
MAGNETOSTATICS
Creation of magnetic field B.

Effect of B on a moving charge.
Take the second case:Take the second case:
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Current-carrying wire
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The amount of charge passing through area A in time Δt is 
nq(Avt).nq(Avt).
Amount flowing per unit area per unit time is nqv, giving you 
the current density.the current density.

|j| = nqv .
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Consider a closed surface enclosing volume V. If  be the
charge density for an infinitesimal volume dV then dVcharge density for an infinitesimal volume dV, then dV
represents the total charge inside the volume V.
According to the law of conservation of charge, the rate of flow of 
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According to divergence theorem
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Creation of magnetic field with the movement of
BIOT – SAVART LAW

Creation of magnetic field with the movement of
charges.
Under steady state movement of charges (steady
current), the magnetic field produced is given by the) g p g y
Biot-Savart Law:
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EXAMPLE - 1
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EXAMPLE - 2
  ˆ ˆ ˆd

P
  

 
z0

3/ 22 2

ˆ ˆ ˆad e ze aeIB
4 z a

   


 







dl’I

 z a
r

 2
z0

ˆ ˆazd e a d eIB   



 O

dlI 
 

0
3/ 22 2

B
4 z a




 


ˆd e 0 
 

   

2 2
0 0

z z3/ 2 3/ 2

2 aI I aˆ ˆB e e
4 2

 
 


   z z3/ 2 3/ 22 2 2 24 2z a z a  



If there are ‘n’ turns, then
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EXAMPLE - 3

dP
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dzP z

Use the evaluation of the magnetic field for a loop and
follow superposition principle to evaluate for a solenoidfollow superposition principle to evaluate for a solenoid.

The variable is now ‘z’.

What about current? If there are ‘n’ no. of turns per unit
length and each turn having current I thenlength and each turn having current I, then
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Case 1 If we take a long solenoid (radius of the solenoid
very small compared to its length) and observation pointvery small compared to its length) and observation point
p is well with in the solenoid, then 1= 0 and 2 = 
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Case 2 When the observation point P is taken one end of the solenoid

1= 0 and 2 = /21  0 and 2  /2
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Hence in case of semi-infinitely long solenoid, the magnetic field aty g , g
a point at the end of the solenoid is half the magnetic field at a point
well inside the solenoid.



For surface and volume currents, Biot-Savart law becomes
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Infinite plane of uniform current sheet
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Use Biot-Savart law for a surface current density and integrate
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The Divergence and curl of B

Nonzero curl??
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I1 I2
I5Bundle of straight wires

I3Each wire that passes through
the loop contributes I0
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If the flow of charge is represented by a volume charge density J
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Integral taken over the surface bounded by the loop
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Divergence and curl of B

 Biot-Savart law for a volume current distribution is
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Divergence and curl is done over the unprimed coordinatesg p



Applying divergence to the magnetic field B due to a volume charge distribution

 







  d

R
RJB 2

0
ˆ

4


 





 R24

     BAABBA


      BAABBA 

  












ˆˆˆ RJJRRJ

   











 222 R
JJ

RR
J

0 J
 

0 J because J does not depend on unprimed coordinates

R̂
02 

R
R

and


0 B





Applying curl to the magnetic field B due to a volume charge distribution
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How does the other term vanish?

B th d i ti t l R t it h tBecause the derivative acts only on R term, we can switch to
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We are dealing with steady currents, hence second terms in zero
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We are integrating over the source region that include all the current.
On the boundary the current is zero and hence the surface integral vanishes



FURTHER EXAMPLES FOR
BIOT – SAVART LAWBIOT SAVART LAW
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AMPERE’S LAW

JB
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0 in differential form

Using Stokes’ theorem
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EXAMPLES 

s

Amperian loop

Example 1
s
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By symmetry, the magnitude of B is constant around an amperian loop of 
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Magnetic field of an infinite uniform surface KK ˆ
Example 2

Magnetic field of an infinite uniform surface 
current flowing over the xy plane xeKK 

K
B can only have a y-component

It points towards the left above KIt points towards the left above
the plane and towards the 
right in the plane below
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Magnetic field of a very long solenoid consisting of n closely wound turns per
Example 3
Magnetic field of a very long solenoid consisting of n closely wound turns per 
unit length on a cylinder of radius R and carrying a steady current I
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EXAMPLE 4
A long copper pipe with thick walls has an inner radius R and an outerA long copper pipe with thick walls has an inner radius R and an outer
radius 2R. What is the current density J for all r? Use Ampere's Law to
find the magnetic fields as a function of radial distance from the centreg
of the pipe.

z2

I ˆJ(r) e
3 R




 

0<<R:
I

3 R

R<  <2R:

 > 2R:  2R:



A long copper wire of cross-sectional radius R carries a
EXAMPLE 5

g pp
current density . Use Ampere's Law to
determine B as a function of the distance from the centre of

k
zˆJ ( ) e e   

 

the wire.
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
POISSON’S EQN. IN MAGNETOSTATICS
B 0 

 

S

B da 0 
 

S
Flux through any closed surface is always zero.
No monopole for the ‘magnetic charge’

B(r) A(r) 
  

Divergence of a curl is always zero

)(rA 


is the vector potential

    2
0B A A A J       

        

We can add to magnetic potential any function whose curl vanishes, with no effect 
on B



We use this freedom to eliminate the divergence of A
A 0

A 0 

If the original potential A0 is not divergenceless, then 
add to it gradient of function such that, A becomes 
divergenceless. 
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Laplace 
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In the current free 
region, 
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DIVERGENCE OF A
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MAGNETIC SCALAR POTENTIAL

0B J  
 

In the current free region, B 0 


mB 

W ll i l i l

Therefore, B can be expressed as:

We call m as magnetic scalar potential.

02  B 0 mmB

We see that m satisfies the Laplace’s equation.



ELECTROSTATICS AND MAGNETOSTATICS
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MULTIPOLE EXPANSION FOR
MAGNETIC VECTOR POTENTIAL

Similar to the electric scalar potential, one can use

MAGNETIC VECTOR POTENTIAL

p ,
multipole expansion to find out the magnetic vector
potential at a far away place due to a current distribution.p y p

p

r

d

r



dr = dl
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As in multipole expression of V,

The first term, goes like 1/r, is monopole term.

The second term, which goes like 1/r2, is dipole term.

The third term, goes like 1/r3, is quadrupole term.

The magnetic monopole term is always zero as the total vector displacement around
close loop is

d l=0


 d l=0
Hence no magnetic monopole exists in nature. In the absence of the monopole term, the
dominant term is the dipole-except in the rare case where it, too vanishes.p p
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The integral in the above expression after some manipulations can be written as
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1Where m is the magnetic dipole moment of the loop, defined as  1m= I r ×d l
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In this case, the dipole moment of the current loop is equal to m I a
 

Where the direction of a must be consistent with the direction of the current loop (right 
h d l )hand rule)

 Since the magnetic monopole term is always zero, the magnetic dipole moment is
l i d d t f i i

Assuming that the magnetic dipole is located at the origin of our coordinate system and
that m is pointing along the positive z axis

always independent of origin.

that m is pointing along the positive z axis,
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Problem 5.38: A phonograph record of radius R, carrying a uniform surface charge , is
rotating with a constant angular velocity . Find the magnetic dipole moment.

Problem 5.39: Find the magnetic dipole moment of a spinning spherical shell of radius
R, carries a uniform surface charge . Show that for r>R the potential is that of prefect
dipole.

Problem 5.41: Show that magnetic dipole moment of an arbitrary localized current loop
is independent of the location of reference point.



Magnetic dipole and magnetic dipole moment:

A magnetic dipole consists of pair of magnetic dipole of equal and opposite strengthA magnetic dipole consists of pair of magnetic dipole of equal and opposite strength 
separated by small distance. 

Examples of magnet dipoles are

 Magnetic needle,

 Bar magnet,

 Current carrying solenoid,

 A current loop etc.

Atom is also considered to behave like a dipole so the fundamental magnetic dipole inAtom is also considered to behave like a dipole - so the fundamental magnetic dipole in
nature is associated with the electrons.



The product of pole strength of either poles and distance between them is called as 
magnetic dipole moment. 

The distance between two poles is called magnetic lengthThe distance between two poles is called magnetic length.

N S
mlMm 2

or
2l

)2( lMm




or

The vector 2l is directed from south to north. Thus the direction of magnetic dipole
moment is from south to north

S.I. units of M is ampere-meter (Am) and that of

m is ampere-meter2(Am2 ) or joule tesla-1



Field at a point due to magnetic dipole in the end on-position (on the axis)

Let NS be a magnetic dipole of pole strength M and length 2l. Let P be the point on its 
axis at a distance d from the center of the dipole.
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dd

The magnetic field at point P due to north pole is 
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And will be directed away from the magnet.

The magnetic field at point P due to South pole pole is 
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And will be directed towards from the magnet.

Therefore resultant field is
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Here m = 2Ml is dipole moment of the magnet
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Field due to a magnetic dipole in the broad side on position

BN

P

Let NS be a magnetic dipole of pole strength M
and length 2l. Let P be a point on the broad side 
on position of the dipole at the distance d from P

B
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on position of the dipole at the distance d from 
its center.
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If d >> l

3
0

4 d
mB






Thus

Baxial = 2Bequatorial

The same conclusion we had drawn for electric field



When a permanent magnet is placed in a field, North pole will experience a force in the
direction of field and south pole has a force opposite to the pole.

If the field is uniform the net force is zero but there is a torqueIf the field is uniform the net force is zero, but there is a torque.

For electric dipole, the torque is given by relation

EpN



p: electric dipole moment and

E: uniform electric field

The corresponding expression for torque of magnetic dipole in magnetic field is

BmN




In addition to the permanent magnets being dipole, we see that current loops are also
magnetic dipole.



Torque on a dipole (bar magnet) in a magnetic field:

MBN
If a magnetic dipole is placed in a

MBN

2l 

uniform magnetic field B as shown in
figure, the North and South poles of the
magnet will experience equal and

MB S

m

Z
opposite forces.

Let M be the pole strength of each pole and  be the angle between magnetic dipole
moment m and magnetic field B, thenmoment m and magnetic field B, then

Force on North pole = MB along B

Force on South pole = MB opposite to B

These forces will constitute a couple which tends to rotate the magnet in the direction of 
B. Thus a magnet experience a torque



N = Force  distance between the force

= MB  ZN= MB  ZN

= MB (SN sin) = MB  (2l sin)

because In triangle SZN, sin = ZN/SN or ZN = SN sin

or
N = (M 2l )B sin 

= mBsin 

In vector form 
BmN



When B = 1 unit and  = 90, then N = m

Thus the magnetic dipole moment can be defined as the torque acting on a magnetic 
dipole placed normal to the uniform magnetic field of unit strengthg g



Let us calculate the torque on a rectangular current loop in a uniform field B.

Consider a rectangular loop of sides a and b as shown in figure placed in a uniform 
magnetic field and  let the direction of the field is along z-axis. The magnetic dipole 
moment is perpendicular to the current loop and makes an angle  with magnetic field.

B
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F1 F4

I

3

4

I



ba 2 F2F ba F3



Since the currents are opposite on opposite sides of the loop, the forces are also
opposite, so there is no net force on the loop (when the field is uniform). The forces on
the loop sides 3 and 4 tend to stretch the loop, but do not rotate the loop. Because ofp p p
the forces on the two sides marked 1 and 2 , tend to rotate the loop about y-axis and
generates the torque.

The magnitude of forces F1 and F2 is

IBbFF  21

And their moment or lever arm is

sina

So the torque N is equal to 


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sin    
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mB
IabBN
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Where m = Iab is the magnetic dipole moment of the loop

Or 
BmN 



The torque given by above equation is a special case, the result is right for small current 
loop of any shape in the uniform magnetic field. 

Work Done on a Magnetic Dipole. 
Since a magnetic dipole placed in an external magnetic field experiences a torque, work 
(positive or negative) must be done by an external agent in order to change the (p g ) y g g
orientation of the dipole.

Let us calculate how much work is done by the field when rotating the dipole from angle
A to B.A B


B
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NdW 
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 ABmB
A
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coscos    



If the dipole is initially at right angle to the field i.e. A = 90 and finally makes an angle 
with field i.e. B = , thenB

  90coscosmBW   
cos-   mB

This work done is equal to the potential of the dipole

mBU p  cos- 

Bm
p


 -      



In case of non-uniform field the above discussion is exact only for a perfect dipole of
infinitesimal size. Now we will calculate force of a infinitesimal loop of dipole moment m
in the field B.

We have seen that the potential energy of a magnetic dipole m in a magnetic field isWe have seen that the potential energy of a magnetic dipole m in a magnetic field is

Bm

mBU p






-

cos- 

Bm    
We know force is related to potential energy by the relation

UF 


UF 

Therefore 

 BmF


  

U i d t l ( l 4)Using product rule (rule 4)



         ABBAABBABA 

Therefore

         mBBmmBBmBmF 


Since m is not function of space co-ordinate

Therefore

  0and0  mmB  0            and                          0  mmB

AndAnd 

0  B

Therefore



 BmF 
Provided there is no external current at the actual location of 
the dipole

We must be very careful about the analogies between electric and magnetic dipoles. For
example force on a magnetic dipole in non uniform field isp g p

  BmF


  

Where as for electric field

 EpF 

So one should be very alert when solving the problems.


