Magnescale

 Customer Support \& Serice Department :http://www.magnescale.co

摺動力

Magnescale＇s advanced ball－spline construction allows for smoother measurements while also increasing side－load capacity，torsion resistance and performance up to 60 million strokes．

This innovative new construction allows for high precision measurements

even in the most severe environments．

This is the new DK－S Series．

Magnescale magnetic technology diagram

Digiltal Gauge Features \& Superiority

S Eigital Gauge

DK8005 Series
Adapts bearings of new construction superior in sliding force and durability. It has slim shape whose main body size is $\varphi 8 \mathrm{~mm}$ and is high-precision digital gauge suitable for automatic measurements.

- Achieved number of strokes: 60 million
- Maximum resolution: $0.1 \mu \mathrm{~m}$
- Response Speed: $250 \mathrm{~m} / \mathrm{min}$ (at resolution of $0.5 \mu \mathrm{~m}$)
- Adopt: High-flex cable (standard)
- Adopt: IP67 rating with bellows
- Linear encoder technology allows high precision measuring over the entire range.

DK Series

High rigidity ©20mm body is suitable for harsh environments. Also, it enables
high response speed in automatic measurements.

- According to varied materials to be measured, measuring force can be selected
- Available in lengths up to 205 mm with $0.5 \mu \mathrm{~m}$ resolution.
- Magnetic feeler tips equipped as standard make it easy to integrate into machines. (DK155/205)
- High-flex cable (standard): $250 \mathrm{~m} / \mathrm{min}$ (at resolution of $0.5 \mu \mathrm{~m}$)
- High-flex cable (standard)
- Linear encoder technology allows high precision measuring over the entire range

Easy integration int mines with compact square body.

- Compact size and high rigidity

It is suitable for general purpose and automatic measurements.

Compact LT Series counters of DIN size

- Current, maximum and minimum, and $P-P$ value measuring function
- Comparator
- 2-axis ADD/SUB function
- BCD/RS-232C input/output
- -
- Reference point function

Multifunctional counters

- Optional expansion boards available (LY71)
- BCD output(LY71)
- Comparator(Relay,open collector output) (LY71)
- RS232-C Output (LY72)

Multipoint measurement
Intelligent Network Systems: MG40 series

- Equipped with Ethernet interface as standard and supporting CC-Link
Unit: MG10/20/30 series
- Equipped with RS-232C interface as standara

Lineup

Application

Height, flatness, and inclination measurements

Assembled part measurement and shim selection

Flatness measurement of compact motors

Thickness and Flexure measurement measurement of compressor parts

- $\Phi 8 \mathrm{~mm}$ body of the DK800S allows for multiple measurements in
tight spaces at narrow measuring pitches.
- Magnetic technology ensures consistent measurements,
even in harsh environments.
- Measurements can be taken immediately upon turning up.
 -
Thickness and inner and outer diameter measurements

Film thickness measurement

Tapered roller bearing measurement

Bearing inner diameter measurement

- Digital measurement system assures full-stroke accuracy and supports multiproduct lines.
- Magnetic technology ensures consistent measurements, even in harsh environments.
- The DK-S Series has been a
ensuring years of service.

Others
 -Steel ball diameter measurement $\begin{aligned} & \text { - Stinding machine } \\ & - \text { Ghasket thness measurement }\end{aligned}$ -Steel ball diameter measurement $\begin{gathered}\text {-Ghim thickness measurement } \\ \text { etc. }\end{gathered}$

Deflection and shape measurement

Cam shaft run-out and shape measurement

Motor shaft run-out measurement

Disk run-out measurement

- The new construction of spindle bearings
increases both side-load capacity and torque resistance.
- Digital data output allows for real-time measurements.
- The DK-S Series has been achieved 60 million strokes, ensuring years of service - Bearing part tun-out measurement, etc.

System

Gauges

DK805SAR/DK805SAR5

 DK805SBR/DK805SBR5

DK805SALR/DK805SALR5
DK805SALR/DK805SALR5

- Uoon instalation, clamp the ste
- Upon instalalation, clamp the stem.

DK805SBFRIDK805SBER5
DK805SBFR/DK805SB

DK805SAFLR/DK805SAFLR5
DK805SAFLR/DK805SAFLR5
DK805SBFLR/DK805SBFLR5

Specifications				
Model	High-resolution models		Genera-purpose resolution models	
	DK805SAR, DK805SALR DK805SAFR, DK805SAFLR	DK805SBR, DK805SBLR DK805SBFR, $\mathrm{DK805SBFLR}$	DK805SAR5, DK805SALR5 DK805SAFR5, DK805SAFLR5	DK805SBR5, DK805SBLR5 DK805SBFR5, DK805SBFLR5
Measuring range	5 mm			
Maximum resolution	0.14 m		${ }^{0.5 ~ p ~ m ~}$	
Accuracy (at $20^{\circ} \mathrm{C} / 188^{\circ} \mathrm{F}$)	$1 \mu \mathrm{~m}$		1.5 mm	
Measuring force (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)	Upward: $0.35 \pm 0.25 \mathrm{~N}$ Horizontal: $0.40 \pm 0.25 \mathrm{~N}$ Downward: $0.45 \pm 0.25 \mathrm{~N}$			
Maximum response speed	$80 \mathrm{~m} / \mathrm{min}$	$42 \mathrm{~m} / \mathrm{min}$	$250 \mathrm{~m} / \mathrm{m}$	$100 \mathrm{~m} / \mathrm{m}$
Reference point	Position a tspindle movement of 1 mm			
Reference-point response speed	Same as the noted maximum response speed			
Output	AB/reference point Voltage-differential ine diviver output (contiorming to EA-422)			
Spinde divive system				
Number of cycles tested"	60 million			
Protection grade ${ }^{2}$	Straight model: PP6, rightangle model: P644 (P6679)			
Vibration resistance	20 to $2000 \mathrm{~Hz} 100 \mathrm{~m} / \mathrm{s}^{2}$			
Impact resistance	$1000 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$			
Operating temperature	$01050{ }^{\circ} \mathrm{C}$			
Storage temperature				
Power supply				
Power consumplion	1 w			
Mass4	Approx. 30 g			
Output cable lengh	2.4 m			
Feeler	Carbide ball tip, Mounting screw M2.5 Steel ball tip, Mounting screw M2.5			
Accessories	Instruction Manual, $+\mathrm{P} \mathrm{M4} \times 5$ screw (2pc), tightening nut, clamp spanner, wave washer, mounting pin 1 each (DK8**S* $\mathrm{F}^{\star *}$ only)Hose elbow $1 \mathrm{pc}\left(\mathrm{DK}^{* *} \mathrm{~S}^{*} \mathrm{~L}^{* *}\right.$ only), one spanner			

3 When $\phi 4$ m m tube is is oonnecteted tor or ing

-amer

DK812SAR/DK812SAR5/DK812SBR/DK812SBR5

Specifications				
Model	High-resolution models		Genera-purpose resolution models	
	DK812SAR, DK812SALR DK812SAFR, DK812SAFLR DK812SAVR	DK812SBR, DK812SBLR DK812SBFR, DK812SBFLR DK812SBVR	DK812SAR5, DK812SALR5 DK812SAFR5, DK812SAFLR5 DK812SAVR5	DK812SBR5, DK812SBLR5 DK812SBFR5, DK812SBFLR5 DK812SBVR5
Measuring range	12 mm			
Maximum resolution	0.1 mm		0.5 rm	
Accuracy (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)	$1 \mu \mathrm{~m}$		1.5 mm	
Measuring force (at $20^{\circ} \mathrm{C} / 188^{\circ} \mathrm{F}$)				
Maximum response speed	$80 \mathrm{~m} / \mathrm{min}$	$42 \mathrm{~m} / \mathrm{min}$	$250 \mathrm{~m} / \mathrm{min}$	$100 \mathrm{~m} / \mathrm{min}$
Reference point	Postion a t spindle movement of 1 mm			
Reference-point response speed	Same as the noted maximum response speed			
Outut	AB/reference point Voltage-differential ine driver output (contiorming to EA-422)			
Spindle drive system	Spring push Pneumatic push (C)	VR/SBVR/SAVF5/SBVR5) Va	ction (DK882SALR/SAFLR/SELR/	R/SALR5/SAFLR5/SELF5/SBELR5)
Number of strokes"				
Protection grade ${ }^{\text {e }}$	Straight model: PP6, ightrangle model: P664 (P677.)			
Vibration resistance	$20102000 \mathrm{~Hz} 100 \mathrm{~m} / \mathrm{s}^{2}$			
Impact resistance	$1000 \mathrm{~m} / \mathrm{s}^{2} 11 \mathrm{~ms}$			
Operating temperature	$01050^{\circ} \mathrm{C}$			
Storage temperature	-20 to $60^{\circ} \mathrm{C}$			
Powersupply	$5 \mathrm{VDC} \pm 5 \%$			
Power consumption	$1{ }^{1}$			
Mass*	Approx. 30 g			
Output cable length	2.4 m			
Feeler	Carbide ball tip, Mounting screw M2.5		Steel ball tip, Mounting screw M2. 5	
Accessories	Instruction Manual, $+\mathrm{PM} 4 \times 5$ screw (2pc), tightening nut, clamp spanner, wave washer, mounting pin 1 each ($\mathrm{DK} 8^{\star *} \mathrm{~S}^{*} \mathrm{~F}^{\star *}$ only)Hose elbow $1 \mathrm{pc}\left(\mathrm{DK} 8^{* *} \mathrm{~S}^{\star} \mathrm{L}^{\star *}\right.$ only), one spanner Hose elbow 1 pc ($\mathrm{DK} 8^{* *} \mathrm{~S}^{*} \mathrm{~L}^{* * *}$ only), one spanner			

[^0]
-mee

DK830SR

DK830SR

DK830SVR

OK830SLR

оквзоя

DK25NLR5/PLR5

nemes

[^1] Cnstruction manal tival, Mount M4 $\times 5$ screw (2poc)

${ }^{1} 1$ Excluding the interpolation box and connector

- Upon installation, clamp the stem.

Uoon instalalaion, clamp the stem.

DK155PR5

DK Series measuring unit output signals

he signal output from these measuring units are $A / B / Z$ reference point, voltage differential line driver (compliant with EIA-422) output compliant with EIA-422.

The reference point is synchronized with A and B phases at high impedance. (Note: this may not be worded correctly)

,
Clels
DK800sB output signal at maximum
response spead (lataprox. 42 m mimin)

(

The AB quadrature output signal by measuring unit is 5 MHz maximum

with a minimum phase difference of 50 ns for DK800SA and is 2.5 MHz maximum
with a minimum phase difference of 100 ns for DK800SB.
The counter or control devise capable of processing these signals should be used. maximum with a minimum phase difference of 50 ns . The counter or control devise capable of processing these signals should be used.

Output Signal Phase Difference

Moving length of the measuring unit is detected every 50 ns for the DK800SA/DK
and every 100 ns for the DK800SB, and the phase difference proportional
the amount traveled is output.
The amount of phase difference changes in integer multiples of 50 ns or 100 ns . Also, the minimum phase difference for the phase A and B is 50 ns
for the DK800SADK and 100 ns for the DK800SB,

In the standard specifications, the minimum phase difference is fixed at 50 ns for the DK800SA and 100 ns for the DK800SB, howeve, he minimum phase differences in the following table below are available as special specifications.

Phase $A B$Minimum phase diference	Phase A single cycle	Counter's permissible frequency	Maximum response speed		Remaks
			Resolution 0.1 um	Resolution 0.5 um	
50 ns	$200 n s$	5MHz	80m/min	250m/min	DK800SA standard product
100ns	400ns	2.5 MHz	$42 \mathrm{~m} / \mathrm{min}$	100m/min	DK800SB standard product
300ns	1.2 Hs	${ }^{833 \mathrm{kHz}}$	14m/min	33m/min	Special specifications
500ns	$2 \mu \mathrm{~s}$	500 kHz	8.4m/min	20m/min	Special specifications

Output Signal Alarm

\qquad
the response speed is exceeded, the phase A/B output from this measuring unit changes to high impedance state for about 400 ms as an alarm.

DK Series operating cautions

For the pneumatic push type, use of the pneumatic circuit shown in Fig. 1 enables the feeler to be air driven. Pressure regulation is required depending on the usage condition. A precision pressure regulator (e.g., SMC IR2010 or equivalent) should be used.

DT512N/12N

Upoon instalation, clamp the stem.

DT512P/12P

Unit mm

Specifications				
Model	Standard model		Protected type model	
Mooel	DT32N	DT32NV	DT32P	DT32PV
Measuring range	32 mm			
Maximum resolution	$5 \mu \mathrm{~m}$			
Accuracy (at $20^{\circ} \mathrm{C} / 168^{\circ} \mathrm{F}$)	Upward: $1.1 \pm 0.8 \mathrm{~N}$Horizontal: $1.3 \pm 0.8 \mathrm{~N}$			
Measuring force (at $20^{\circ} / 1 / 68^{\circ}$ F)			2.9 Norl less in ald directions	${ }^{2} 9 \mathrm{Ninall} \mathrm{directions}$
Maximum response speed	Depending on unit to be connected			
Reference point	None			
Spindile drive system	Spring push-out	Pneumatic push	Sping push-out	Pneumatic push
Achieved number of strokes ${ }^{3}$	5 million			
Protection grade ${ }^{4}$	-		1P64 or equivalent	
Operating temperature	$01050^{\circ} \mathrm{C}$			
Storage temperature	-10 to $60^{\circ} \mathrm{C}$			
Mass ${ }^{\text {s }}$	Approx. 120 g	Approx. 140 g	Approx. 120 g	Approx. 140 g
Output cable length	2 m			
Feeler	Provided with a steel ball tip, Mounting screw M2. 5			
Accessories	Instruction Manual			

Upon instalalaton, clamp the stem.

DT отз2 ๓ロー

fined by Magnescale Co . Lu
2 Excluding the connector
3 Excluding gable section

Installation

DK812S installation cautions

DK812SF installation cautions
Feeler installation/removal method

DK830 installation cautions
Feeler installation/removal method
Mounting holder dimensions and tolerance

DK10/25 installation cautions
Mounting/fixing position
Mounting holder configuration dimensions (for reference)

DK50/100 installation cautions

DK155/DK205 installation cautions
Mounting/fixing position \square Mounting holder configuration dimensions (for reference)

DT12/512/32 installation cautions

Interface unit

$M_{\text {MG40 serise }}$ Ee

Main unit
MG41-NC $\begin{array}{ll}\text { Main unit } & \begin{array}{l}\text { Mub unit } \\ \text { MG41-NE } \\ \text { (for Ethernet) }\end{array} \\ \text { MG42 } \\ \text { Commonto }\end{array}$ 42 . $\underset{\substack{\text { Display unit } \\ \text { M } G 43}}{ }$

Display unit MG43 specifications

MGmg10/20/30

뭊

Interface module specifications
Model
MG30-B1
MG30-B2

Power consumption		1w	
10		Pholocoupler insulation, external power. $5 \cdot-24 \mathrm{~V}$ DC	
	Input tormat		
	Output format	Current sink inut(-Com) Countepart output icrutit surce type (COMM)	
		Photocoupler insulation, external power: 5-24V DC	
	Input signal	DRQ / channel address / measuring mode shiting /co	tor shiting / reset / statr/ / posing / reference-pooint loaded
	Output ignal	BCD data (6 digits) / READY / code	No-go output / alarm $/$ reference-epoint
Output setting		Timer (1 to 128 ms) / OUT / OR / polarity (set with internal DIP switch)	
	Operating temperature	0 to $+50^{\circ} \mathrm{C}$ (No condensation)	
	Storage temperature	-10 to $+60^{\circ} \mathrm{C}(20$ to $090 \% \mathrm{BH})$	

Installation

Mounting of MG41/42 main unit
The MG41/42 main unit can be mounted to DIN rail in electrical component panel.
At factory shipment, the hook of DIN rail fixing lever is locked.
DIN rail specifications: 35 mm

1. Match the upper side of groove on the back of the MG41 main unit with the upper side of DIN rail.
2. Push and install the MG41 main unit until a click is heard so that the lower side of groove on the back of the MG41 main unit is fit into the DIN rail.

MG43 Mounting to panel
Install the main unit to panel using provided four screws $(+3 \times 6)$ and four nuts (M3).

MG10/20/30 connection

The multi-interface unit is composed of various modules.

Mounting to DIN rail

1. Match the upper side of groove on the back of the unit with 2. Push and install the unit until a click is heard so that the lower the upper side of DIN rail side of groove on the back of the unit is fit into the DIN rail

Counter

LT10A Series

LT30 series (for DK, DK-S)

LT11A series (for DT512)

Specifications						
Model	LT30-19	T30-1GB (BCD output model)	LT30-1GC (RS-232C input/output model)	LT30-2G	$\begin{aligned} & \text { LT30-2GB } \\ & \text { (BCD output model) } \end{aligned}$	LT30-2GC (RS-232C input/output model)
Number of inut axes	DK Series gauges can be connected.					
	1 axis			2 axes		
Input resolution	$0.10 .51 / 15 / 10 \mathrm{\mu m}$ (parameter setting tor each axis)					
Number of display axes	1 axis			2 axes		
Display data	Current, max, min., and peak-t-peak values (= max. value - min. value)					
Display resolution	Same resolution as input resolution or resolution rougher than that can be selected for each axis (parameter seting).					
Direction	Parameter-based polarity setting for each axis					
Alam display	Measuring unit unconnected, excess speed, display-digit overfiow					
Addition and subtraction function	-			$A+B, A-B, B-A$ can be set with the direction setiting.		
Peak hold tunction	Peak calculation (max, min, and peak-t-peaak values) is possible.					
Restart	Starts peak hold calulution of each axis. Operation is made by external inut.			Starts peak hold calulution of each axis. Operation is made by exemal input tor each nexs).		
Hold function (latch and pause) Latch $=$ display and output holding Pause $=$ peak calculation holding	Provided					
Comparator function	A set of upper and lower limits is settable.	Four sets of upper and lower limits are settable. Switching of a set is made BCD connector.	A set of upper and lower limits is settabl	A set of upper and lower limits is settable for each axis. However, single-axis setting cannot be made during addition or substation.		A set of upper and lower limits is settable for each axis. However, single-axis setting cannot be made during addition or substation.
Input signal	Reset, startlatching, and pause of each axis					
	-	-	RS-TRg input (RS-232C data output command	-	-	$\underset{\substack{\text { RS-TRg input } \\ \text { (RS-232C data output commanct) }}}{ }$
	Input iricuit: Photocoupler (inut volage $\mathrm{V}=4$ to 26.4 V)					
Output signal	Comparatof fidgment output of each axis					
	Output circuit: NPN open collector (output voltage $\mathrm{V}=5$ to 26.4 V)					
Comparator judgment output	NPN open collector output					
BCD output	-	Current value and peak value (max., min., and peak-to-peak values) can be output.	-	-	Current value and peak value (max., min., and peak-to-peak values) can be output.	-
RS-232C inputoutput	-	-	Each function can be -232C command instead of key operation. Current, max., min., and peak using RS-232C data output command.	-	-	Each function can be activated Using RS-232C command Current, max ey operation. to-peak values can be putput using RS-232C data output command.
Reset	Reset can be made by key operation or extemal reset input.					
Preset	Key operation		Key operation or command via RS-232C	Key operation		Key operation or command via RS-232C
Master calibration function	\bigcirc					
Reierence point tunction	\bigcirc					
Key lock tunction						
Power supply						
Power consumption	5 w	5.5 w	5 w	8.5 W	9w	8.5 W
Operating temperature range	- 0 to $400^{\circ} \mathrm{C}$					
Storage temperature range						
Mass	Approx. 200 g	Approx. 230 g	Approx. 220 g	Approx. 210 g	Approx. 2709	pprox. 230 g

Specifications									
Model	LT11A-101	LT11A-101B (BCD output model)	LT11A-101C (RS-232C inputoutput model)	LT11A-201	LT11A-201B (BCD output model)	LT11A-201C (RS-232C input/output model)			
Number of input axes	DT512 Series gauge can be connected.								
	1 axis			2 axes					
Input resolution	$15 / 10 \mathrm{\mu m}$ (parameter seting for each axis)								
Number of ofisplay axes	1 axis						2 axes		
Display data	Current, max, min, and peak-to-peak values ($=$ max. value - min. value)								
Display resolution	Same resolution as input resolution for each axis								
Direction	Parameter-based polarity seting for each axis								
Alarm display	Measuring unit unconnected, excess speed, display digit overflow								
Addition and subtracion function	-			$A+B, A-B, B-A$ can be set with the direction seting.					
Peak hold function	Peak calculation (max, min, and peak-to-peak values is possible.			Peak calculation of each axis or addition/subtraction value is possible. (However, during 2-axisaddition or subtraction, only 1st or 2nd axis display is possible in B-axis display.)					
Restart	Starts peak hold calculation. Operation is made by extemal input.			Starts peak hodd calculation of each axis. Operation is made by extemal nuput for each axis).					
Hold function (latch and pause) Latch $=$ display and output holding Pause $=$ peak calculation holding	Provided								
Comparator function	A set of upper and lower limits is settable.	Four sets of upper and lower limits are settable. Switching of a set is made through BCD terminal.	A set of pper and lower			A set of upper and lower limits is settable for each axis. However, single-axis setting cannot be made during addition or substation.			
Input tignal	Resel, startlatheting, and pause of each axis								
	-	-	RS-TRg input (RS-232C data output command)	-	-				
	Input tircuit: Photocoupler (input voltage $\mathrm{V}=4.26 .4 \mathrm{~V}$)								
Output signal	Comparatof judgment output of each axis								
	Output iricuit: NPN open collector ((utput voltage $\mathrm{V}=5.26 .4 \mathrm{~V}$)								
Comparator judgment outut	NPN open collector output								
BCD output	-	Current value and peak value (max., min., and peak-to-peak max., min., and peak-to-pe values) can be output.	-	-	Current value and peak value (max., min., and peak-to-peak values) can be output.	-			
RS-232C inputoutput	-	-	Each function can be activated using RS-232C command instead of key operation. Current, max., min., and peak- to-peak values can be output using RS-232C data output command.	-	-	Each function can be activated using RS-232C command instead of key operation. Current, max., min., and peak- to-peak values can be output using RS-232C data output command.			
Reset	Reset can be made by key operation or extermal reset input.								
Preset	Key operation		$\begin{array}{\|c} \hline \begin{array}{c} \text { Key operation or command via } \\ \text { RS-232C } \end{array} \\ \hline \end{array}$	Key operation		$\begin{array}{\|c} \hline \begin{array}{c} \text { Key operation or command via } \\ \text { RS-232C } \end{array} \\ \hline \end{array}$			
Master calibration function	\bigcirc								
Referencep point tunction	-								
Key lock tunction									
Power supply									
Power consumplion	1.8 W	2.9 W	2.0w	2.3 W	4.0w	2.5 W			
Operating temperature range	$0.0040^{\circ} \mathrm{C}$-10 to 50 C								
Storage temperature range									
Mass	Approx. 200 g	Approx. 230 g	Approx. 220 g	Approx. 210 g	Approx. 270 g	Approx. 230 g			

$L_{\text {LY71 }}$
 ․․ㅇㅇㅇㅇ

Specifications						
Model	LT10A-105	LT10A-105B (BCD output model)		LT10A-205	LT10A-205B (BCD output model)	LT10A-205C (RS-232C input/output model)
Number of input axes	DT12/32 Series gauges can be connected.					
	1 axes			2 ax		
Input resolution	$5 / 10 \mathrm{\mu m}$ (parameter setting for each axis)					
Number of display axes	1 axes			2 axes		
Display data	Current, max,., min., and peak-to-peak values ($=$ max. value - min. value)(selected by parameter setting)			 B-axis display: single axis (1st or 2nd axis) provided on monitor and cannot be operated.). (Selected by parameter setting) pronly		
Display resolution	Same resolution as input resolution for each axis					
Direction	Parameter-based polarity setting for each axis					
Alarm display	Measuring unit unconnected, excess speed, display-digit overiliow					
Addition and subtraction function	-			$A+B, A-B, B-A$ can be set with the direction setting.		
Peak hold function	Peak calculation (max, min, and peak-topeeak values) is possible.			Peak calculation of each axis or addition/subtraction value is possible. (However, during 2-axisaddition or subtraction, only 1st or 2nd axis display is possible in B-axis display.)		
Restart	Starts peak hold calculation. Operation is made by exteral input.			Starst peak hoded calulation of each ax. Operation is made by exemal input for each axis).		
Hold function (latch and pause) Latch $=$ display and output holding Pause $=$ peak calculation holding	Provided					
Comparator function	A set of upper and lower	Four sets of upper and ower limits are settable BCD	A set of upper and lower limits is settable.	A set of upper and lower limits is settable for each axis.		$\begin{array}{\|c} \text { A set of upper and lower limits } \\ \text { is settable for each axis. } \\ \text { However, single-axis setting cannot be } \end{array}$
Input signal	Reset, startlath ing, and pause of each axis					
				-	-	$\begin{array}{\|c} \text { RS-TRg input } \\ \text { (RS-232C data output command) } \end{array}$
	Input iricuit: Photocoupler (input volage $\mathrm{V}=4.26 .4 \mathrm{~V}$)					
Output signal	Comparator judgment output of each axis					
	Output iricuit: NPN open collector (output voltage $\mathrm{V}=5-26.4 \mathrm{~V}$)					
Comparator jidgment output	NPN open collector output					
BCD output	-	Current value and peak value nax., min., and peak-to-peak values) can be output.	-	-	Current value and peak value (max., min., and peak-to-peak values) can be output.	-
RS-232C inputoutput	-	-	Each function can be activated using RS-232C command Current, max., min., and peak to-peak values can be output using RS-232C data output command.	-	-	Each function can be activated using RS-232C command instead of key operation. Current, max., min., and peak- to-peak values can be output using RS-232C data output command.
Reset	Reset can be made by key operation or exteral reset input.					
Preset	Key operation		Key operation or command via RS-232C	Key operation		
Master calibration function						
Reference point tunction	\bigcirc					
Key lock function	\bigcirc					
Power supply	91026.4 VDC					
Power consumpion	1.8 W	2.9 W	2.0 W	2.3 W	4.0 W	2.5 W
Operating temperature range	- 0 to $400^{\circ} \mathrm{C}$					
Storage temperature range						
Mass	Approx. 200 g	Approx. 230 g	Approx. 220 g	Approx. 210 g	Approx. 270 g	Approx. 230 g

Specifications	
Model	LY71
Compatiole measuring units	DK Series (connection cable CE29 required), GB-ER, SSJOOA Series (Magnescale)/PL20 Series (Digiriuler)
Number of input axes	12 axis or 2 axes (ty parameter setting)
Input resolution	Linear standard: $0.1 / 1 / .5 / 1 / 5 / 10 \mathrm{\mu m}$ (expanded linear: $0.05 / 2 / 20 / 25 / 50 / 100 \mu \mathrm{~m}$) Angle: $1 \mathrm{~s} / 10 \mathrm{~s} / 1 \mathrm{~min} / 10$ min, (Expanded a agge: 1 degree)
Number of ofisplay axes	3 axes (axes A, B, and C), When L Lz7--KR is used: 1 axis (A-axis display) only, B - and C-axis display is fixed to comparato value display.
Display data	
	Seting of axis to be displayed can be set by parameter. Data (Current value, max. value, etc.) to to displayed caan be swithed by key operation.
	(Addition and subtraction display is ispossible if two Lz71-Bs are used.)
Display resolution	
Direction	Parameter-based polarity setting for each axis
Alarm display	Measuring unit uncoonnected, excess speed, display digit overiliow
Addition and subtraction function	
Peak hold function	Peak calculation of each axis or addition or subtraction value can be made (calulution of each axis (single axis) cannot be made during addition or subtraction).
Restart	Starts peak hold calculution of each axistall axes. Operation is made by key operation or general exeemal input.
	Latch function or pause function (selected by parameter setting) Operation: key operation or general external input
Comparator function	Available only when LZ71-KR is used (separated into 5 areas). 16 sets of set values can be set with 1 to 4 set values taken as 1 set for 1 axis or addition subtraction value, but single-axis setting cannot be made during addition or subtraction. (Switching of a set is made by key operation or LZ71-KR external input.)
Postitioning function	Available only when LZ71-KR is used. A pulse signal of 0.5 s is output when a set value (1 point) is passed through. 16 sets of set values are settable. Unavailable if comparator function is selected. (Comparator/positioning function is selected by parameter setting.)
Input signal	External reset and external preset recall to e each axis (4i in total), 1 general input or each axis and 1 common (3 in total)
	Input icicuit: $112 \cdot 24 \mathrm{~V}$ photocoupler ((solation fomm intemal circuit $=$ power supply $\mathrm{Vcc}=12 \cdot 24 \mathrm{~V}$ reauired)
Output signal	2 for each axis (4 in total)
	General output (2items are selected from alarm, display data (current or peak value), reference-point passing, , eference-point latm, and zero-point passing.)
	Output tircuit: open collector (photococupler) $12-24 \mathrm{~V}$, isolate d fom interna circuit
Comparator judgment output	
BCD output	Available only when LZ771-B is used. One LZZ71-B is used: 1 st or 2nd axis or current and peak values of addition and subtraction values. When two L 271 -Bs are of 1 st axis for 1st LZ71-B and current and peak values of 2nd axis for 2nd LZ71-B. One LZ71-B can output three types of values.
RS-332C inputoutput	
AB phase output	
Expansion unit	L277-KR, Lz71-B, L2771-HT01 (Up to two units can be used)
Reset	Reset can be made by key operation or extemal reset input.
Preset	A value can be set by key operation and a value set by extemal preset recall can be recalled.
Master calibration function	Provided
Datum pointreference point tuntion	Provided
Key lock tunction	Provided (presenceelabsence of seting is set by parameter)
Data storage	Storagetho-storage can be set.
Scaing function	Provided (0.10000 0 to 9.99999)
Liner compensation	Provided ($5600 \mathrm{~mm} / \mathrm{m}$)
Powersupply	Optional PSC-21/22/23 adapter is used.
Power consumplion	32 VA max. (when optional AC adapter is used)
Operating temperature range	$01040^{\circ} \mathrm{C}$
Storage temperature range	$-201060^{\circ} \mathrm{C}$
Mass	Approx. 1.5 kg

Specifications		
Model	LY72	
Compatible measuring units	DK Series (connection cable CE29 requires), GB-ER, SJTOOA Series (Magnescale)/PL20 Series (Digituler)	
Number of input axes	1 axis, 2 axes, or 3 axes (by parameter seting)	
Input resolution	Linear standard: $0.1 / 10.5 / 1 / 5 / 10 \mathrm{\mu m}$ (expanded linear: $0.05 / 2 / 20 / 25 / 50 / 100 \mu \mathrm{~m}$), Angle: $1 \mathrm{~s} / 10 \mathrm{~s} / 1 \mathrm{~min} / 10 \mathrm{~min}$, (Expanded angle: 1 degree)	
Number of display axes	3 axes (A, B, , and C-axis display)	3 axes (X, Y, Y, and Z-axis display)
Display data	When axis label A, B, and C are selected	When axis label X, Y, and Z are selected
	Curent, max, min, and peakt.0.peak values (max. value - min value) of each axis	Current value of each axis
Display resolution		
Direction	Parameter-based polarity seting for each axis	
Alarm display	Measuring unit uncoonnected, excess speed, display digit overtiow	
Addition and subtraction function	- -	
Peak hold tunction	Peak calculation of each axis is possille.	None
Restart		
Hold function (latch and pause) Latch = display and output holding Pause = peak calculation holding	Operable using RS-232C command in addition to those at the elft	Only latch function is possible. Operation is made by key operation or general external input only (no RS-232C command).
Comparator function	None	
Postitoning tunction	None	
Input signal	External reset and external print tor each axis (4 in total), 1 general input for each axis (3 in tota)	
	External reset of each axis and general input (One of latch, reference point loaded, display switching, and preset recall is selected)	External reset of each axis and general input (One of latch, reference-point load, and pre-set recall is selected)
	Input ificuit $+12-24 \mathrm{~V}$ photocoupler (isolation fom internal circuit = power supply $\mathrm{VCc}=12.24 \mathrm{~V}$ required)	
Output signal	1 tor each axis (3 in total)	
	(One of alarm, display data, reference-point passing, and reference-point alarm is selected.)	(One of alarm, reference-point passing, and reference-point alarm is selected.)
	Output circuit: open collector (photocoupler) $12-24 \mathrm{~V}$, isolated from internal circuit	
Comparator judgment output	-	
BCD output	- -	
RS-232C inutoutput	Each function can be activated using RS-232C command instead of key operation.	
	Current, max., min., and peak-to-peak values of each axis can be output	Current value of each axis can be output using RS-232C data output command
ABB phase output	-	
Expansion unit	-	
Reset	Reset can be made by key operation or extemal reset input.	
Preset	Value is settable by key operation or using RS-232C command. A value set by external preset recall can be recalled.	
Master calibration function	Provided	None
Datum pointreference point tunction	Provided	
Key lock tunction	Provided (presencelabsence of seting is set by parameter)	
Data storage	Storagemo-storage can be set.	
Scaling function	Provided (0.10000 to 0.999999)	
Linear correction	Provided ($\pm 600 \mathrm{\mu m} / \mathrm{m}$)	
Power supply	Opional PSC-21/22/23 adapter is used.	
Power consumption	32 VA max. (When optional AC adapter is used)	
Operating temperatur range	$01040^{\circ} \mathrm{C}$	
Storage temperature range	-20 to $60^{\circ} \mathrm{C}$ Approx. 1.5 kg	
Mass		

Technical information

LT Series Usage Notes

I/O connector

The I/O connector on the rear panel of the counter unit has functions for Go/No-go output based on the comparator function, start input, pause input, RS-232C trigger input, and reset input.

10 connector A	Hem		- 10 comnectior B
Power input connector		W	mon 110 c

Use a shielded cable for connection
(Prepare a shield cable by yourself

Pin No.	Signal name	Inout	Descripion
1	GND	-	
2	NC	-	Connection prohibited
3	RESET (A)	in	Reseti input (A (H)
4	LO(A)	OUT	GolNo-go output Low (ACH)
5	GO(A)	OUT	GolNogo outut Go (A CH)
6	$\mathrm{H}(\mathrm{A})$	out	GoNo.go output ligh (CH)
7	GND	-	

Pin No.	Signal name	Inout	Descripion
1	GND	.	
2	NC	.	Comnection prohibited
3	RESET (B)	in	Reset input (BCH)
4	L0 (B)	OUT	GoNNo-go output Low (BCH)
5	GO (B)	out	GoiNo-go output $\mathrm{So}_{0}(\mathrm{BCH})$
6	H1(B)	out	GoNo-go output High (BCH)
7	GND	.	

Goono-go judgment output >

<Startlatch inuty

Installing the LT10A/11A/30 counter unit

When mounting in a panel

Cut out an opening to match the dimensions shown (Fig.2) . Insert the display unit into the cut-out opening
in the panel from the front.
A. Atach the supplied installation brackets (upperlower)
from the rear.
Use fingers to tighten and secure.

Panel cutout diagram
Panel cutout diagram

Accessories

${ }_{5270.1}$

sz70.2

DKS	DK20¢	DT	U	LY	LT	MG

Compatibility

Digital gauge	Adapter/conversion cable Note 1: MT12/13 is interpolator.	Counters	Interace unit	Old counters	External device	Exension cables
DK800A/B Series DK800S Series DK10/25/50/100/110/155/205 Series		LT30 Series LH70/71/71A/72 LY71/72	$\begin{gathered} \text { MG20-DK } \\ \text { MGA1-NENC } \\ M G 422 \end{gathered}$			CE08-1 (1 m) $-3(5 \mathrm{~m}) \quad-5(5 \mathrm{~m})-10(10 \mathrm{~m}) \quad-15(15 \mathrm{~m})$ Total cable length is 20 m or less. CK-T12(1 m) -T13(3 m) $-\mathrm{T} 14(5 \mathrm{~m})-\mathrm{T} 15(10 \mathrm{~m})-\mathrm{T} 16(15 \mathrm{~m})$ High-flex cable/total cable length is 20 m or less CE27-01(1 m) -03(3 m) -05(5 m) -10(10 m) * High-flex cable/large-dia. cable/total cable length is 30 m or less.
	(Cable with bare wires)				$\begin{gathered} \text { O: connectable } \\ \text { A/B reference point } \\ \text { (Differential line receiver input) } \end{gathered}$	CE22-01(1 m) -03(3 m) -05(5 m) -10(10 m) High-flex cable/bare wiresfotal cable length is 20 m or less. CE26-01(1 m) -03(3 m) $\quad-05(5 \mathrm{~m})-10(10 \mathrm{~m})$ * High-flex cable/bare wires/large-dia. cable/total cable length is 30 m or less. CE27-01(1 m) $-03(3 \mathrm{~m}) \quad-05(5 \mathrm{~m})-10(10 \mathrm{~m})($ extension cable for CE26) * High-flex cable/large-dia. cable/total cable length is 30 m or less.
DG Series (with HA13) * Model with no " B " assigned I.	sz05-To1	LH70/71/71A/72 LY71/72				Without extension cable * Cable may be manufactured to specified length on a production by order basis
	Sz05 + S251 - Ms01			LY51/52		
	Unnecessary			LY100/110 LH20, etc.		
	Unnecessary	LT10A Series	MG20-DT	LT10 Series		
		LT20A Series		LT20 Series		
	мT13-05/10 Note 1 \% \square	LT30 Series				
	Unnecessary	LT11A Series	MG20-DT	LT11 Series		
		LT30 Series				
* Models with no "A/B" assigned to model	Unnecessary	LT30 Series	MG20-DK			CE27-01(1 m) -03(3 m) -05(5 m) - $10(10 \mathrm{~m})$ * High-flex cable/large-dia. cableftotal cable length is 10 m or less. *When CEOB-01 11 m) $-03(3 \mathrm{~m})$ or CK-T12 $(1 \mathrm{~m})-\mathrm{T} 13(3 \mathrm{~m})$ is used, the total cable length is 5 m or less.
		LH70/71/71A/72 LY71/72				
	(Cable with bare wirs)				$\begin{gathered} \text { O: connectable } \\ \text { A/B reference point } \\ \text { (Differential line receiver input) } \end{gathered}$	
${ }^{\text {DGAB Series }}$	D251 + Sz70-1	LH70/71/71A/72 LY71/72				Without extension cable * Cable may be manufactured to specified length on a production by order basis
	Unecessary	LTroA Series	MG20-DG	LT20 Series		
	D251			LY51/52		
DE12BRIDE30BR	SZ70-2	LT30 Series				Without extension cable * To be supported by special specifications
	sz70-1	LH70/71/71A/72 LY71/72				
	Unnecessary			LY51/52		
DL310B/DL330B/DL10BR/DL30BR/DL60BR	Unnecessary	LT20A Series	MG20-DG	LT20 Series		Without extension cable (DL310B, 330B) * Cable may be manufactured to specified length on a production by order basis Total cable length: 10 m or less
	D251 + Sz70-1	LH70/71/71A/72 LY71/72				
	D251			LY51/52		

Useful functions of counter units LT10A/LT11A/LT30
The combination of a high-accuracy digital gauge and an LT-series multifunction counter allows the following measurements to be made. The internal counter always holds "current value," "maximum value," "minimum value," and "peak-to-peak value" irrespective of the measuring mode (current, maximum, minimum, and peak-to-peak values).

When (1) to (4) are traced in the current-value measuring mode, current value (4) is displayed at position (4). Here (at position (4)), if the measuring mode is changed to the maximum value, indication becomes as in (2). In the same way, if the measuring mode is changed to minimum value, indication becomes as in (3) and when it is set to peak-to-peak value, indication becomes as in (2)-3. In this way, the measuring mode switched through the $B C D$ terminal for models with $B C D$ output or switched externally using RS-232C command to display and output data.

Datum-point reproduction function using a DK Series digital gauge and LT30 Series counter

Up to now, even when master (datum point) calibration is made, the current position is reset if power supply is turned OFF. Thus, master (datum point) calibration needs to be made again using the master (datum point) at power ON. The DK Series Digital Gauges incorporate the reference point; once master (datum point) calibration is made, the counter can store data and reproduce the datum point without master (datum point) calibration in the reference-point referring function.

First, a aifierence value between a digital gauge's built-in reference point and (datum point) is 0 (zero) a difference value is preset to 0 (zero).
-The reference point is a t the postion where the spindel is pushed by 1 mm or more.

When the counter's power supply is turned ON again, the counter starts up in the reference-point referring mode and display blinks in " 0 ", causing the counter to enter reference-point detection waiting status. When the spindle is pushed and passes through the reference point, counting is made by the current value display from the master (datum point) position. (The counter stores internally a differenen value between the master (datum point) and reference point in memory,

Example: if the reference point is -6 mm with respect to master (datum point) position

Latch function
The latch function holds output data and go/no-go judgment output with respect to its value in the current value mode.

[Latch conditions]

Start input signal is set as latch input in parameter setting Current value mode

Nole: This tunction does not work fithe measuring mode is in peakrvalue mode.

Using an LT Series Counter as a multistage comparator

For the LT Series counters, comparator settings are lower and upper limit settings as standard; no setting range can be increased. The LT Series' BCD output specifications allow up to four sets of combinations of setting values (upper and lower limits) of the comparator to be registered. This allows an LT Series counter as a multistage comparator. Combining ON/OFF of pins 35 and 36 of the BCD output connector allows four ways (4 sets) of switching to be made. (Four sets of comparators can be set from 1st set (smallest range) to 4th set (largest range).)

Example 1: Case where the counter is used as a 6 -stage comparator In measurements where judgment output GO (OK) signal and comparator combinations (4 sets) are observed in PLC $/ 0$, four sets of comparators are switched from the 1st set to the 4 th in turn and a comparator for which judgment output becomes GO has an OK region (If judgment output becomes 60 in the 3 rd set, the comparator concerned has the region of 3 mm or more to 4 mm inclusive.)

Example 2: Case where the counter is used as a 9 -stage comparator
In measurements where judgment output $L \mathrm{O}, \mathrm{GO}$, and H signals and comparator combinations - (4 sets) are observed in PLC $/ 0$, if four sets of comparators are switched from the $1 s$ s set to the 4th in turn and judgment output becomes high limit (H), which judgment output ($(\mathrm{LO}, \mathrm{GO}$, or HI$)$ is produced in next combination is seen to determine which region applies.
If judgment output becomes Hl in the 2 2nd set and judgment output is $L \mathbf{O}$ in the 3 3rd set, an area of over 4 mm to 5 mm not inclusive applies.

Safety

No compromise for high-accuracy products

Our products comply with CE Marking requirements, have acquired UL certifications and meet other regulations, ensuring safe use the world over.

We have met:

-EMC Directives(CE)

- FCC regulation

FCC Part 15 Subpart B Class A
EMS: EN 61000-6-2
for Products with built-in AC power supply: -UL61010-1 •EN61010-1

Traceability

Traceability Flow Chart (Length)
National Primary

Standards \begin{tabular}{l}
National Institute of Advanced

Industrial Science and

Technology (AIST)

\quad

National

standards

\quad

Optical comb

\quad

International Committee for Weights

and Measures (CIPM)
\end{tabular}

Magnescale

Taugh Sensar

High Rigidity \times High Operability $=$ Tough Sensor

 : Antoniustrasse 14, 7324 Wemau, Gemany TEL.+1 (562)594 $5060 \mathrm{FAX}+1$ (562)594 5061 E-mail: into-amemagnescale.eocm

http://www.magnescale.com
The conents of this literature
This acataog is prined w with so
This catalog is pinted
MGS-Ts-1406:EN.C

[Impact resistance] [High precision] Use of metal materials realizes High precision measurement with
$\left[\begin{array}{c}\text { Operability } \\ \text { simple settings make } \\ \text { oneabily easy }\end{array}\right]$
[Ultra compact] DIN rail mounting saves spaces
even when using multiple channels

Provides High Rigidity, an Ultra-Compact Size, and High Precision

Stability \& High Rigidity

Magnescale reliable ball spline structure
\square Built-in reference point Enables position reproduction
\square Flange type
Easy mounting
\square Slim-type ø8 mm body

IP66 [straight body modedss, IP67 $7_{\text {[right angle models with hose e elow] }}$
Magnescale magnetic scale technology Resistant to the effects of condensation

- Includes a flex-resistant cable Approximately 10 million flex cycles

\square High-resolution $0.1 \mu \mathrm{~m} \quad \square$ High-precision $1 \mu \mathrm{~m}$

Digital Gauge

DF805S/DF812S Series

Quick and Easy Operation

Digital Tolerance Indicato

 MF10 Series
Digital Gauge

DF805S/DF812S Series

DF800S mounting method and features <standard $\varnothing 8$ mounting>
Attaching/removing feeler
Recommended mounting holder dimensions

Unit: mm

DF800SF mounting method and features <Easy mounting possible without applying excessive force to the bearing>
Attaching/removing feeler
Recommended mounting holder dimensions

Digital Tolerance Indicator

 MF10 SeriesMagnescale

Cover open>

TSolerance value setting
Tolerance value se
(Quick setting)
R

MF10-P2 Current source (PNP)

MF10 series Input/Output Circuit Diagram

MF10-P1 (NPN type)
MF10-P2 (PNP type)

- Mounting on DIN rail
(1) Let the hook on the underside of the indicator catch the DIN rail track.

2) Push in the unit until the hook clicks into place.

- Removing from DIN rail
(1) Push the unitin the direction of arrow 1 .

2) Lift the unit in the direction of arrow 2
while performing step (1).
Up to 30 digital tolerance indicators can be installed in a row.

Setting the standard workpiece as the reference

Digital gauge
Total 8 models

2 Cable

CE34-005 CE34-02
CE34-005 CE34-02
CE34-05 CE34-1
CE34-15 CE34-20

Digital Tolerance indicator
Current sink (NPN)
Current source (PNP)

Digital Gauge
DF805/DF812 Series

Main Specifications								
Model name	DF8005R	DF8055FR	DF805SLR	DF8055FLR	DF812SR	DF812SFR	DF882SLR	DF812SFLR
Measuring range	5 mm				12 mm			
Resolution	0.1							
Accuracy (at $20^{\circ} / 1 / 68^{\circ}$ F)	1 ım							
Measuring force (at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)	Upward: $0.35 \pm 0.25 \mathrm{~N}$Horizontal : $0.40 \pm 0.25 \mathrm{~N}$Downward : $0.45 \pm 0.25 \mathrm{~N}$				Upward : $0.4 \pm 0.3 \mathrm{~N}$Horizontal : $0.5 \pm 0.3 \mathrm{~N}$Downward : $0.6 \pm 0.3 \mathrm{~N}$			
Maximum response speed	$80 \mathrm{~m} / \mathrm{min}$							
Reference point	at $1 \pm .5 \mathrm{~mm}$ position of spindle movement							
Reiterence point response speed	80m/min							
Output	Dedicated serial communicaion protocol							
Spindele diving	Spring push							
Achieved number of stroks	60 million strokes (under specific test onditions defined by Magnescale Co., LT.).							
Protective structure			When a ø4 mm	connected : IP67			When a ø4 mm	connected : IP67
Impact resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}(11 \mathrm{~ms})$							
Vibration resistance	100m/s ${ }^{2}(20-2000 \mathrm{~Hz})$							
Operating temperature	$0^{0.555^{\circ} \mathrm{C}}$							
Storage temperature	$-20.60^{\circ} \mathrm{C}$							
Power supply voltage	+10 to +30 V DC in icluding tiple (p-p) 10%							
Power consumpion	1.2 W orless							
Mass	Approx. 30 g (not including cable parts and interpolation box)							
Probe part cable length	2 m							
Output table length	Max. 20 m (Use the optional CE34.)							
Feeler	Provided with a carbide ball tip Mount screw M2.5							
Accessories	Instruction Manual, 1 wrench, 1 hose elbow (only DF8**S* ${ }^{* *}$)							

(6)

DF812SFR

Only DF8"S'F

Digital Tolerance Indicato

MF10 Series

Cable CE34-

Main Specifications
$\frac{\text { Model Name }}{\text { Cable ength }}$

Main specification								
Model name	DF805SR	DF805SFR	DF805SLR	DF805SFLR	DF812SR	DF812SFR	DF812SLR	DF812SFLR
Measuring range	5 mm				12 mm			
Resolution	0.14							
Accuracy (at 20 ${ }^{\circ} \mathrm{C}$)	$1 \mu \mathrm{~m}$							
Protective structure	1P66		When a $¢ 4 \mathrm{~mm}$ tube is connected: 1 P67		1P66		When a $¢ 4 \mathrm{~mm}$ tube is coonnected: IP67	

Connection cable CE34 series (CE34 cable is necessary when connecting DF805S/812S series to MF10 series)

Main specification						
Model name	CE34-005	CE34-02	CE344-05	CE34-10	CE34-15	CE34-20
Cable length	0.5 m	2.0 m	5.0 m	10 m	15 m	20 m

Digital Gauge DT series

Main specification								
Model name	Standard model	Protected type model	Standard model	Protected type model	Standard mod		Protected type model	
	DT512N	DT512P	DT12N	DT12P	DT32N	DT32NV	DT32P	DT32PV
Measuring range	12 mm				32 mm			
Resolution	$1 \mu \mathrm{~m}$		$5 \mu \mathrm{~m}$					
Accuracy (at $20^{\circ} \mathrm{C}$)	6رm							
Protective structure	-	\| P64 or equivalent		IP64 or equivalent				vent

Interpolator for DT series MT20 series (MT20 interpolator is necessary when connecting DT series to MF10 series) Main specification | Model name | MT20-01 (For DT512 series) |
| :--- | :--- |
| Resolution | | MT20-05 (For DT12/32 series)

Digital tolerance indicator / Counter module MF10 series

Main specification			
Moderame	Digital tolerance indicator		Counter module
Model name	MF10-P1	MF10-P2	MF10-CM
Function	NPN output (current sink)	PNP output (current source)	Counter module for MG50
10	Number of GoiNo Go judgement output 2 , Number of external inputs 1		
Minimum display unit	0.14 m		
Cable length	input/output, power cable 2 m		.
Mounting method	35 mm DIN rail mounting		
Power supply voltage	+10-30V DC including ripple (p-p) 10\%		
Poner consumplion Consumplion uruent	2.W or less / 85 A or less		
Mass	759		

Interface unit MG50 series
Main specification

Model name	Main module		Distribution module
	MG50-EC	MG50-CL	MG51
Commnication protocol	EtherCAT	CC-Link	Datat transerered to main moduble by dedicated protocol
Baud rate	100Mbps	Maximum downlink speed of 10 Mbps	-
Node address setting method	Set with decimal rotary switches or software	Set with decimal rotary switches	
Node address range	000-192	Max. 64	
Maxinum connecatale counter modules	30	16	10
Maximum comeecable distituibion modules			
Maximum cable length	Maximum cable length between main module and distribution module: 30 m		
Mounting method	35 mm DIN rail mounting		
Power supply voltage	DC24V (20.4-26.4V)		
	2.4 W or less 100 mA or less		2 orless 80 mA or less

Magnescale Co., Ltd

an, Minatoku, Tokyo 108.0075, Japan

 http://www.magnescale.com The contents of this literature are as of Jan. 2015

NEW gauging system
Magnescale
SPEED \times PRECISION

Magnescale Co., Ltd.

\lceil Speed 」×「High Rigidity」

Fieldbus interface unit

EtherCAT：${ }^{*} C_{\text {－link }}$［V2

our Tough Sensor lineup． Data output and Go／No Go judgement functions are available．
Output data can be calculated and controlled by PLC via open network．

Main module MG50

Maximum connectable counter modules
EHG5 Cold

Distribution module MG51 Maximum connectable distribution
modues per main module
Maximum 8

Taximum connectable counter modules per distribution module Maximum 10

Counter module MF10
Counter module MF10
Slim body and space saving design

8 types of functional calculations Function block
8 types of calculation functions are provided by the Function Block．Calculation functions can be executed easily by PLC programming．

Our function block is compatibible with $N J$ series （Our function block does not support some versions．
For more details，please contact our sales staft．）

High resistance to shock and vibration
Ball spline structure
 successfully completed a 72 hour underwater stroke test which exceeds an IP67 rating．

[^0]:

[^1]: 1 Under specific test conditions defined by Magnescale Co . Ltd. $\cdot 2$ Excluding the interpolation box and coonnector

