued)
Choose|inexpensive steel, 1020 €D, with S = 68 kpsi. For S,,

Eq. (6-19) ko = aSﬁr — 2.?(63)_9'265 = (L8883
Guess kp = 0.9, Check later when d is known.
ke =kgl= ke, =1

Eq. (6-18) Se = (0.883)(0.9)(0.5)(68) = 27.0 kpsi

For first estimate of the small diameter at the shoulder at point I, use the
DE-Goodman criterion of Eq. (7-8). This criterion is good for the initial design,
since it is simple and conservative. With M,, = T, = 0, Eq. (7-8) reduces to

| 112\ ) /3
ad= Lon | 2 (KfMa) i [3 (KfSTm) :I
T Se Sut
| 1/3
J— 16(1.5) {2(1.7) (3651) | {3[{].5){324{}}]2}1;’2
N T 27000 63 000
d=1.651n

All estimates have probably been conservative, so select the next standard size
below 1.65 in. and check, d = 1.625 in.

<
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