Nicholas J. Giordano

Chapter 20

Magnetic Fields and Forces

Magnetism

- Magnetic fields are produced by moving electric charges
- Magnetic fields exert forces on other moving charges
- Focus of this chapter
- To understand the sources of magnetic fields and the fields they produce
- To calculate the magnetic force on a charged particle
- Magnetism and electricity are connected
- Connections will be studied in later chapters

Magnets

- The first observations of magnetic fields involved permanent magnets
- Many ancient cultures discovered natural magnetic properties of materials
- Magnetite
- Permanent magnetic applications include
- Compass needles
- Speakers
- Computer hard disks

Bar Magnet

- A bar magnet is a permanent magnet in the shape of a bar
- The symbol for the magnetic field is B
- The magnetic field lines can be deduced from the pattern of the iron filings
- The filings are small, needle-shaped,
 permanent magnets

Magnetic Field Lines

- The magnetic poles are indicated at the ends of the bar magnet
- Called north and south
- The magnetic poles are analogous to positive and negative charges
- The north poles of the filings are attracted to the south pole of the bar magnet

$-\mathrm{A}$

Electric dipole aligns with \vec{E}.

The electric field lines of an electric dipole are similar to the magnetic field lines of a bar magnet.

Magnetic Fields, cont.

- The iron filings align parallel to the magnetic field lines
- As shown in fig. 20.2 A
- The SI unit of the magnetic field is the tesla (T)
- The magnetic field lines go from the north pole toward the south pole
- The magnitude of the field decreases as you move farther from a pole
- The magnetic field lines form closed loops
- A general property of magnetic fields, not just bar magnets

Horseshoe Magnet

- Can be made by bending a bar magnet
- There are poles at the ends of the horseshoe
- The field is largest in the horseshoe gap
- The field is directed across the gap

Section 20.1

Magnetic Field from Current

- Moving charges produce magnetic fields
- An electric current consists of moving charges, so it will produce a magnetic field
- The iron filings show the magnetic field pattern due to the current

Magnetic Field from Current, cont.

- For a straight wire, the magnetic field lines form circles
- The magnitude of the field decreases as the distance from the wire increases
- The direction of the field is always tangent to the circles
- The direction of the field is given by the right-hand rule

Right-Hand Rule Number 1

- Point the thumb of your right hand in the direction of the current
- You thumb will be parallel to the wire
- Curling the fingers of your right hand around the wire gives the direction of the magnetic field
- If the direction of the current is reversed, the direction of the field is also reversed

B

Plotting Field Lines

- Field lines are three-dimensional
- A large dot (•) indicates the tip of the vector when it points out of the plane
- A cross (\times) denotes the tails of the vector when it points into the plane

Charges and Magnetic Fields

- The electric current can be modeled as a collection of positive electric charges
- The charges would be moving with a velocity parallel to the current direction
- The direction of the magnetic field is given by the right-hand rule
- Your thumb will be in the direction of the velocity of the charges
- A positive charge moving to the left produces the same magnetic field as a negative charge moving to the right

Magnetic Fields of Moving Charges

Superposition

- The Principle of Superposition states the total magnetic field produced by two or more different sources is equal to the sum of the fields produced by each source individually
- The principle of superposition can be used to find the pattern of magnetic field lines in virtually all situations

Magnetic Field and Current Loop

- Treat the loop as many small pieces of wire
- Apply the right-hand rule to find the field from each piece of wire
- Applying superposition gives the overall pattern shown in B

Magnetic Forces \& Bar Magnets

- To determine the total force on the bar magnet, you must look at the forces on each pole
- The total force is zero
- The total torque is nonzero

- The torque acts to align the bar magnet along the magnetic field

Magnetic Moment

- The bar magnet possesses a magnetic moment
- The bar magnet is similar to an electric dipole
- The poles of the magnet can be thought of as a sort of "magnetic charge"
- The north pole of one magnet will attract the south pole of another magnet
- Unlike poles attract
- Like poles will repel
- Similar to electric charges

Like and Unlike Poles

-

Like
 poles repel.

Section 20.2

Magnetic Force - Another View

- The axes of the magnets are aligned
- The upward force on the north pole of the lower magnet is stronger than the downward force on its south pole
- Due to distances
- The total force on the lower magnet is upward
- The magnets attract

Comparing Electric and Magnetic Fields and Forces

- There are many similarities in the behavior of electric charges and magnetic poles
- Unlike charges and unlike poles attract
- Like charges and like poles repel
- North and south magnetic poles always occur in pairs
- It is not possible to obtain an isolated magnetic pole

Force on Moving Charge

- Magnetic force acts on individual charges
- The force depends on the velocity of the charge
- If the charge is not moving, there is no magnetic force
- If a positive charge, q , is moving with a given velocity in an external magnetic field, then the magnitude of the force on the charge is
- $F_{B}=q \vee B \sin \theta$
- The angle θ is the angle between the velocity and the field

Right Hand Rule Number 2

- To determine the direction of the force, use right hand rule number 2
- Point the figures of your right hand in the direction of the velocity and wrap them in the direction of the field
- Your thumb points in the direction of the force

A

Right Hand Rule Number 2, cont.

- Take the smallest angle between the velocity and the field
- This process is for a positive charge
- For a negative charge, reverse the direction of the force
- The magnetic force is always perpendicular to both the magnetic field and the particle's velocity

Comparison of Forces

- The magnetic force is dependent on velocity
- Electric and gravitational fields are not
- The direction of the magnetic force is always perpendicular to both the magnetic field and the particle's velocity
- The field and the force are always parallel for electric and gravitational forces

Units: Details

- From the equation for the magnitude of the magnetic force,

$$
1 N=1 \frac{C \cdot m \cdot T}{s}
$$

- The Tesla (T) is then

$$
1 T=1 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{C} \cdot \mathrm{~m}}=1 \frac{\mathrm{~kg}}{\mathrm{C} \cdot \mathrm{~s}}
$$

Motion of a Charged Particle

- Assume a charged particle moves parallel to the magnetic field
- The angle between the velocity and the field is zero
- Therefore, the force is also zero
- Since $\sin \theta=0$

MOTION OF A POSITIVELY CHARGED PARTICLE

$+q \longrightarrow \vec{v}$

A

Motion of a Charged Particle, 2

- Assume a charged particle moves perpendicular to the magnetic field
- The angle between the velocity and the field is 90°
- Therefore, the force is qvB
- The particle will move in a circle

$$
\begin{aligned}
& \text { When } \theta=90^{\circ} \text {, the charged } \\
& \text { particle moves in a circle } \\
& \text { that lies in a plane } \\
& \text { perpendicular to the plane } \\
& \text { of this page. }
\end{aligned}
$$

Motion, 2, cont.

- The circle lies in the plane perpendicular to the magnetic field lines
- The radius of the circle can be calculated from noting there must be a centripetal force acting on the particle

$$
\begin{gathered}
F_{B}=F_{C} \rightarrow q v B=\frac{m v^{2}}{r} \\
r=\frac{m v}{q v}
\end{gathered}
$$

Motion of a Charged Particle, 3

- Assume a charged particle moves neither parallel nor perpendicular to the magnetic field
- The angle between the velocity and the field varies
- The path of the particle is helical
- The charged particle will spiral around the magnetic field lines

Motion of a Charged Particle, Summary

- If a charged particle has a velocity parallel to the magnetic field, the magnetic force on the particle is zero
- If a charged particle is moving perpendicular to a constant magnetic field, the particle will move in a circle
- If a charged particle is moving with a velocity at some angle between 0° and 90°, it will spiral around the magnetic field lines

Right Hand Rules, Summary

- Right-hand rule number 1: Finding the direction of the magnetic field from an electric current
- Place the thumb of your right hand along the direction of the current
- Curl your fingers; they will then give the direction of the magnetic field as the field lines encircle the current
- Right-hand rule number 2: Finding the direction of the magnetic force on a moving charge, q
- Point the fingers of your right hand along the direction of the velocity
- Curl your fingers in the direction of the field
- Curl your fingers through the smallest angle that connects the velocity and the field
- If q is positive, the magnetic force is parallel to your thumb. If q is negative, the magnetic force is in the opposite direction

Magnetic Force on a Current

- An electric current is a collection of moving charges, a force acts on a current
- From the equation of the force on a moving charge, the force on a current-carrying wire is $F_{\text {on wire }}=I L B \sin \theta$
- The direction of the force is given by the right-hand rule number 2

Torque on a Current Loop

A

B

C

- A magnetic field can produce a torque on a current loop
- Assume a square loop with sides of length L carrying a current I in a constant magnetic field
- The directions of the forces can be found from righthand rule 2

Torque, cont.

- On two sides, the current is parallel or antiparallel to the field, so the force is zero on those sides
- The forces on sides with the current perpendicular to the field are in opposite directions and produce a torque on the loop
- Denoted sides 1 and 3 in fig. 20.24
- When the angle between the loop and the field is θ, the torque is

$$
T=I L^{2} B \sin \theta
$$

- For different shapes, this becomes

$$
\tau=I A B \sin \theta
$$

Magnetic Moment

- For a current loop, the magnetic moment is IA
- The direction of the magnetic moment is either along the axis of the bar magnet or perpendicular to the current loop
- The strength of the torque depends on the magnitude of the magnetic moment

Motion in Two Fields

- The motion of an electric charge in the presence of both an electric field and a magnetic field is of interest
- Two applications include
- Mass spectrometer
- Hall Effect

Mass Spectrometer

- Allows for the separation of ions according to their mass or charge
- The ions enter with some speed v
- They pass into a region where the magnetic field is perpendicular to the velocity

Section 20.6

Mass Spectrometer, cont.

- The ions travel in a circle in the mass spectrometer
- The radius of the circle is $m v / q B$
- Ions with different masses will travel in arcs with different radii
- Mass spectrometer can also be used to find the composition of a material
- Measure the values of v, B and r
- Calculate q / m
- Charge to mass ratio

Mass Spectrometer Uses

- Mass spectrometers are now being used in work on genomics and proteomics
- A protein is "cut" into fragments
- Peptides
- The fragments are analyzed in a mass spectrometer
- The ratios of q / m are found
- The pattern of mass spectrometer intensities is also found
- The information is compared to the mass spectrometer data on known peptides
- Based on the comparison, the sequence of the original protein can be determined

Hall Effect

- An electric current is produced by moving electric charges
- A particular value of current can be produced by positive charges moving to the right or negative charges to the left
- The Hall Effect can distinguish between the two options

Positive charges moving to the right

The current direction is the same.

Negative charges moving to the left

B
Section 20.6

Hall Effect, cont.

- Place a current-carrying wire in a magnetic field directed perpendicular to the current
- With positive charge carriers, an excess positive charge accumulates on the top edge

Force on
positive charge
carriers is
accumulate the top edge. upward.
$\times \vec{B}$
$+$

\times

Hall Effect, final

- With negative charge carriers, an excess negative charge accumulates on the top edge
- Measuring the potential difference distinguishes between positive or negative charge carriers producing the current

B

Ampère’ s Law

- There are two ways to calculate the magnetic field produced by a current
- One way treats each small piece of wire as a separate source
- Similar to using Coulomb' s Law for an electric field
- Mathematically complicated
- Second way is to use Ampère's Law
- Most useful when the field lines have high symmetry
- Similar to using Gauss' s Law for an electric field

Ampère' s Law, cont.

- Relates the magnetic field along a path to the electric current enclosed by the path
- For the path shown, Ampère's Law states that

$$
\sum_{\substack{\text { closed } \\ \text { path }}} B_{\square} \Delta L=\mu_{o} I_{\text {enclosed }}
$$

- μ_{o} is the permeability of free space
- $\mu_{o}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$

Magnetic Field of a Long Straight Wire

- If B varies along the path, Ampère's Law can be impossible to apply in practice
- Ampère' s Law can be used to find the magnetic field near a long, straight wire
- $\mathrm{B}_{\|}$is the same all along the path
- If the circular path has a radius r, then the total path length is $2 \pi r$
- Applying Ampère' s Law gives

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

Field from a Current Loop

- It is not possible to find a path along which the magnetic field is constant
- So Ampère' s Law cannot be easily applied
- From other techniques, the field at the center of the loop is

$$
B=\frac{\mu_{0} I}{2 R}
$$

$$
B=\frac{\mu_{0} I}{2 R} \text { at the center of the loop. }
$$

$B_{\|}$is not constant on this path (or on any other closed path around a current loop).

Notes About Ampère's Law

- In some cases, there is no path around a current for which the magnetic field is constant along the entire path
- Ampère' s Law may not lead to a simple way of finding the magnetic field in such cases
- Ampère' s Law is still true in cases where the magnetic field varies

Field Inside a Solenoid

A

- By stacking many loops close together, the field along the axis is much larger than for a single loop
- A helical winding of wire is called a solenoid
- More practical than stacking single loops

Solenoid, cont.

- For a very long solenoid, it is a good approximation to assume the field is constant inside the solenoid and zero outside
- Use the path shown in the figure
- Only side 1 contributes to the magnetic field

Solenoid, final

- The magnetic field inside the solenoid is given by

$$
B_{\text {solenoid }}=\frac{\mu_{0} N I}{L}
$$

- For a solenoid with a length much greater than the diameter

Magnetic Materials

- Magnetic poles always come in pairs
- To understand why, the atomic origin of permanent magnetism must be considered

Motion of Electrons

- The motion of an electron around a nucleus can be pictured as a tiny current loop
- The radius is approximately the radius of the atom
- The direction of the resulting magnetic field is determined by the orientation of the current loop
- Using right-hand rule 1

Electron Spin

- The electron also produces a magnetic field due to an effect called electron spin
- The spinning charge acts as a circulating electric current
- The electron has a spin magnetic moment

Electron Spin, cont.

- When an electron is placed in a magnetic field, it will tend to align its spin magnetic moment with the magnetic field

In a permanent magnet (such as iron), all the atoms act as small aligned magnets.

Magnetic Field in an Atom

- The correct explanation of electron spin requires quantum mechanics
- Confirms an atom can produce a magnetic field in two ways
- Through the electron' s orbital current loop
- Through the electron's spin
- The total magnetic field produced by a single atom is the sum of these two fields

Magnetic Field from Atoms, cont.

- Each atom produces a current loop
- The collection of small current loops acts as one large loop
- This produces the magnetic field in the magnetic material
- The current in each atomic loop is very small, but the large number of atoms results in a large effective current

The net effect is the same as that of one large current loop around the perimeter.

Atomic Magnets to Permanent Magnets

- Not all atoms will actually be magnetic since the current loops of different electrons can point in different directions
- Their magnetic fields could cancel
- The total magnetic field will depend on how the atomic magnetic fields are aligned
- A permanent magnet has the atomic fields aligned

Isolated Magnetic Poles

- A bar magnet is produced by a collection of aligned atomic-scale current loops
- Cutting the magnet in half produces two new complete bar magnets
- Each resulting piece still produces the magnetic field of a complete bar magnet with a north and south pole

Cutting a bar magnet produces two new bar magnets and does not produce separate north and south poles.

Magnetic Domains

- It is possible for the atomic magnets in different regions within a magnetic material to point in different directions
- Called magnetic domains
- The arrangement shown is equivalent to two bar magnets
- Because the atomic magnets are aligned in opposite directions, this would appear to be nonmagnetic

Atomic magnets

The atomic magnets in different parts of a permanent magnet can point in different directions. Here the result is two side-byside bar magnets.

Properties of Magnetic Domains

- A material has two domains of approximately the same size
- Apply a magnetic field from a bar magnet
- The domain aligned with the magnetic field grows at the expense of the other domain
- The material now acts like a bar magnet

Magnetic material with two domains

The magnetic field from this bar magnet can cause the atomic magnets above to align.

Refrigerator Magnet

Earth's Magnetic Field

- The Earth acts like a very large magnet
- A compass needle aligns with its north magnetic pole pointing approximately toward the Earth' s geographic north pole
- So the Earth' s geographic north pole is actually a south magnetic pole

Earth's Magnetic Field, cont.

- The location of the Earth' s south magnetic pole does not correspond exactly with the geographic north pole
- The Earth' s south magnetic pole moves slowly
- Currently at about 40 km/year
- The Earth' s magnetic field has completely reversed direction
- The field is probably produced by electric currents in the core

Cosmic Rays

- Charged particles from space are called cosmic rays
- Their motion is affected by the Earth's magnetic field
- At the equator, the particles are deflected away from the Earth's surface
- At the poles, the particles follow a helical path and spiral into the poles
- They interact with the Earth' s atmosphere and produce aurora

Applications of Magnetism

- Magnetism is used by doctors, engineers, archeologists, and others
- Applications include
- Blood-flow meters
- Relays
- Electric motors
- Bacteria
- Magnetic dating

Blood-Flow Meter

A

B

- Measures the blood velocity in arteries
- Blood contains ions
- A magnetic field is applied to the artery
- The resulting potential difference across the artery can be measured
- Blood velocity can be measured

Relays

- The field produced by a solenoid can be made larger by filling it with a magnetic material
- A magnetic force is exerted on the moveable part of the switch
- A small current through the solenoid can control
 a much larger current through the switch

Electric Motor

- A
- A magnetic field can produce a torque on a current loop
- If the loop is attached to a rotating shaft, an electric motor is formed
- In a practical motor, a solenoid is used instead of a single loop
- Reversal of the current is needed to keep the shaft rotating

Electric Generator

- Electric generators are closely related to motors
- A generator produces an electric current by rotating a coil between the poles of the magnet
- A motor in reverse

Magnetic Bacteria

- Magnetotactic bacteria possess small grains of iron called magnetosomes
- Each grain acts as a bar magnet
- Bacteria use the magnetosomes to orient themselves with the
 Earth' s magnetic field
- Allows them to determine up and down

Magnetic Dating

- Reversals in the Earth's magnetic field can be used to date past events
- Dates of more than 25 reversals are known

Velocity-Dependent Force

- The magnetic force exerted on a moving charged particle is dependent on its velocity
- Differs from gravitational and electrical forces
- The two observers shown both agree the particle is accelerated, but only observer 1 says there is a magnetic force acting on the particle

Velocity-Dependent Force, cont.

- Special relativity solves the dilemma
- Observer 2 will actually say the particle experiences an electric force
- This shows a deep connection between electric and magnetic forces
- The connection is a critical part of the theory of electromagnetism

