## 9－6 Dilations

## Mathematics Florida Standards

MAFS．912．G－SRT．1．1a A dilation takes a line not passing through the center of the dilation to a parallel line，．．．Also MAFS．912．G－SRT．1．1b， MAFS．912．G－C0．1．2，MAFS．912．G－SRT．1．2
MP 1，MP 3，MP 4，MP 7

Objective To understand dilation images of figures


Do you think you can model this using rigid motions？

MATHEMATICAL PRACTICES

Observe the size and shape of the iris in normal light and in dim light． What characteristics stay the same and what characteristics change？ How do these observations compare to transformation of figures you have learned about earlier in the chapter？

In the Solve It，you looked at how the pupil of an eye changes in size，or dilates．In this lesson，you will learn how to dilate geometric figures．

Essential Understanding You can use a scale factor to make a larger or smaller copy of a figure that is also similar to the original figure．
－dilation
－center of dilation
－scale factor of a dilation
－enlargement
－reduction

The pupil is the opening in the iris that lets light into the eye． Depending on the amount of light available，the size of the pupil changes．


The scale factor $n$ of a dilation is the ratio of a length of the image to the corresponding length in the preimage, with the image length always in the numerator. For the figure shown on page 587, $n=\frac{C R^{\prime}}{C R}=\frac{R^{\prime} P^{\prime}}{R P}=\frac{P^{\prime} Q^{\prime}}{P Q}=\frac{Q^{\prime} R^{\prime}}{Q R}$.
A dilation is an enlargement if the scale factor $n$ is greater than 1 . The dilation is a reduction if the scale factor $n$ is between 0 and 1 .


## Problem 1 Finding a Scale Factor

## Think

Why is the scale factor not $\frac{4}{12}$, or $\frac{1}{3}$ ?
The scale factor of a dilation always has the image length (or the distance between a point on the image and the center of dilation) in the numerator.

Multiple Choice Is $D_{(n, X)}(\triangle X T R)=\triangle X^{\prime} T^{\prime} R^{\prime}$ an enlargement or a reduction? What is the scale factor $n$ of the dilation?
(A) enlargement; $n=2$
(C) reduction; $n=\frac{1}{3}$
(B) enlargement; $n=3$
(D) reduction; $n=3$

The image is larger than the preimage, so the dilation is an
 enlargement.
Use the ratio of the lengths of corresponding sides to find the scale factor.

$$
n=\frac{X^{\prime} T^{\prime}}{X T}=\frac{4+8}{4}=\frac{12}{4}=3
$$

$\triangle X^{\prime} T^{\prime} R^{\prime}$ is an enlargement of $\triangle X T R$, with a scale factor of 3 . The correct answer is B .
Got li? 1. Is $D_{(n, O)}(J K L M)=J^{\prime} K^{\prime} L^{\prime} M^{\prime}$ an enlargement or a reduction? What is the scale factor $n$ of the dilation?


In Got It 1 , you looked at a dilation of a figure drawn in the coordinate plane. In this book, all dilations of figures in the coordinate plane have the origin as the center of dilation. So you can find the dilation image of a point $P(x, y)$ by multiplying the coordinates of $P$ by the scale factor $n$. A dilation of scale factor $n$ with center of dilation at the origin can be written as

$$
D_{n}(x, y)=(n x, n y)
$$



## Problem 2 Finding a Dilation Image

Will the vertices of the triangle move closer to $(0,0)$ or farther from ( 0,0 )? The scale factor is 2 , so the dilation is an enlargement. The vertices will move farther from $(0,0)$.

What are the coordinates of the vertices of $D_{2}(\triangle P Z G)$ ? Graph the image of $\triangle P Z G$.

Identify the coordinates of each vertex. The center of dilation is the origin and the scale factor is 2 , so use the dilation rule $D_{2}(x, y)=(2 x, 2 y)$.

$$
\begin{aligned}
& D_{2}(P)=(2 \cdot 2,2 \cdot(-1)), \text { or } P^{\prime}(4,-2) \\
& D_{2}(Z)=(2 \cdot(-2), 2 \cdot 1), \text { or } Z^{\prime}(-4,2) \\
& D_{2}(G)=(2 \cdot 0,2 \cdot(-2)), \text { or } G^{\prime}(0,-4)
\end{aligned}
$$

To graph the image of $\triangle P Z G$, graph $P^{\prime}, Z^{\prime}$, and $G^{\prime}$. Then draw $\triangle P^{\prime} Z^{\prime} G^{\prime}$.


Got If? 2. a. What are the coordinates of the vertices of $D_{\frac{1}{2}}(\triangle P Z G)$ ?
b. Reasoning How are $\overline{P Z}$ and $\overline{P^{\prime} Z^{\prime}}$ related? How are $\overline{P G}$ and $\overline{P^{\prime} G^{\prime}}$, and $\overline{G Z}$ and $\overline{G^{\prime} Z^{\prime}}$ related? Use these relationships to make a conjecture about the effects of dilations on lines.

Dilations and scale factors help you understand real-world enlargements and reductions, such as images seen through a microscope or on a computer screen.

## Problem 3 Using a Scale Factor to Find a Length

What does a scale factor of 7 tell you? A scale factor of 7 tells you that the ratio of the image length to the actual length is 7 , or $\frac{\text { image length }}{\text { actual length }}=7$.

Biology A magnifying glass shows you an image of an object that is 7 times the object's actual size. So the scale factor of the enlargement is 7 . The photo shows an apple seed under this magnifying glass. What is the actual length of the apple seed?
$1.75=7 \cdot p \quad$ image length $=$ scale factor $\cdot$ actual length
$0.25=p \quad$ Divide each side by 7.
The actual length of the apple seed is 0.25 in .

Got It? 3. The height of a document on your computer screen is 20.4 cm . When you change the zoom setting on your screen from $100 \%$ to $25 \%$, the new image of your document is a dilation of the previous image with scale factor 0.25 . What is the height of the new image?


## Lesson Check

## Do you know HOW?

1. The blue figure is a dilation image of the black figure with center of dilation $C$. Is the dilation an enlargement or a reduction? What is the scale factor of the dilation?


Find the image of each point.
2. $D_{2}(1,-5)$
3. $D_{\frac{1}{2}}(0,6)$
4. $D_{10}(0,0)$

## Do you UNDERSTAND?

5. Vocabulary Describe the scale factor of a reduction.
(C) 6. Error Analysis The blue figure is a dilation image of the black figure for a dilation with center $A$.


Two students made errors when asked to find the scale factor. Explain and correct their errors.
A.

B.


The blue figure is a dilation image of the black figure. The labeled point is the center of dilation. Tell whether the dilation is an enlargement or a reduction. Then find the scale factor of the dilation.
7.

9.

10.

12.

13.

8.

11.

14.

15.


Find the images of the vertices of $\triangle P Q R$ for each dilation. Graph the image.
16. $D_{3}(\triangle P Q R)$

17. $D_{10}(\triangle P Q R)$

18. $D_{\frac{3}{4}}(\triangle P Q R)$


Magnification You look at each object described in Exercises 19-22 under a magnifying glass. Find the actual dimension of each object.
19. The image of a button is 5 times the button's actual size and has a diameter of 6 cm .
20. The image of a pinhead is 8 times the pinhead's actual size and has a width of 1.36 cm .
21. The image of an ant is 7 times the ant's actual size and has a length of 1.4 cm .
22. The image of a capital letter $N$ is 6 times the letter's actual size and has a height of 1.68 cm .

Find the image of each point for the given scale factor.
23. $L(-3,0) ; D_{5}(L)$
24. $N(-4,7) ; D_{0.2}(N)$
25. $A(-6,2) ; D_{1.5}(A)$
26. $F(3,-2) ; D_{\frac{1}{3}}(F)$
27. $B\left(\frac{5}{4},-\frac{3}{2}\right) ; D_{\frac{1}{10}}(B)$
28. $Q\left(6, \frac{\sqrt{3}}{2}\right) ; D_{\sqrt{6}}(Q)$

Use the graph at the right. Find the vertices of the image of $Q R T W$ for a dilation with center $(0,0)$ and the given scale factor.
29. $\frac{1}{4}$
30. 0.6
31. 0.9
32. 10
33. 100
34. Compare and Contrast Compare the definition of scale factor of a dilation to the definition of scale factor of two similar polygons. How are they alike?
 How are they different?
(C) 35. Think About a Plan The diagram at the right shows $\triangle L M N$ and its image $\triangle L^{\prime} M^{\prime} N^{\prime}$ for a dilation with center $P$. Find the values of $x$ and $y$. Explain your reasoning.

- What is the relationship between $\triangle L M N$ and $\triangle L^{\prime} M^{\prime} N^{\prime}$ ?
- What is the scale factor of the dilation?
- Which variable can you find using the scale factor?


36. Writing An equilateral triangle has 4-in. sides. Describe its image for a dilation with center at one of the triangle's vertices and scale factor 2.5.

## Coordinate Geometry Graph $M N P Q$ and its image $M^{\prime} N^{\prime} P^{\prime} Q^{\prime}$ for a dilation with

 center $(0,0)$ and the given scale factor.37. $M(1,3), N(-3,3), P(-5,-3), Q(-1,-3) ; 3$
38. $M(2,6), N(-4,10), P(-4,-8), Q(-2,-12) ; \frac{1}{4}$
39. Open-Ended Use the dilation command in geometry software or drawing software to create a design that involves repeated dilations, such as the one shown at the right. The software will prompt you to specify a center of dilation and a scale factor. Print your design and color it. Feel free to use other transformations along with dilations.

A dilation maps $\triangle H I J$ onto $\triangle H^{\prime} I^{\prime} J^{\prime}$. Find the missing values.
40. $H I=8$ in. $H^{\prime} I^{\prime}=16 \mathrm{in}$.
41. $H I=$ 部 $\quad H^{\prime} I^{\prime}=8 \mathrm{ft}$
$I J=5 \mathrm{in} . \quad I^{\prime} J^{\prime}=\square \mathrm{in}$.
$I J=30 \mathrm{ft} \quad I^{\prime} J^{\prime}=\square \mathrm{ft}$
$H J=6$ in. $H^{\prime} J^{\prime}=\square$ in.
$H J=24 \mathrm{ft} \quad H^{\prime} J^{\prime}=6 \mathrm{ft}$

42. Let $\ell$ be a line through the origin. Show that $D_{k}(\ell)=\ell$ by showing that if $C=\left(c_{1}, c_{2}\right)$ is on $\ell$, then $D_{k}(C)$ is also on $\ell$.
43. Let $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$, let $A^{\prime}=D_{k}(A)$ and $B^{\prime}=D_{k}(B)$ with $k \neq 1$, and suppose that $\overleftrightarrow{A B}$ does not pass through the origin.
a. Show that $\overleftrightarrow{A B} \neq \overleftrightarrow{A^{\prime} B^{\prime}}$ (Hint: What happens to the $x$ - and $y$-intercepts of $\overleftrightarrow{A B}$ under the dilation $D_{k}$ ?)
b. Suppose that $a_{1} \neq b_{1}$. Show that $\overleftrightarrow{A B}$ is parallel to $\overleftrightarrow{A^{\prime} B^{\prime}}$ by showing that they have the same slope.
c. Show that $\overleftrightarrow{A B}\left|\mid \overleftrightarrow{A^{\prime} B^{\prime}}\right.$ if $a_{1}=b_{1}$.
44. Reasoning You are given $\overline{A B}$ and its dilation image $\overline{A^{\prime} B^{\prime}}$ with $A, B, A^{\prime}$, and $B^{\prime}$ noncollinear. Explain how to find the center of dilation and scale factor.
(C) Reasoning Write true or false for Exercises 45-48. Explain your answers.
45. A dilation is an isometry.
46. A dilation with a scale factor greater than 1 is a reduction.
47. For a dilation, corresponding angles of the image and preimage are congruent.
48. A dilation image cannot have any points in common with its preimage.

Coordinate Geometry In the coordinate plane, you can extend dilations to include scale factors that are negative numbers. For Exercises 49 and 50, use $\triangle P Q R$ with vertices $P(1,2), Q(3,4)$, and $R(4,1)$.
49. Graph $D_{-3}(\triangle P Q R)$.
50. a. Graph $D_{-1}(\triangle P Q R)$.
b. Explain why the dilation in part (a) may be called a reflection through a point. Extend your explanation to a new definition of point symmetry.
51. Shadows A flashlight projects an image of rectangle $A B C D$ on a wall so that each vertex of $A B C D$ is 3 ft away from the corresponding vertex of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. The length of $\overline{A B}$ is 3 in . The length of $\overline{A^{\prime} B^{\prime}}$ is 1 ft . How far from each vertex of $A B C D$ is the light?


## Standardized Test Prep

SAT/ACT

Short
Response
52. A dilation maps $\triangle C D E$ onto $\triangle C^{\prime} D^{\prime} E^{\prime}$. If $C D=7.5 \mathrm{ft}, C E=15 \mathrm{ft}, D^{\prime} E^{\prime}=3.25 \mathrm{ft}$, and $C^{\prime} D^{\prime}=2.5 \mathrm{ft}$, what is $D E$ ?
(A) 1.08 ft
(B) 5 ft
(C) 9.75 ft
(D) 19 ft
53. You want to prove indirectly that the diagonals of a rectangle are congruent. As the first step of your proof, what should you assume?
(F) A quadrilateral is not a rectangle.
(G) The diagonals of a rectangle are not congruent.
(H) A quadrilateral has no diagonals.
(I) The diagonals of a rectangle are congruent.
54. Which word can describe a kite?
(A) equilateral
(B) equiangular
(C) convex
(D) scalene
55. Use the figure at the right to answer the questions below.
a. Does the figure have rotational symmetry? If so, identify the angle of rotation.
b. Does the figure have reflectional symmetry? If so, how many lines of symmetry does it have?


## Mixed Review

56. $\triangle J K L$ has vertices $J(23,2), K(4,1)$, and $L(1,23)$. What are the coordinates of

See Lesson 9-5. $J^{\prime}, K^{\prime}$, and $L^{\prime}$ if $\left(R_{x \text {-axis }}{ }^{\circ} T_{<2,-3>}\right)(\Delta J K L)=\Delta J^{\prime} K^{\prime} L^{\prime}$ ?

Get Ready! To prepare for Lesson 9-7, do Exercises 55-57.
Algebra $T R S U \sim N M Y Z$. Find the value of each variable.
See Lesson 7-2.
57. $a$
58. $b$
59. $c$


