MAGNETOSTATICS

Creation of magnetic field B.

Effect of B on a moving charge.

Take the second case:
Frag = Q(V X B) - On moving charges only

F — Q [ E + (\7’ < é)] —>Stationary and moving
charges
Analysis on F . [dWe o =F_ -dl =Q(VxB)vdt=0

mag

Magnetic forces do no work!



Current-carrying wire

Charge-flow over a surface
with a surface current density K




The amount of charge passing through area A 1n time At 1s

nq(AvAL).
Amount flowing per unit area per unit time 1s NQV, giving you
the current density.

j| =ngv .

J v A
| = §j-ds = dq (rate of flow of charge)

-

-
UAL
Consider a closed surface enclosing volume V. If p be the

represents the total eharge 1ns1de the Volume V.
According to the law of conservation of charge, the rate of flow of
charge through the enclosed surface is equal to the rate of decrease

of charge in it. §J dS—'_jpdV__I(apjdV



According to divergence theorem

bj-ds=[(V-jldv j(v-j)dvzj(—%pjdv

. 9p Thisiscalled the equation of continuity
V)= T and represents the physical facts of
conservation of charges.



BIOT - SAVART LAW
Creation of magnetic field with the movement of
charges.
Under steady state movement of charges (steady
current), the magnetic field produced 1s given by the
Biot-Savart Law:

i) dBocl (i) dBocdl
1 . :
() dBoc— (iv) dBocsin®
I
with K as constant of proportionality, in SI units, dl|
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EXAMPLE -1

T pd < (v, —18)
B= ) 7 3/2

Using the tan 6 = 1’/y, we get the final
result as

- I | )
B=10 (sin®,—sin®, )¢,
4y
- I A
If-0,=0,, B= Ho (2SII192)6Z
4y I
If 0, =n/2 > Infinite line: B=10 e,
21y




EXAMPLE - 2

TR (ad(pé@x(zéz—aép))
B= 471(? S ,\32
(z* +a%)

o, (azd(pép +a2d(péz)

B 4m (22 +a’ )3/2
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If there are ‘n’ turns, then B= Ho

At the center of the loop:



EXAMPLE -3
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Use the evaluation of the magnetic field for a loop and
follow superposition principle to evaluate for a solenoid.

The variable 1s now ‘z’.

What about current? If there are ‘n’ no. of turns per unit

length and each turn having current I, then
2
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7z =a coto
dz = —a cosec’0 dO
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B = I R0 sin0doe = B (cosB, —cosH,)é
0, 2 2

Case 1 If we take a long solenoid (radius of the solenoid

very small compared to its length) and observation point

p i1s well with in the solenoid, then §=0and &, =«

—_—

B =y nle,



Case 2 When the observation point P 1s taken one end of the solenoid

¢,=0and 6, = /2

B
2

Hence in case of semi-infinitely long solenoid, the magnetic field at
a point at the end of the solenoid is half the magnetic field at a point
well inside the solenoid.



For surface and volume currents, Biot-Savart law becomes

B(F)

Ho

K(F)xR ..
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J(r)deT,
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Infinite plane of uniform current sheet

- y

Constant current density K/
Current sheet lies in the xy plane and
K'=K®,
r=xe, +ye, +ze,
r'=x'e +ye,
R=(x=x)&+(y-y )

R¥ =(x—x) +{y -




Use Biot-Savart law for a surface current density and integrate
y 'T ].O |26, +(X' —x)§, |dx'dy’
4 e N\ 2 "2 7 %
- w((x—x) +(y-y') +z )
I T[ze + X &, |dXdY’
S o XIZ Y12_|_Z )%
X'=x"-x Y'=Yy —y

z-component will vanish because the integrand is an odd function of X/

bk L2
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The Divergence and curl of B

Nonzero curl??

I
§ _ §’ULdI _ 'UL § dl
— lLlO I
If we use cylindrical coordinates (s, ¢, z)  with current along z axis
_ |
g = o é,
271S

dl = dsé, +sd¢é¢ +dzé,
B — Ho| §




Bundle of straight wires

Each wire that passes through
the loop contributes ,U I
0

§§°dr:ﬂ0|enc

If the flow of charge is represented by a volume charge density 3

| enc — j J - dé Integral taken over the surface bounded by the loop
Applying stokes’ theorem
j(VxB) da = ﬂon -da
VxB=pu,J

Above derivation is restricted by the condition that we need infinitely
straight line currents



Divergence and curl of B

Biot-Savart law for a volume current distribution is (X;y,Z)

> j( )X '
B(F) = 4ﬂj = dv

B is a function of (X, Y, Z)

—

J is a function of (X’, y', Z')

—

R=(x—x)g, +(y—-Vy'), +(z—2'),
dV '=dx'dy'dz’

Integration is done over the primed coordinates
Divergence and curl is done over the unprimed coordinates



Applying divergence to the magnetic field B due to a volume charge distribution

V-B =%j§-£jxl:\)2jdf'
R

V X J — O because J does not depend on unprimed coordinates

N

and 6)(%:0

V-B=0



Applying curl to the magnetic field B due to a volume charge distribution

ﬁxézﬂjﬁx(jxijdr'

4 R’
Vx(AxB)=(B-V)A-(A-V)B+ AV -B)-B(V-A)
ﬁx[jx%] J[V %J (J V);z - ()

The terms involving derivatives of Jis dropped
since J does not depend on (x,y,z)

The second term in (a) V i — 47153 (R)

mteg rates to zero

—_—

xB="1o j 16 )4n83(r— Nt = p, I (F)



How does the other term vanish?

Because the derivative acts only on R term, we can switch to

(G9)R-9) R
Consider the x-component
X—X — ! (X_X’)_’ (X_X’) —t
3 v( - j_v [ - J}—( - j(v J)
We are dealing with steady currents, hence second terms in zero
R X— X'

Contribution to the integral from this term is

jv {(X X) 3 }dr_ﬂx )7 .da

We are integrating over the source region that include all the current.

On the boundary the current is zero and hence the surface integral vanishes



FURTHER EXAMPLES FOR
BIOT — SAVART LAW




AMPERE’'S LAW
6 X é = lLle in differential form

Using Stokes’ theorem
[(VxB)-da=§B-dl = [ J-da
j j .da is the total current passing through the surface-- |,

i) B y dl :,Llo I enc inintegral form



EXAMPLES

Amperian loop

Example 1 m
N

By symmetry, the magnitude of B is constant around an amperian loop of
radius s

$B-dl = Bfdl = B27s = 4, |, = 11,

. I .
B=1toa

2ms ¢



Example 2

Magnetic field of an infinite uniform surfac

current flowing over the xy plane

—

B can only have a y-component

It points towards the left above
the plane and towards the

N

\

1
D>

right in the plane below

Vi
J/

i

\

J Amperian loop

v



Example 3

Magnetic field of a very long solenoid consisting of n closely wound turns per

I/ | I I Wl I i wil ~

unit length on a cylinder of radius R and carrying a steady current |

S K =nl
§B-dl =[B(a)— BO)JL = 1,1y =0

B(a) — B(b) = () b : :
Loop 2 §
o - i _ L
§B-dl = BL = syl = p1,IL }
\ /s
B rHOHIéZ p— HOKéZ Inside the solenoid Amperian
} |
< 0 Outside the solenoid 00ps




EXAMPLE 4

]f\ﬂﬁ M "1

an \ IUIIE \/UP}JCL lJ PU WlLll Llllbl\ WaliiS 1n1as an 11 11C1 CLUIUD nN\ dnda an outct
radius 2R. What 1s the current density J for all r? Use Ampere's Law to
find the magnetic fields as a function of radial distance from the centre

of the pipe. O
I(F) =

37tR2
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|
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EXAMPLE 5

A long copper wire of cross-sectional radius R carries a
current density J(p) = ae P&, . Use Ampere's Law to
determine B as a function of the distance from the centre of

the wire.

B inside the wire:

- ko P
Bp = 1,0 _—p ekkp B eklj I B= ';103 (1 —pke ™ e_kp)é@
B outside the wire:

Bp =p,0 _—p e — ™ B = Ho® (1 —Rke™® — e_kR)é

T kK 1, pk’ ’




POISSON'S EQN. IN MAGNETOSTATICS

V-B=0 = cﬁ}é-da:o
S

Flux through any closed surface is always zero.
No monopole for the ‘magnetic charge’

]§(f) =V x A(f) Divergence of a curl is always zero
A(F) is the vector potential
VxB =§X(§X;‘;) :§(§-A)—V2;‘; = uoj

We can add to magnetic potential any function whose curl vanishes, with no effect
on B —



We use thls freedom to eliminate the divergence of A
VeA=0

If the original potential A, is not divergenceless, then
add to it gradient of functlon such that, A becomes
d|vergence|ess /Ab 4 Vﬂ, Gauge Transformation:

Coulomb gauge

VA:VAO+VK > VA=-V-A
2 KzL V.Aodr’
4t R

> V2A — _Uoj Poisson’s

e - -
In the current free : V’A =0 Laplace
region, eqgn.







DIVERGENCE OF A

_ﬂ_0|§§'(1 K

dr & \ R
Mo § ﬁ’xﬁ’(ij da' =
47 3| R/




MAGNETIC SCALAR POTENTIAL
Vxﬁzuﬁ
In the current free region, Vx B = ()

Therefore, B can be expressed as: B = -V _

We call @, as magnetic scalar potential.

VeB=-VeVD =-V’® =0

We see that @, satisfies the Laplace’s equation.



ELECTROSTATICS AND MAGNETOSTATICS

V.E:ﬂ _

& VeB=0
VXE =0 VxB=p,J
CyEOd§=q§nc §§'dr:ﬂolenc

0

VA = —,uoj
VA =0




Similar to the electric scalar potential, one can use
multipole expansion to find out the magnetic vector
potential at a far away place due to a current distribution.




7 N\

d2=r?+r"*=2rr'cos@ = r2[1+

4 2 4
r_j — Z(r—j cos @
r T

/ /
This expression can be rewritten as 11 1
E B ? 1\?2 '
I I
\/ (1 + (j — 2() COS HJ
I I
Using bionomial expansion 1 —1— l X + é X2 _ i X3 dovennns

r' 30 Y ((r'
TW—ZCOS@}L;(T) ((—)—2(:036’
)

2 o\ / \\T1)
,uol dl
Vector potential due to the current loop is " 4 d

A= ﬂo{ cﬁdl+—<ﬁr cosd dl + —Sf) r')? ( cos@—%) dT+....}



As in multipole expression of V,
—>The first term, goes like 1/r, is monopole term.
—>The second term, which goes like 1/r2, is dipole term.

—>The third term, goes like 1/r3, is quadrupole term.

The magnetic monopole term is always zero as the total vector displacement around
close loop is -
$di=0

Hence no magnetic monopole exists in nature. In the absence of the monopole term, the
dominant term is the dipole-except in the rare case where it, too vanishes.

— ,UI ' ,UI -
Ainore (T) =22 2§>r cosé?dlz4 L §(ror)dl

4 r T’

The integral in the above expression after some manipulations can be written as

§(F o r)dl == ¢ x§(r'xai

2

Ao (F)= 4oz 5§ ()
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Where m is the magnetic dipole moment of the loop, defined as T =1|<ﬁ (F’xdT)
2

If the current loop is a plane loop (current located on the surface of a plane, then

(F’xdT) Is the area of the shaded triangle as shown in figure. So the integral is the
area of whole loop 1 &

Z @E(F’xdT):Area,é
line {flli

N
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E
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In this case, the dipole moment of the current loop is equal to m=123
Where the direction of a must be consistent with the direction of the current loop (right

hand rule)

- Since the magnetic monopole term is always zero, the magnetic dipole moment is
always independent of origin.

Assuming that the magnetic dipole is located at the origin of our coordinate system and
that m is pointing along the positive z axis,

~  _ M, MXr_ Y, msinB .
oo Am P 4w

Corresponding magnetic field is equal to

— — — 1 o [ . msmé ). 10 msiné@ \ A
Bdipole =V X Adipole — (Sln 0 ad 2 jr o (r at 2 j‘g

rsiné 06 dr r ror\ 4z r
= _Hy M A ) A
dipole = EF{ZCOSQ é +sind é,}

— 1 A -
‘ B :fll—:”—?)[S(moer)er —m|




Problem 5.38: A phonograph record of radius R, carrying a uniform surface charge o, is
rotating with a constant angular velocity . Find the magnetic dipole moment.

Problem 5.39: Find the magnetic dipole moment of a spinning spherical shell of radius
R, carries a uniform surface charge o. Show that for r>R the potential is that of prefect
dipole.

Problem 5.41: Show that magnetic dipole moment of an arbitrary localized current loop
is independent of the location of reference point.



Magnetic dipole and magnetic dipole moment:

A magnetic dipole consists of pair of magnetic dipole of equal and opposite strength

N R BT R wr N R

separated by small distance.

Examples of magnet dipoles are
Magnetic needle,
Bar magnet,
Current carrying solenoid,

A current loop etc.

Atom is also considered to behave like a dipole - so the fundamental magnetic dipole in
nature is associated with the electrons.



The product of pole strength of either poles and distance between them is called as
magnetic dipole moment.

AAAAAAAAA Ll

he distance between two poles is called magnetic length.

or

m=M x(2l)

The vector 2| is directed from south to north. Thus the direction of magnetic dipole
moment is from south to north

S.I. units of M is ampere-meter (Am) and that of

m is ampere-meter?(Am? ) or joule tesla?!



Field at a point due to magnetic dipole in the end on-position (on the axis)

Let NS be a magnetic dipole of pole strength M and length 2I. Let P be the point on its
axis at a distance d from the center of the dipole.

2

A
v

oS N® - < ®

The magnetic field at point P due to north pole is

Ho M
47 (d —1)°

And will be directed away from the magnet.

The magnetic field at point P due to South pole pole is



And will be directed towards from the magnet.

Therefore resultant field is

B = By- Bq
5 — Ho 4Mld
47:((12_|2)2
_#4 2md
A (@21

Here m = 2Ml is dipole moment of the magnet

Ifd >> | o My, 2m



Field due to a magnetic dipole in the broad side on position

Let NS be a magnetic dipole of pole strength M

and length 2I. Let P be a point on the broad side By
on position of the dipole at the distance d from P
its center. B "
Bs
d
The magnetic field at point P due to north
pole is
é l M ﬁ\l éS N e
N o le q|
47 PN°® 2 -
2l

The magnetic field at point P due to north
pole is



iy M PS
> 4z PS°

uell

Now NP = PS = (d?+[2)12
Therefore resultant field at P

Sl M (NP + PS)

4r (d2+I2)3/2
:,Uo M |\TS>
472_ (d2 +|2)3/2

_ Ho M

B 3/2 2l
47 (d2 +I2)
Hy m

4 (derI2)3/2



Ifd>>|

Thus
B = 2B

axial — equatorial

The same conclusion we had drawn for electric field



When a permanent magnet is placed in a field, North pole will experience a force in the
direction of field and south pole has a force opposite to the pole.
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For electric dipole, the torque is given by relation

N=pxE
P electric dipole moment and

B: uniform electric field

The corresponding expression for torque of magnetic dipole in magnetic field is

s

N =mMxB

In addition to the permanent magnets being dipole, we see that current loops are also
magnetic dipole.



Torque on a dipole (bar magnet) in a magnetic field:

If a magnetic dipole is placed in a
uniform magnetic field B as shown in
figure, the North and South poles of the
magnet will experience equal and
opposite forces.

Let M be the pole strength of each pole and & be the angle between magnetic dipole
moment m and magnetic field B, then

Force on North pole = MB along B
Force on South pole = MB opposite to B

These forces will constitute a couple which tends to rotate the magnet in the direction of
B. Thus a magnet experience a torque



N = Force xL distance between the force
= MB x ZN
= MB %(SN sind) = MB x (2l sind)

because In triangle SZN, sind= ZN/SN or ZN = SN siné

or
N = (M x2| )B sin ¢
= mBsin &
In vector form - -
N =mx
When B= 1 unitand 6 = 90°, thenN=m

Thus the magnetic dipole moment can be defined as the torque acting on a magnetic
dipole placed normal to the uniform magnetic field of unit strength



Let us calculate the torque on a rectangular current loop in a uniform field B.

Consider a rectangular loop of sides a and b as shown in figure placed in a uniform
magnetic field and let the direction of the field is along z-axis. The magnetic dipole
moment is perpendicular to the current loop and makes an angle 6 with magnetic field.

F, /F

v



Since the currents are opposite on opposite sides of the loop, the forces are also
opposite, so there is no net force on the loop (when the field is uniform). The forces on
the loop sides 3 and 4 tend to stretch the loop, but do not rotate the loop. Because of
the forces on the two sides marked 1 and 2 , tend to rotate the loop about y-axis and
generates the torque.

The magnitude of forces F, and F, is

F, =F,=1IBb
And their moment or lever arm is
asind
So the torque N is equal to
N = labBsin &

= mBsind



Where m = lab is the magnetic dipole moment of the loop

Or

N=mxB

The torque given by above equation is a special case, the result is right for small current
loop of any shape in the uniform magnetic field.

Work Done on a Magnetic Dipole.
Since a magnetic dipole placed in an external magnetic field experiences a torque, work

(positive or negative) must be done by an external agent in order to change the
orientation of the dipole.

Let us calculate how much work is done by the field when rotating the dipole from angle
0, to Og.

WITMW
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Og

W =mBstin¢9d6’
On

= —mB|cos &, —cos b, |

If the dipole is initially at right angle to the field i.e. 6, = 90° and finally makes an angle 6
with field i.e. 65 = 0, then

W = —mB[cosﬁ—cos90]
=-mBcosé&

This work done is equal to the potential of the dipole

U =-mBcos¥

p

:-mﬁé



In case of non-uniform field the above discussion is exact only for a perfect dipole of
infinitesimal size. Now we will calculate force of a infinitesimal loop of dipole moment m
in the field B. &

—»>

We have seen that the potential energy of a magnetic dipole m in a magnetic field is

U =-mBcosé

p

=-MeB
We know force is related to potential energy by the relation

Therefore

Using product rule (rule 4)



V(AeB)=Ax(VxB)+Bx(VxA)+(AeV)B+(BeV)A
Therefore

- — —

F = V(ﬁo §): mx(Vx §)+ §X(me)+(m-6)§+(§- V)m
Since n1is not function of space co-ordinate

Therefore

X
=
|l
=

(§ e ?)m =0 and v

And

Therefore



L Provided there is no external current at the actual location of

F=(MeV)B thedipole

We must be very careful about the analogies between electric and magnetic dipoles. For
example force on a magnetic dipole in non uniform field is

Where as for electric field

So one should be very alert when solving the problems.



