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1. ABSTRACT

Develop an understanding of the steps involved in solving the Navier-Stokes equations using anumerical
method. Write a simple code to solve the “driven cavity” problem using the Incompressible- Navier-
Stokes equations in Vorticity form. This project requires that the Vorticity streamline function, u and v
velocity profiles, pressure contours for the lid driven rectangular cavity for Reynolds number 100 and
1000. The lid driven cavity is aclassical problem and closely resembles actual engineering problems that
exist in research and industry areas. The vorticity equation will be solved utilizing a forward time central
space (FTCS) explicit method. The streamline equation is solved using the successive over relaxation
method. The obtained results follows and are illustrated in the report.
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3. INTRODUCTION

In previous homework assignments an analysis of a how to solve partial differential equations (PDES) using
point Gauss-Seidel (PGS) iterative method and using forward time center space (FTCS) explicit method has been
explored. In this project an analysis will be conducted that will utilize these two methods in one problem. But
successive over relaxation (SOR) method would be used as the iteration method. This project will consider a
rectangular cavity with a moving top wall. This moving wall will slowly cause the fluid to move within the cavity.
Itis the final steady state solution that this project seeks to acquire (Re 100 and 1000). Finally the similar problem

is computed in ANSYS FLUENT, commercial fluid simulation software and results are compared.

4. PROBLEM STATEMENT

The upper plate of a rectangular cavity shown in [~

y

Figure 1 moves to the rights with a velocity of uo.
The rectangular cavity has dimensions of L by L.
Use the FTCS explicit scheme and the SOR
formation to solve for the vorticity and the stream

,_,M_q_(.. T 133 R R N YO T PO NS T 1o —u,

function equations, respectfully. The cavity flow
problem is to be solved for the vorticity,

streamline, pressure contours and u-v profiles for
Re=100 and Re 1000. Later, a case has to be

solved where the rectangular cavity as dimensions Figure P8-1. The domain of solution for the driven cavity problem.

L

=1 i=iM

2L and L to obtain same contours. Figure 1: (Hoffmann) Figure P8-1 page 357

5. GOVERNING EQUATIONS

5.1 Stream Function

The derivation for the FTCS starts with the vorticity equation seen in Equation 1. It is important to notice how
similar this equation is to the 2-D Navier-Stokes momentum equation.
02 0Q dQ ’Q  9°Q
+Uu—+v—="0 —+—
ot ox dy ox~  dy” )
Equation 1 then has a forward difference Taylor Series expansion for first derivatives applied to the first term, a
central difference Taylor Series expansion for first derivatives applied to the second term and third term, and
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central difference Taylor Series for second derivative applied to the fourth and fifth term. The result is shown in
Equation 2.

Q?.;l - Qj'l.j n Q;’H.j _Q;J—lj n Q?.m -Q j-1 Q;I«H.j - 29?.]' + QL., Q;r.m - 29?., + Q;;—l
+ui_j +vw =0 3 =+ g .
Af 2Ax 2Ax (Ax) (Ay)
o _ ()
Also if, in equation 1,
U = o v = o 3
Then, the values of u and v are substituted in equation 1 to obtain equation 3,
an oY 0N ¥ N 1 .0 (0N d [0Q
= - + + —{— (—) — (—)} (4)
ot dy 0x dx 0y Re“0x \0x dy \dy
For this problem we are considering, dx=dy=ds, thus the final discretized equation becomes,
Dijn+r = Qijn - A[(Wijrrn - Pigrn) Qirrjn - Qijn)]
4ds*ds
- dt[( Wirsjp - Wiajn) (Qijrn - Qijan)]
4ds*ds
+ Q[ (Qirgjin - Riain - Qippan - Dijin - 4 Dijn)] (5)
Re* ds*ds

Where dt is the time step and ds is the space step.

5.2 Vorticity
5.2.1 Boundary conditions for the Vorticity

The boundary conditions for the vorticity stream line approach is quite complicated. The boundary conditions
were formulated using the lecture notes (scan set 20) and equations 8-111 to 8-117 in the book. For our problem
the boundary conditions are:-

At the bottomwall (j=1):

Dwan = {¥i1 — 'I’i,z}ﬁ + Uwall i (6)
At the top wall (j=ny):

Dwan = {qji,ny - lpi,ny-l}ﬁ - Unan i (7)
At the left wall (i=1)

Dwan= {W1 - ‘z”z,j}dsz—A2 + Uwal % (8)



At the bottomwall (i=nx)
Owan = {llun)gi — llUnx—l,j}L - Uwall = 9)

ds”2 ds

5.3 Stream Function equation

Below is the poisson equation that is used for stream function and is referred as elliptic PDE. Once the stream
function is calculated the velocity values (u,v) can be determined using equation 3.

0 [0W Jd [O0W
=(55) +5(5) = -l (10

Discretized version of equation 10 is shown below dx:dy:ds

—) = Wigjn + Pirjn + Wijrin + Pijin -4¥ijn
ds”2 (11)

For solving the elliptical equation, we obtain,

Wiint1 =25(Wistjn + Witjn + Wijrin + Wijan +ds*ds* 0ijn)
(12)

5.4 Successive Over relaxation (SOR)

The method of successive over-relaxation (SOR) is a variant of the Gauss—Seidel method for solving a linear
system of equations, resulting in faster convergence. A similar method can be used for any slowly
converging iterative process.

Wiint1 =B%0.25 (Wisijn + Wirjner + Pijrin + Pigner + ds*ds™* 2ijn)
+(1- Bijn (13)

If B=1 in equation 13, then the method becomes gauss seidel method.
If B>1 in equation 13, method for the iteration is referred to over relaxation method.
If B<1 in equation 13, method for the iteration is referred to under relaxation method.

5.5 Pressure Calculation

The pressure was calculated using the streamline function. The pressure calculation in the stream vorticity
approach uses the stream function to calculate the value of pressure at all the grid points. The equation used for
the calculation of the pressure is shown below.

V2P = 2*RHS

where, rhs is the right hand side of the pressure equation

0 (OW\ D (AW _ D (O¥\\A

RHS = Gx (6x> dy (63/) (By (6x)) 2 }

By plugging in the equation for rhs in the divergence of the pressure, the magnitude of the pressure is obtained.
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6. DEVELOPMENT OF CODING ALGORITHM

The coding algorithm is illustrated with a block diagram. The code can be seen directly following the block
diagram. The block diagram illustrates a short synopsis of how the code is employed to solve the vorticity
equation.

Initialize Variables
At ,Ax, Ay, u=0, v=0, ¥=0, 2=0

Start the time integration
And solve for stream function

!

Find Vorticity on the boundaries

!

U Find the RHS of the Vorticity

!

Input the new values of Vorticity in
interior

!

Increment Time

w

Pressure and velocity calculation

l

Visualization of the results




/. RESULTS: NUMERICAL SIMULATION

Task |
Case I- Re1000 (taskl)

Shown below is the vorticity (a) and stream function (b) and stream function (with smaller contours levels) (c)
in figure 2

Worticity stream function
T T

1 1 A E
0 01 0.2 03 04 05 . 0.7 0.8 0.9 0 01 02 03 04 05 06 07 08 0.9 1
nx

Figure 2. (a). Vorticity when Re =1000 (b). Steam Function when Re =1000
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Figure 2 (c)



Shown below is the U velocity (a) and V velocity (b) plot in figure 3

U-velocity V-velocity
I

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1 01 02 0.3 04 05 06 0.7 0.8
nx nx

Figure 3. (a). U-velocity when Re =1000 (b). V-velocity when Re =1000

Case II- Re 100 (task 1)
Shown below is the U velocity (a) and V velocity (b) plot in figure 4

U-welocity V-velocity
1 gy — i 1
» "-'_'-——'"'-_ | »
0.8 i 0.8

; 0.7 |

0.6 L 0.E
= 0.5 S = 0.5
0,4 L 0 0.4
0.3 0.3
0.2 0,2
0.1 0.1
II)(:| 0. % 0, 4 0.6 0.8 1 o 0.2 0.4 . Q.E 0.8 1
i
Figure 4. (a). U-velocity when Re =100 (b). V-velocity when Re =100
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Shown below is the vorticity (a) and stream function (b) plot in figure 5

Yorticity stream function

-0,01

-0, 02

P02
L
Fo0.08
.

P07

% 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Figure 5. (a). Vorticity when Re =100 (b). Steam Function when Re =100
Task 11
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Velocity Vectour Plot
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Figure 6. (a). Pressure contour when Re =1000 (b). Velocity Vector when Re =1000

11



Task 111

U velocity Re 100
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Figure 7. U- Velocity compassion/validation plots for Re

V- Velocity forre 100
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Figure 8. V- Velocity compassion/validation plots for Re
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U velocity Re 1000
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Figure 9. U- Velocity compassion/validation plots for Re=1000.
V velocity re 1000
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Figure 10. V- Velocity compassion/validation plots for Re=1000.



Note: The x axis in all the plots is the distance (x ory distance) and Y axis is the velocity (u or v)

Task IV

Shown below is the vorticity (a) and stream function (b) plot in figure11

Vorticity
2 T T T T

181 8

16 [t} i

14+ 1

1.2f 8

ny

1+ m

0.8 1

0.6 8

04 8

0.2f 8

U 1 1 1 1
0 0.2 04 0.6 0.8 1

nx

Figure 11. (a). Vorticity when AR=2

-3 01 02 03 04 05 06 07 08 08

stream function

nx

(b). Steam Function when AR=2

Shown below is the U velocity (a) and V velocity (b) plot in figure 12

I-velocity
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Figure 12 (a). U-velocity when AR=2

V-velocity
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hx

(b). V-velocity when AR =2
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Task 5

Reynolds Number = 10000 (task 5)

Shown below is the vorticity (a) and stream function (b) plot in figure 13

Vorticity stream function
T T T
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Figure 13. (a). Vorticity when Re =10000 (b). Steam Function when Re =10000

Shown below is the U velocity (a) and V velocity (b) plot in figure 14
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stream function
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(c). Steam Function when Re =10000 (t=0)
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(c). Steam Function when Re =10000 (t=.656)
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(c). Steam Function when Re =10000 (t=0.328)
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(c). Steam Function when Re =10000 (t=0.984)
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Wevelocity
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o o1 02 03 04 [ 3 07 08 o3
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Figure 14. (a). U-velocity when Re =1000 (b). V-velocity when Re =1000
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/.1 RESULTS ANSYS : FLUENT RESULTS

1) Case | - Reynolds Number 1000

e-0
3.26e-01
284e-01
261e-01
2.29e-01
1.96e-01
1.63e-01
1.31e-01
9.73e-02
6.53e-02
3.26e-02
246e-07

Yelocity Wectors Colored By Velocity Magnitude (m/s)
AMEYRFlie

Figure 16. (a). Velocity vector for Re 1000 (b). Steam Function when Re =1000 (with vortices) [“]

To get the corner vortices , the contour levels are adapted from [4].

siContous of Stream Functix

.71e+00
2.37e+00
2.03e+00
1.70e+00 5
1.36e+00 31
1.02e+00 2.79e-02
6.78e-01 2.390-02
3.39e-01 1.996-02
3.03e-04 1.59e-02
1.20e-02
7.97e-03
Contours of Yorticity Magnitude (1/s) 3.99e-03

ANSYS Fluent 14 0.00e+00

Figurel7 (a). Vorticity when Re =1000 (b). Steam Function when Re =1000
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Case | - Reynolds Number 100

+0

.03e+00
1.69e+00
1.36e+00
1.02e+00
6.78e-01
3.39e-01
9.76e-05

8.99¢-02

(c) Steam Function when Re =1000 (small contours)

0.00e+00

(b). Steam Function when Re =100
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9. CONCLUSIONS

This project was the summary of what was learnt in this course during this semester. We started with the 1-D
problems and moved toward the more complicated problems. The last homework was particularly helpful in
finding the solutions of this project. This project closely resemble actual engineering problems and thus an
important aspect of MAE 561 Computational fluid dynamics. The vorticity equation and a single moving wall
the fluid was driven in a circular path. The contours for the vorticity and streamline function was presented for
both the aspect ratio 1(task 1) as well as 2(task V). The velocity contour and pressure contour was also presented
for re 1000 (task II). This is an intuitive solution; however, a precise solution would be extremely difficult, if not
impossible, because it depends on the grid size, space step and time steps and many other factors.
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11. APPENDIX

$Author AKSHAY BATRA

$MAE 561 Computational Fluid Dynamics

$FINAL PROJECT - LID DRIVEN CAVITY FLOW IN RECATANGULAR CAVITY
%Due on Dec 12 2014.

clear all

close all

clf;

nx=101;ny=101; nt=100000; re=1000; dt=0.001;% Settting the initial parameters
no 1it=100000;% number of iterations

Beta=1.5;% relaxation factors

err=0.001;% parameter for SOR iteration

ds=.01; %dx=dy=ds

x=0:ds:1; y=0:ds:1;%dimensions of the cavity

t=0.0;

phi=zeros (nx,ny); omega=zeros (nx,ny); % initializing the wvariables
u = zeros(nx,ny); v = zeros(nx,ny);

x2d=zeros (nx,ny); y2d=zeros(nx,ny);

b=zeros (nx,ny) ;p=zeros (nx,ny) ;pn=zeros (nx, ny) ;

w=zeros (nx,ny); %S$p-qg/(nx-1),

%$Stream Function calculation
for t step=l:nt % time steps starts
for iter=l:no_it % streamfunction calculation
w=phi; % by SOR iteration
for i=2:nx-1;
for j=2:ny-1
phi(i, j)=0.25*Beta* (phi(i+1,3)+phi(i-1,3)+phi(i, j+1)+phi(i,j-1)+ds*ds*omega(i,j))+ (1.0~
Beta) *phi(i,J);
end
end
Err=0.0;
for i=l:nx
for j=l:ny
Err=Err+abs(w(i, ) -phi(i,3))
end
end
if Err <= err,
break;
end % stop if iteration has converged
end

%$boundary conditions for the Vorticity
for i=2:nx-1

for j=2:ny-1
omega (i,1)=-2.0*phi (i,2)/ (ds*ds);

oe

bottom wall

omega (i,ny)=-2.0*phi (i,ny-1)/(ds*ds)-2.0/ds; % top wall
omega (1,3)=-2.0*phi(2,3)/ (ds*ds) ; % right wall
omega (nx, J)=-2.0*phi (nx-1,7)/ (ds*ds) ; % left wall

end
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% RHS Calculation
for i=2:nx-1;
for j=2:ny-1 % compute
w(i,j)=-0.25* ((phi(i,j+1)-phi(i,j-1))* (omega(i+l,Jj)-omega (i-1,3))...
- (phi(i+1,3)-phi(i-1,73))* (omega (i, j+1) -omega (i, j-1)))/ (ds*ds) ...
+(1/re) * (omega (i+1, j) +omega (i-1, j) +omega (i, j+1)+omega (i, j-1)-4.0*omega (i,7J) )/ (ds*ds) ;
end

% Update the vorticity
omega (2:nx-1,2:ny-1)=omega (2:nx-1,2:ny-1)+dt*w(2:nx-1,2:ny-1);

t=t+dt; % increment the time
for i=1:nx
for j=l:ny
x2d (1i,])=x(1);
y2d(i,3)=y(J);
end

%$calculation of U and V
for 1 = 2:nx-1
for 3 = 2:ny-1

u(i,j)=(phi(i,j+1)-phi(i,3))/(2*ds);
v(i,3)=(phi(i+1,3J)-phi(i,3))/(2*ds);
u(:,ny) = 1;
v(nx,:) =.02;
end
end
end

%calculation of pressure
rhs=zeros (nx,ny) ;
for i=2:nx-1
for j=2:ny-1
rhs(i,3)=(((phi(i-1,3)-2*phi (i,J)+phi(i+1,3))/ (ds*ds)) ...
*((phi(i,j-1)-2*phi(i,J)+phi(i,J+1))/(ds*ds))) ...
- (phi(i+1,3+1)-phi(i+l,3j-1)-phi(i-1,3j+1)+phi(i-1,3-1))/(4* (ds*ds));

p(i,3)=(.25*(pn(i+1,3)+pn(i-1,3) + pn(i,j+1l)+pn(i,j-1))- 0.5* ((rhs(i,]J)*ds"2*ds"2)));

end
pn=p;

% Visualization of the results
figure (1)
contourf (x2d,y2d,omega, [-3:1:-1 -0.5 0.0 0.5 1:1:5 ]),xlabel('nx"),...
ylabel ('ny'),title('Vorticity') ;axis('square', 'tight');colorbar
title('Vorticity') % plot vorticity

figure (2)
contour (x2d,y2d,phi, [107-10 107~-7 107-5 107-4 0.0100...
0.0300 0.0500 0.0700 0.0900 0.100 0.1100 0.1150 0.1175]),xlabel('nx"),
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ylabel ('ny'),title('stream function');axis('square', 'tight');colorbar %streamfunction

figure (3)

contourf (x2d,y2d,u),xlabel ('nx'"),ylabel ('ny"), ...
title('U-velocity') ;axis('square', 'tight');colorbar

figure (4)

contourf (x2d,y2d,v),xlabel ('nx'"),ylabel ('ny"), ...
title('V-velocity') ;axis('square', 'tight');colorbar

figure (5)

contourf (x2d,y2d,p, ([-2.0:.01:2])) ,xlabel('nx"),ylabel('ny'), ...
title('pressure');
figure (6)
quiver (x2d,y2d,u,v)...
yxlabel ('nx'"),ylabel('ny'),title('Velocity Vectour Plot'); axis ([0 1 O
1]),axis('square')

%I have been able to get the vorticies in the stream function contour at the corner but
%$they are really small (for re 100). I have run the solution to 100,000 iteration at a
$time step of .001. It took 9-10 hours for the solution to compute.Then

%$similarly for the Re 1000 took even longer but i was able to get the vorticies.
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