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1. ABSTRACT 
 

Develop an understanding of the steps involved in solving the Navier-Stokes equations using a numerica l 
method. Write a simple code to solve the “driven cavity” problem using the Incompressible- Navier-
Stokes equations in Vorticity form. This project requires that the Vorticity streamline function, u and v 

velocity profiles, pressure contours for the lid driven rectangular cavity for Reynolds number 100 and 
1000. The lid driven cavity is a classical problem and closely resembles actual engineering problems that 

exist in research and industry areas. The vorticity equation will be solved utilizing a forward time central 
space (FTCS) explicit method. The streamline equation is solved using the successive over relaxation 
method. The obtained results follows and are illustrated in the report.  
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3. INTRODUCTION 
 
 
In previous homework assignments  an analysis of a how to solve partial differential equations (PDEs) using 

point Gauss-Seidel (PGS) iterative method and using forward time center space (FTCS) explicit method has been 

explored. In this project an analysis will be conducted that will utilize these two methods in one problem.  But 

successive over relaxation (SOR) method would be used as the iteration method. This project will consider a 

rectangular cavity with a moving top wall. This moving wall will slowly cause the fluid to move within the cavity. 

It is the final steady state solution that this project seeks to acquire (Re 100 and 1000). Finally the similar problem 

is computed in ANSYS FLUENT, commercial fluid simulation software and results are compared.  

 

 

4. PROBLEM STATEMENT 
 
The upper plate of a rectangular cavity    shown in 

Figure 1 moves to the rights with a velocity of uo. 

The rectangular cavity has dimensions of L by L. 

Use the FTCS explicit scheme and the SOR 

formation to solve for the vorticity and the stream 

function equations, respectfully. The cavity flow 

problem is to be solved for the vorticity, 

streamline, pressure contours and u-v profiles for 

Re=100 and Re 1000. Later, a case has to be 

solved where the rectangular cavity as dimens ions 

2L and L to obtain same contours.  

 

 

5. GOVERNING EQUATIONS 
 

 
5.1 Stream Function 

 
The derivation for the FTCS starts with the vorticity equation seen in Equation 1. It is important to notice how 
similar this equation is to the 2-D Navier-Stokes momentum equation. 

                                                   (1) 
Equation 1 then has a forward difference Taylor Series expansion for first derivatives applied to the first term, a 
central difference Taylor Series expansion for first derivatives applied to the second term and third term, and 

                                    Figure 1: (Hoffmann) Figure P8-1 page 357 
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central difference Taylor Series for second derivative applied to the fourth and fifth term. The result is shown in 
Equation 2. 

     (2) 
Also if, in equation 1,  
 

𝑢 =
𝜕𝛹

𝜕𝑦
     ,    𝑣 = −

𝜕𝛹

𝜕𝑥
                                                                        (3) 

Then, the values of u and v are substituted in equation 1 to obtain equation 3, 

 
𝜕𝛺 

𝜕𝑡
 = - 

𝜕𝛹

𝜕𝑦

𝜕𝛺 

𝜕𝑥
 + 

𝜕𝛹

𝜕𝑥

𝜕𝛺 

𝜕𝑦
 + 

1

𝑅𝑒
{

𝜕

𝜕𝑥
(

𝜕𝛺

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝛺

𝜕𝑦
)}                  (4) 

 

For this problem we are considering, dx=dy=ds, thus the final discretized equation becomes, 

 

𝛺i,j,n+1 = 𝛺i,j,n - dt[(𝛹i,j+1,n - 𝛹i,j-1,n) (𝛺i+1,j,n - 𝛺i-1,j,n)]  
                                               4ds*ds 

                 - dt[( 𝛹i+1,j,n - 𝛹i-1,j,n)  (𝛺i,j+1,n - 𝛺i,j-1,n)]    
                                               4ds*ds 

                                 + dt[(𝛺i+1,j,n - 𝛺i-1,j,n   - 𝛺i,j+1,n - 𝛺i,j-1,n - 4 𝛺i,j,n)]             (5) 
                                                Re* ds*ds 
Where dt is the time step and ds is the space step.  

 

5.2 Vorticity 

5.2.1 Boundary conditions for the Vorticity 

 

The boundary conditions for the vorticity stream line approach is quite complicated. The boundary conditions 

were formulated using the lecture notes (scan set 20) and equations 8-111 to 8-117 in the book. For our problem 

the boundary conditions are:-  
 

At the bottom wall (j=1):  

𝛺wall = {𝛹i,1 – 𝛹i,2}
2

𝑑𝑠^2
 + Uwall 

2

𝑑𝑠
                                                                                   (6) 

 

At the top wall (j=ny): 

𝛺wall = {𝛹i,ny – 𝛹i,ny-1}
2

𝑑𝑠^2
 - Uwall 

2

𝑑𝑠
          (7) 

 
At the left wall (i=1) 

𝛺wall = {𝛹1,j– 𝛹2,j}
2

𝑑𝑠^2
 + Uwall 

2

𝑑𝑠
           (8) 

 



7 

 

At the bottom wall (i=nx) 

𝛺wall = {𝛹nx,i – 𝛹nx-1,j}
2

𝑑𝑠^2
 - Uwall 

2

𝑑𝑠
          (9) 

 

5.3 Stream Function equation  
 

Below is the poisson equation that is used for stream function and is referred as elliptic PDE. Once the stream 

function is calculated the velocity values (u,v) can be determined using equation 3. 
 

𝜕

𝜕𝑥
(

𝜕𝛹

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝛹

𝜕𝑦
) =  −𝛺                                                   (10) 

 

Discretized version of equation 10 is shown below dx=dy=ds 
 

−𝛺 =    𝛹i+1,j,n + 𝛹i-1,j,n + 𝛹i,j+1,n + 𝛹i,j-1,n  -4𝛹i,j,n 
                                          ds^2                                                       (11) 
 

For solving the elliptical equation, we obtain, 

 
𝛹i,j,n+1 =.25(𝛹i+1,j,n + 𝛹i-1,j,n + 𝛹i,j+1,n + 𝛹i,j-1,n  + ds*ds* 𝛺i,j,n) 
                                                                                                                                                            (12) 
 

5.4 Successive Over relaxation (SOR) 
 The method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear 
system of equations, resulting in faster convergence. A similar method can be used for any slowly 

converging iterative process. 
 

𝛹i,j,n+1 =β*0.25 (𝛹i+1,j,n + 𝛹i-1,j,n+1 + 𝛹i,j+1,n + 𝛹i,j-1,n+1  + ds*ds* 𝛺i,j,n) 

                                         + (1- β)i,j,n                                                                                            (13) 

 
If β=1 in equation 13, then the method becomes gauss seidel method.  
If β>1 in equation 13, method for the iteration is referred to over relaxation method.  

If β<1 in equation 13, method for the iteration is referred to under relaxation method.  
 

5.5 Pressure Calculation 
The pressure was calculated using the streamline function. The pressure calculation in the stream vorticity 

approach uses the stream function to calculate the value of pressure at all the grid points. The equation used for 
the calculation of the pressure is shown below.  

         2P = 2*RHS 
where, rhs is the right hand side of the pressure equation 
 

RHS = {
𝜕

𝜕𝑥
(

𝜕𝛹
𝜕𝑥

)
𝜕

𝜕𝑦
(

𝜕𝛹
𝜕𝑦

) − ( 𝜕
𝜕𝑦

(
𝜕𝛹
𝜕𝑥

))^2 } 
By plugging in the equation for rhs in the divergence of the pressure, the magnitude of the pressure is obtained.  

http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
http://en.wikipedia.org/wiki/Linear_system_of_equations
http://en.wikipedia.org/wiki/Linear_system_of_equations
http://en.wikipedia.org/wiki/Iterative_method
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6. DEVELOPMENT OF CODING ALGORITHM  
 
The coding algorithm is illustrated with a block diagram. The code can be seen directly following the block 

diagram. The block diagram illustrates a short synopsis of how the code is employed to solve the vorticity 
equation.  

 
 
 

                              
       

    
 
 

 
 

 
 
 

 
 

 
 
 

     
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

 

Initialize Variables 

∆t ,∆x, ∆y, u=0, v=0, 𝛹=0, 𝛺=0 

Start the time integration 
And solve for stream function 

Find Vorticity on the boundaries 

Find the RHS of the Vorticity  

Input the new values of Vorticity in 

interior 

Increment Time  

Pressure and velocity calculation 

Visualization of the results    
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7. RESULTS: NUMERICAL SIMULATION 
 
Task I 

Case I- Re1000 (taskI) 

 
Shown below is the vorticity (a) and stream function (b) and  stream function  (with smaller contours levels) (c)  

in  figure 2 
 

  
Figure 2. (a). Vorticity when Re =1000                 (b). Steam Function when Re =1000 

 

 
Figure 2 (c) 
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Shown below is the U velocity (a) and V velocity  (b) plot in figure 3 

  
Figure 3. (a). U-velocity when Re =1000   (b). V-velocity when Re =1000 
 
 

 Case II- Re 100 (task I) 
Shown below is the U velocity (a) and V velocity  (b) plot in figure 4 

 
Figure 4. (a). U-velocity when Re =100   (b). V-velocity when Re =100 
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Shown below is the vorticity (a) and stream function (b) plot in figure 5 
 

 
Figure 5. (a). Vorticity when Re =100                    (b). Steam Function when Re =100 
 

 
Task II 

 

  
Figure 6. (a). Pressure contour when Re =1000               (b). Velocity Vector when Re =1000 
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Task III 

 
Figure 7.  U- Velocity compassion/validation plots for Re=100. 

 
 

 
Figure 8.  V- Velocity compassion/validation plots for Re=100. 
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Figure 9.  U- Velocity compassion/validation plots for Re=1000. 
 

 
Figure 10.  V- Velocity compassion/validation plots for Re=1000. 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 0.98224
854

0.96646
94

0.93688
36

0.87968
44

0.82051
283

0.70611
44

0.59171
6

0.44773
176

0.32741
618

0.26232
74

0.21696
253

0.17357
002

0.14595
66

0.10256
4104

0.06114
3983

0.02366
864

0.00197
2387

U velocity Re 1000

my_ Re 1000 _ U Ghia Re 1000 _ U Ansys

-1.50E+00

-1.00E+00

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1.50E+00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

V  velocity re 1000

my_ Re 1000 _ V Ghai Re 1000 ansys



14 

 

 

Note: The x axis in all the plots is the distance (x or y distance) and Y axis is the velocity (u or v) 

 

Task IV 

 
Shown below is the vorticity (a) and stream function (b) plot in figure11  

     
Figure 11. (a). Vorticity when AR=2                              (b). Steam Function when AR=2 

 
Shown below is the U velocity (a) and V velocity (b) plot in figure 12 

  
Figure 12 (a). U-velocity when AR=2                            (b). V-velocity when AR = 2 
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Task 5 

 

Reynolds Number = 10000 (task 5) 
 

  
 

 
Shown below is the vorticity (a) and stream function (b) plot in figure 13 

  
Figure 13. (a). Vorticity when Re =10000                    (b). Steam Function when Re =10000  
 

Shown below is the U velocity (a) and V velocity  (b) plot in figure 14 
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(c). Steam Function when Re =10000 (t=0)                          (c). Steam Function when Re =10000 (t=0.328) 
 

  
(c). Steam Function when Re =10000 (t=.656)                     (c). Steam Function when Re =10000 (t=0.984) 
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Figure 14. (a). U-velocity when Re =1000   (b). V-velocity when Re =1000 

 

 

 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

7.1 RESULTS ANSYS : FLUENT RESULTS  
 

1) Case I - Reynolds Number 1000 
 

 
 

 
Figure 16. (a). Velocity vector for Re 1000           (b). Steam Function when Re =1000 (with vortices) [4] 

 
To get the corner vortices , the contour levels are adapted from [4]. 

 

  
Figure17 (a). Vorticity when Re =1000                    (b). Steam Function when Re =1000 
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Case I - Reynolds Number 100 

 

 
Figure 18. (a). Vorticity when Re =100                    (b). Steam Function when Re =100 
 

 
 

 

 
 (c) Steam Function when Re =1000 (small contours) 
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9. CONCLUSIONS 

 
This project was the summary of what was learnt in this course during this semester. We started with the 1-D 
problems and moved toward the more complicated problems. The last homework was particularly helpful in 
finding the solutions of this project. This project closely resemble actual engineering problems and thus an 

important aspect of MAE 561 Computational fluid dynamics. The vorticity equation and a single moving wall 
the fluid was driven in a circular path. The contours for the vorticity and streamline function was presented for 

both the aspect ratio 1(task I) as well as 2(task IV). The velocity contour and pressure contour was also presented 
for re 1000 (task II). This is an intuitive solution; however, a precise solution would be extremely difficult, if not 
impossible, because it depends on the grid size, space step and time steps and many other factors.  
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11. APPENDIX 

 
%Author AKSHAY BATRA 
 %MAE 561 Computational Fluid Dynamics  
 %FINAL PROJECT - LID DRIVEN CAVITY FLOW IN RECATANGULAR CAVITY  
 %Due on Dec 12 2014. 
 %------------------------------------------------------------------------- 
 clear all  
 close all 
 clf; 
 nx=101;ny=101; nt=100000; re=1000; dt=0.001;% Settting the initial parameters  
 no_it=100000;% number of iterations 
 Beta=1.5;% relaxation factors  
 err=0.001;% parameter for SOR iteration 
 ds=.01;%dx=dy=ds 
 x=0:ds:1; y=0:ds:1;%dimensions of the cavity  
 t=0.0; 
 %------------------------------------------------------------------------- 
 phi=zeros(nx,ny); omega=zeros(nx,ny); % initializing the variables 
 u = zeros(nx,ny); v = zeros(nx,ny); 
 x2d=zeros(nx,ny); y2d=zeros(nx,ny); 
 b=zeros(nx,ny);p=zeros(nx,ny);pn=zeros(nx,ny); 
 w=zeros(nx,ny); %p-q/(nx-1),  

  
 %------------------------------------------------------------------------- 
 %Stream Function calculation  
for t_step=1:nt % time steps starts  
   for iter=1:no_it % streamfunction calculation 
   w=phi; % by SOR iteration 
       for i=2:nx-1;  

           for j=2:ny-1 
 phi(i,j)=0.25*Beta*(phi(i+1,j)+phi(i-1,j)+phi(i,j+1)+phi(i,j-1)+ds*ds*omega(i,j))+(1.0-

Beta)*phi(i,j); 
           end 
       end 
 Err=0.0; 
 for i=1:nx 
     for j=1:ny 
         Err=Err+abs(w(i,j)-phi(i,j));  
     end 
 end 
     if Err <= err, 
     break; 
     end % stop if iteration has converged 
   end 
%-------------------------------------------------------------------------- 
%boundary conditions for the Vorticity 
for i=2:nx-1 
    for j=2:ny-1 

 omega(i,1)=-2.0*phi(i,2)/(ds*ds);                             % bottom wall 
 omega(i,ny)=-2.0*phi(i,ny-1)/(ds*ds)-2.0/ds;                  % top wall 
 omega(1,j)=-2.0*phi(2,j)/(ds*ds);                             % right wall 
 omega(nx,j)=-2.0*phi(nx-1,j)/(ds*ds);                         % left wall 
    end 



23 

 

end 

  
%-------------------------------------------------------------------------- 
% RHS Calculation 
 for i=2:nx-1;  
     for j=2:ny-1 % compute 
 w(i,j)=-0.25*((phi(i,j+1)-phi(i,j-1))*(omega(i+1,j)-omega(i-1,j))...     
 -(phi(i+1,j)-phi(i-1,j))*(omega(i,j+1)-omega(i,j-1)))/(ds*ds)...  
+(1/re)*(omega(i+1,j)+omega(i-1,j)+omega(i,j+1)+omega(i,j-1)-4.0*omega(i,j))/(ds*ds); 
     end  
 end  
 %-------------------------------------------------------------------------- 
% Update the vorticity  
 omega(2:nx-1,2:ny-1)=omega(2:nx-1,2:ny-1)+dt*w(2:nx-1,2:ny-1);         

  
 t=t+dt; % increment the time  
 for i=1:nx 
    for j=1:ny 
    x2d(i,j)=x(i); 
    y2d(i,j)=y(j); 
    end 
 end 
 %------------------------------------------------------------------------- 
 %calculation of U and V 
    for i = 2:nx-1 
        for j = 2:ny-1 
u(i,j)=(phi(i,j+1)-phi(i,j))/(2*ds);  
v(i,j)=(phi(i+1,j)-phi(i,j))/(2*ds); 
u(:,ny) = 1; 
v(nx,:) =.02; 
        end 
    end 
end 
%-------------------------------------------------------------------------- 

%calculation of pressure 
rhs=zeros(nx,ny); 
for i=2:nx-1 
    for j=2:ny-1 
        rhs(i,j)=(((phi(i-1,j)-2*phi(i,j)+phi(i+1,j))/(ds*ds))... 
            *((phi(i,j-1)-2*phi(i,j)+phi(i,j+1))/(ds*ds)))... 
            - (phi(i+1,j+1)-phi(i+1,j-1)-phi(i-1,j+1)+phi(i-1,j-1))/(4*(ds*ds)); 

         
   p(i,j)=(.25*(pn(i+1,j)+pn(i-1,j) + pn(i,j+1)+pn(i,j-1))- 0.5*((rhs(i,j)*ds^2*ds^2))); 

     
    end 
    pn=p; 

  
end 

  
%-------------------------------------------------------------------------- 
% Visualization of the results 
 figure(1) 

contourf(x2d,y2d,omega,[-3:1:-1 -0.5 0.0 0.5 1:1:5 ]),xlabel('nx'),... 
    ylabel('ny'),title('Vorticity');axis('square','tight');colorbar 
title('Vorticity') % plot vorticity 

  
figure(2)  
contour(x2d,y2d,phi,[10^-10  10^-7 10^-5 10^-4 0.0100... 
0.0300 0.0500 0.0700 0.0900 0.100 0.1100 0.1150 0.1175]),xlabel('nx'), 
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ylabel('ny'),title('stream function');axis('square','tight');colorbar %streamfunction 

  
figure(3) 
contourf(x2d,y2d,u),xlabel('nx'),ylabel('ny'),... 
    title('U-velocity');axis('square','tight');colorbar 

  
figure(4) 
contourf(x2d,y2d,v),xlabel('nx'),ylabel('ny'),... 
    title('V-velocity');axis('square','tight');colorbar 

  
figure(5) 
contourf(x2d,y2d,p,([-2.0:.01:2])),xlabel('nx'),ylabel('ny'),... 
    title('pressure'); 
figure(6) 
quiver (x2d,y2d,u,v)... 
 ,xlabel('nx'),ylabel('ny'),title('Velocity Vectour Plot'); axis([0 1 0 

1]),axis('square') 

  
%------------------------------------------------------------------------- 
%I have been able to get the vorticies in the stream function contour at the corner but 
%they are really small(for re 100). I have run the solution to 100,000 iteration at a 
%time step of .001. It took 9-10 hours for the solution to compute.Then 
%similarly for the Re 1000 took even longer  but i was able to get the vorticies.  

  

  

 

 


