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Abstract

We discuss the relation between the deconfining phase transition in gauge the-
ories and the realization of the magnetic ZN symmetry. At low temperature
the ZN symmetry is spontaneously broken while above the phase transition it
is restored. This is intimately related to the change of behaviour of the spatial
’t Hooft loop discussed in [1]. We also point out that the realization of the
magnetic symmetry has bearing on the behaviour of the spatial Wilson loop.
We give a physical argument to the effect that the spatial Wilson loop must
undergo a change of behaviour at the deconfining phase transition and must
have a perimeter law behaviour in the hot phase.
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1 Introduction

This paper is devoted to further study of theoretical aspects of the deconfining
temperature phase transition in nonabelian gauge theories. It is an immediate
continuation of our earlier work [1]. In [1] we showed that the deconfining
phase transition in the pure Yang Mills theory is characterised by the change
of behaviour of the ’t Hooft loop operator V (C). In the “cold” phase the ’t
Hooft loop has a perimiter law behaviour < V (C) >∝ exp{−aP (C)}, while in
the “hot” phase it has an area law behaviour < V (C) >∝ exp{−αS(C)}.
In the present paper we want to sharpen somewhat this observation and further
discuss related questions. We wish to point out that V is in fact an order
parameter which probes the breaking of a physical symmetry of the Yang Mills
theory. The symmetry in question is the magnetic ZN symmetry discussed by
’t Hooft [2]. The deconfining phase transition is therefore characterized by the
change in the mode of realization of a global ZN symmetry: the symmetry is
broken spontaneously in the “cold” phase while it is restored in the “hot“ phase.

The previous two paragraphs may sound at first like a red herring. After all
an order parameter for the deconfining phase transition as well as a related
ZN symmetry have been discussed for many years. The order parameter in
question is the free energy of an external static colour source in the fundamental
representation: the Polyakov line P = TrP exp{ig ∫ β

0
dtA0}. The ZN symmetry

is the transformation P → exp{i 2π
N }P . We will refer to this transformation as

the electric ZN . There is however a great difference between the physical nature
of P and V and the associated ZN symmetries. The operator V is a canonical
operator in the physical Hilbert space of the Yang Mills theory. The magnetic
ZN symmetry similarly is a transformation that acts on quantum states in the
physical Hilbert space. On the other hand P has a very different status. It is not
an operator in the Hilbert space and as such not a canonical order parameter.
It appears as an auxilliary object when projecting onto gauge invariant physical
subspace of the Hilbert space. The “electric” ZN - the operation that transforms
P by multiplying it by a phase - similarly is not a canonical symmetry. There is
no transformation of states in the physical Hilbert space that is related to this
“symmetry”, although it is indeed a symmetry of the Euclidean path integral
representing the statistical sum.

This is not to say of course that P and electric ZN are useless concepts. The
standard effective action, defined by the constrained path integral

exp−Seff (P ) =
∫

DA0δ(P − P (A0)) exp−S(A) (1)

is gauge invariant. It is instrumental in computing the vortex expectation value.
The way the electric Z(N) symmetry is realized in Seff is also related to the
behaviour of the order parameter of the magnetic Z(N). We will discuss this
in detail in section 3 [1].
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However if one wants to describe the deconfinement phase transition in terms of
a canonical order parameter in the same way as the Ising transition is described
in terms of magnetisation, one should zero in on V rather than on P and should
study the magnetic ZN symmetry rather than electric ZN . This is what we
intend to do in this paper.

The action of the magnetic ZN symmetry is very different in 2+1 and 3+1
dimensional cases. In 2+1 dimensions it acts very much like usual global sym-
metry in a scalar theory with the order parameter being a scalar vortex field.
In 3+1 dimensions the symmetry acts not like a standard global symetry - its
“charge” is an integral over a two dimensional spacelike surface rather than over
the whole of the three dimensional space1. As a consequence its order parame-
ter is not a local field but rather a magnetic vortex stretching over macroscopic
distances.

It is therefore convenient to start the discussion with the three dimensional
gauge theories and to present all the arguments in this case. The generalization
of appropriate aspects of this discussion to 3+1 dimensions will be given in the
last part of every section.

The plan of this paper is the following. In Section 2 we recap the definition of
the ’t Hooft loop and its 2+1 dimensional analog - the magnetic vortex operator.
We formulate the arguments for the existence of the magnetic ZN symmetry in
theories without fundamental matter fields. We also show by explicit construc-
tion that the generator of this symmetry in the pure gluodynamics is none other
than the spatial Wilson loop.

In Section 3 we discuss the relation between the behaviour of the ’t Hooft loop
and the realization of the magnetic ZN in the ground state of the theory. We
demonstrate that the mode of the realization of the symmetry changes at the
deconfining phase transition, while spontaneously broken at low temperature
the symmetry is restored above the phase transition.

In Section 4 we present a simple physical picture explaining why the Wilson loop
must have an area law in the low temperature phase where the ZN symmetry
is broken and perimeter law in the high temperature unbroken phase. We also
point out that there is a difference between the Abelian and nonabelian theories
in this respect.

Finally in Section 5 we conclude with a discussion. We are well aware that our
conclusion about the perimeter behaviour of the Wilson loop at high tempera-
ture is controversial since it contradicts the existing lore. If the simple reduced
theory calculations are to be believed at asymptotically high temperatures, the
spatial Wilson loop must have area law behaviour. We point out that the ar-
gument based on the reduced theory is not water tight and suggest a simple
lattice calculation which could verify/falsify our conclusion.

1These type of symmetries nowadays are frequently discussed in the context of “M -
theory”[3].
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2 The magnetic ZN symmetry and the ’t Hooft
loop operator.

In this section we discuss the notion of the magnetic ZN symmetry and its
order parameter - ’t Hooft loop, or magnetic vortex operator. Most of the
material contained here is not new and, perhaps with the exception of explicit
identification of the ZN generator with the spatial Wilson loop, is contained in
[2, 4, 5]. At the risk of being repetitive we have decided nevertheless to include
this extended introductory part, since we feel that the concept of magnetic
ZN symmetry is not widely appreciated in the community. The ZN symmetry
structure is the basis for our discussion of the deconfining phase transition in
the following sections.

Let us start by recalling the argument due to ’t Hooft that a nonabelian SU(N)
gauge theory with charged fields in adjoint representation posesses a global ZN

symmetry [2].

We discuss the 2+1 dimensional case first. Consider a theory with several adjoint
Higgs fields so that varying parameters in the Higgs sector the SU(N) gauge
symmetry can be broken completely. In this phase the perturbative spectrum
will contain the usual massive “gluons” and Higgs particles. However in addition
to that there will be heavy stable magnetic vortices. Those are the analogs of
Abrikosov-Nielsen-Olesen vortices in the superconductours and they must be
stable by virtue of the following topological argument. The vortex configuration
away from the vortex core has all the fields in the pure gauge configuration

Hα(x) = U(x)hα, Aµ = iU∂µU † (2)

Here the index α labels the scalar fields in the theory, hα are the constant vac-
uum expectation values of these fields, and U(x) is a unitary matrix. As one
goes around the location of the vortex in space, the matrix U winds nontrivially
in the gauge group. This is possible, since the gauge group in the theory with-
out fundamental fields is SU(N)/ZN and it has a nonvanishing first homotopy
group Π1(SU(N)/ZN ) = ZN . Practically it means that when going around the
vortex location full circle, U does not return to the same SU(N) group element
U0, but rather ends up at exp{i 2π

N }U0. Adjoint fields do not feel this type of
discontinuity in U and therefore the energy of such a configuration is finite.
Since such a configuration can not be smoothly deformed into a trivial one, a
single vortex is stable. Processes involving annihilation of N such vortices into
vacuum are allowed since N-vortex configurations are topologically trivial. One
can of course find explicit vortex solutions once the Higgs potential is specified.
As any other semiclassical solution in the weak coupling limit the energy of such
a vortex is inversely proportional to the gauge coupling constant and therefore
very large. One is therefore in a situation where the spectrum of the theory
contains a stable particle even though its mass is much higher than masses of
many other particles (gauge and Higgs bosons) and the phase space for its decay
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into these particles is enormous. The only possible reason for the existence of
such a heavy stable particle is that it must carry a conserved quantum number.
The theory therefore must possess a global symmetry which is unbroken in the
completely higgsed phase. The symmetry group must be ZN since the number
of vortices is only conserved modulo N .

Now imagine changing smoothly the parameters in the Higgs sector so that the
expectation values of the Higgs fields become smaller and smaller, and finally the
theory undergoes a phase transition into the confining phase. One can further
change the parameters so that the adjoint scalars become heavy and eventually
decouple completely from the glue. This limiting process does not change the
topology of the gauge group and therefore does not change the symmetry content
of the theory. We conclude that the pure Yang-Mills theory also posesses a ZN

symmetry. Of course since the confining phase is separated from the completely
Higgsed phase by a phase transition one may expect that the ZN symmetry in
the confining phase is represented differently. In fact the original paper of ’t
Hooft as well as subsequent work[4] convincingly argued that in the confining
phase the ZN symmetry is spontaneously broken and this breaking is related to
the confinement phenomenon.

The physical considerations given above can be put on firmer formal basis. In
particular one can construct explicitly the generator of the ZN as well as the
order parameter associated with it - the operator that creates the magnetic
vortex [5]. We will now describe this construction.

2.1 The Abelian case

Consider first an Abelian gauge theory. In this case the homotopy group is
Z and therefore we expect the U(1) rather than ZN magnetic symmetry. It
is in fact absolutely straightforward to identify the relevant charge. It is none
other than the magnetic flux through the equal time plane, with the associated
conserved current being the dual of the electromagnetic field strength

Φ =
∫

d2xB(x), ∂µF̃µ = 0 (3)

The current conservation is insured by the Bianchi identity. A group element
of the U(1) magnetic symmetry group is exp{iαΦ} for any value of α. A local
order parameter - a local field V (x) which carries the magnetic charge - is also
readily constructed. It has a form of the singular gauge transformation operator
with the singularity at the point x

V (x) = exp
i

g

∫
d2y

[
εij

(x − y)j

(x − y)2
Ei(y) + Θ(x − y)J0(y)

]
(4)

where Θ(x− y) is the polar angle function and J0 is the electric charge density
of whatever matter fields are present in the theory. The cut discontinuity in
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the function Θ is not physical and can be chosen parallel to the horizontal axis.
Using the Gauss’ law constraint this can be cast in a different form, which we
will find more convenient for our discussion

V (x) = exp
2πi

g

∫
C

dyi εijEi(y) (5)

where the integration goes along the cut of the function Θ which starts at
the point x and goes to spatial infinity. The operator does not depend on
where precisely one chooses the cut to lie. To see this, note that changing the
position of the cut C to C′ adds to the phase 2π

g

∫
S

d2x∂iE
i where S is the

area bounded by C −C′. In the theory we consider only charged particles with
charges multiples of g are present. Therefore the charge within any closed area
is a multiple integer of the gauge coupling

∫
S

d2x∂iE
i = gn and the extra phase

factor is always unity.

The meaning of the operator V is very simple. From the commutation relation

V (x)B(y)V †(x) = B(y) +
2π

g
δ2(x − y) (6)

it is obvious that V creates a pointlike magnetic vortex of flux 2π/g. Despite its
nonlocal appearance the operator V can be proven to be a local Lorentz scalar
field[8]. The locality is the consequence of the fact that V (x) commutes with any
local gauge invariant operator in the theory O(y) except when x = y. This is
due to the coefficient 2π/g in the exponential which ensures that the Aharonov-
Bohm phase of the vortex created by V and any dynamical charged particle
present in the theory vanishes. Eqs.(3,5) formalize the physical arguments of ’t
Hooft in the abelian case.

2.2 The non-Abelian case at weak coupling.

Let us now move onto the analogous construction for nonabelian theories. Ul-
timately we are interested in the pure Yang - Mills theory. It is however il-
luminating to start with the theory with an adjoint Higgs field and take the
decoupling limit explicitly later. For simplicity we discuss the SU(2) gauge the-
ory. Consider the Georgi-Glashow model - SU(2) gauge theory with an adjoint
Higgs field.

L = −1
4
F a

µνF aµν +
1
2
(Dab

µ Hb)2 + µ̃2H2 − λ̃(H2)2 (7)

where
Dab

µ Hb = ∂µHa − gfabcAb
µHc (8)

At large and positive µ̃2 the model is weakly coupled. The SU(2) gauge sym-
metry is broken down to U(1) and the Higgs mechanism takes place. Two gauge
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bosons, W±, acquire a mass, while the third one, the “photon”, remains mass-
less to all orders in perturbation theory. The theory in this region of parameter
space resembles very much electrodynamics with vector charged fields. The
Abelian construction can therefore be repeated. The SU(2) gauge invariant
analog of the conserved dual field strength is

F̃µ =
1
2
[εµνλF a

νλna − 1
g
εµνλεabcna(Dνn)b(Dλn)c] (9)

where na ≡ Ha

|H| is the unit vector in the direction of the Higgs field. Classically
this current satisfies the conservation equation

∂µF̃µ = 0 (10)

The easiest way to see this is to choose a unitary gauge of the form Ha(x) =
H(x)δa3. In this gauge F̃ is equal to the abelian part of the dual field strength
in the third direction in colour space. Its conservation then follows by the
Bianchi identity. Thus classically the theory has a conserved U(1) magnetic
charge Φ =

∫
d2xF̃0 just like QED. However the unitary gauge can not be

imposed at the points where H vanishes, which necessarilly happens in the
core of an ’t Hooft-Polyakov monopole. It is well known of course [7] that the
monopoles are the most important nonperturbative configurations in this model.
Their presence leads to a nonvanishing small mass for the photon as well as to
confinement of the charged gauge bosons with a tiny nonperturbative string
tension. As far as the monopole effects on the magnetic flux, their presence
leads to a quantum anomaly in the conservation equation (10). As a result only
the discrete Z2 subgroup of the transformation group generated by Φ remains
unbroken in the quantum theory. The detailed discussion of this anomaly, the
residual Z2 symmetry and their relation to monopoles is given in [5].

The order parameter for the magnetic Z2 symmetry is constructed analogously
to QED as a singular gauge transformation generated by the gauge invariant
electric charge operator

Jµ = εµνλ∂ν(F̃ a
λ na), Q =

∫
d2xJ0(x) (11)

Explicitly

V (x) = exp
i

g

∫
d2y

[
εij

(x − y)j

(x − y)2
na(y)Ea

i (y) + Θ(x − y)J0(y)
]

= exp
2πi

g

∫
C

dyiεijn
aEa

i (y) (12)

One can think of it as a singular SU(2) gauge transformation with the field
dependent gauge function

λa(y) =
1
g
Θ(x − y)na(~y) (13)
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This field dependence of the gauge function ensures the gauge invariance of
the operator V . Just like in QED it can be shown[5], [8] that the operator
V is a local scalar field. Again like in QED, the vortex operator V is a local
eigenoperator of the abelian magnetic field B(x) = F̃0.

[V (x), B(y)] = −2π

g
V (x)δ2(x − y) (14)

That is to say, when acting on a state it creates a pointlike magnetic vortex
which carries a quantized unit of magnetic flux. The Z2 magnetic symmetry
transformation is generated by the operator

U = exp{i g
2
Φ} (15)

and acts on the vortex field V as a phase rotation by π

ei g
2 ΦV (x)e−i g

2 Φ = −V (x) (16)

An operator closely related to U and which will be of interest to us in the
following, is the generator of the magnetic Z2 transformation only inside some
closed contour C

U(C) = exp{i g
2

∫
S

d2xB(x)} (17)

where the integration is over the area S bounded by C. The analog of the
commutator eq.(16) for this operator is

UCV (x)U †
C = − V (x) , x ∈ S

V (x) , x /∈ S (18)

Taking the contour C to run at infinity UC becomes the generator of Z2.

We now have the explicit realization of the magnetic Z2 symmetry in the Georgi-
Glashow model.

2.3 The pure gauge theory.

Our next step is to move on to the pure Yang Mills theory. This is achieved
by smoothly varying the µ̃2 coefficient in the Lagrangian so that the coeficient
of the mass term of the Higgs field becomes positive and eventually arbitrarily
large. It is well known that in this model the weakly coupled Higgs regime and
strongly coupled confining regime are not separated by a phase transition[6].
The pure Yang Mills limit in this model is therefore smooth.

In the pure Yang Mills limit the expressions eq.(9,12,17) have to be taken with
care. When the mass of the Higgs field is very large, the configurations that
dominate the path integral are those with very small value of the modulus of
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the Higgs field |H | ∝ 1/M . The modulus of the Higgs field in turn controls the
fluctuations of the unit vector na, since the kinetic term for n in the Lagrangian
is |H |2(Dµn)2. Thus as the mass of the Higgs field increases the fluctuations of
n grow in both, amplitude and frequency and the magnetic field operator B as
defined in eq.(9) fluctuates wildly. This situation is of course not unusual. It
happens whenever one wants to consider in the effective low energy theory an
operator which explicitly depends on fast, high energy variables. The standard
way to deal with it is to integrate over the fast variables. There could be two
possible outcomes of this procedure. Either the operator in question becomes
trivial (if it depends strongly on the fast variables), or its reduced version is
well defined and regular on the low energy Hilbert space. The “magnetic field”
operator B in eq.(9) is obviously of the first type. Since in the pure Yang
Mills limit all the orientation of na are equally probable, integrating over the
Higgs field at fixed Aµ will lead to vanishing of B. However what interests us
is not so much the magnetic field but rather the generator of the magnetic Z2

transformation UC of eq.(17). In the pure Yang-Mills limit we are thus lead to
consider the operator

UC = limH→0

∫
Dna exp

{
− |H |2( ~Dna)2

}
(19)

exp
{
i
g

4

∫
C

d2x
(
εijF

a
ijn

a − 1
g
εijεabcna(Din)b(Djn)c

)}
The weight for the integration over n is the kinetic term for the isovector na.
As was noted before the action does not depend on na in the YM limit. This
term however regulates the integral and we keep it for this reason. This op-
erator may look somewhat unfamiliar at first sight. However in a remarkable
paper [9] Diakonov and Petrov showed that eq.(20) is equal to the trace of the
fundamental Wilson loop along the contour C2.

UC = WC ≡ TrP exp
{
ig

∫
C

dliAi
}

(20)

We conclude, that in the pure Yang-Mills theory the generator of the magnetic
Z2 symmetry is the fundamental spatial Wilson loop along the boundary of the
spatial plane.

There is a slight subtlety here that may be worth mentioning. The generator
of a unitary transformation should be a unitary operator. The trace of the fun-
damental Wilson loop on the other hand is not unitary. One should therefore
strictly speaking consider instead a unitarized Wilson loop W̃ = W√

WW † . How-

ever the factor between the two operators
√

WW † is an operator that is only
sensitive to behaviour of the fields at infinity. It commutes with all physical

2We note that Dyakonov and Petrov had to introduce a regulator to define the path integral
over n. The regulator they required was precisely of the same form as in eq.(20). It is pleasing
to see that this regulator appears naturally in our approach as the remnant of the kinetic term
of the Higgs field.
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local operators O(x) unless x → ∞. In this it is very different from the Wilson
loop itself, which has a nontrivial commutator with vortex operators V (x) at all
values of x. Since the correlators of all gauge invariant local fields in the pure
Yang Mills theory are massive and therefore short range, the operator

√
WW †

must be a constant operator on all finite energy states. The difference between
W and W̃ is therefore a trivial constant factor and we will not bother with it in
the following. Perhaps of more concern is the difference between WC and W̃C

when the contour C is not at infinity. However here again the factor between

the two operators
√

WCW †
C is only sensitive to physical degrees of freedom on

the contour C and not inside it. Due to its presence the vacuum averages of
WC and W̃C may differ at most by a factor which has a perimeter behaviour
< WC >= exp{mP (C)} < W̃C > where P (C) is a perimeter of C. The question
we will be interested in is whether < WC > has a perimeter or area behaviour.
As far as the answer to this question is concerned WC and W̃C are completely
equivalent, and we will not make distinction between them. In the rest of this
paper we will therefore refer to W as the generator of Z2 keeping this little
caveat in mind.

Next we consider the vortex operator eq.(12). Again we have to integrate it
over the orientations of the unit vector na. This integration in fact is equivalent
to averaging over the gauge group. Following [9] one can write na in terms of
the SU(2) gauge transformation matrix Ω.

~n =
1
2
TrΩτΩ†τ3 (21)

The vortex operator in the pure gluodynamics limit then becomes

Ṽ (x) =
∫

DΩ exp
2πi

g

∫
C

dyiεijTrΩEjΩ†τ3 (22)

This form makes it explicit that Ṽ (x) is defined as the gauge singlet part of the
following, apparently non gauge invariant operator

V (x) = exp
2πi

g

∫
C

dyiεijE
3
i (y) (23)

The integration over Ω obviously projects out the gauge singlet part of V . In the
present case however this projection is redundant. This is because even though
V itself is not gauge invariant, when acting on a physical state it transforms it
into another physical state3. By physical states we mean the states which satisfy
the Gauss’ constraint in the pure Yang-Mills theory. This property of V was
noticed by ’t Hooft [2]. To show this let us consider V (x) as defined in eq.(23)
and its gauge transform VΩ = Ω†V Ω where Ω is an arbitrary nonsingular gauge
transformation operator. The wave functional of any physical state depends

3This is not a trivial statement, since a generic nongauge invariant operator has nonvan-
ishing matrix elements between the physical and an unphysical sectors.
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only on gauge invariant characteristics of the vector potential, i.e. only on the
values of Wilson loops over all possible contours.

Ψ[Ai] = Ψ[{W (C)}] (24)

Acting on this state by the operators V and VΩ respectively we obtain

V |Ψ > = ΨV [Ai] = Ψ[{V W (C)V †}]
VΩ|Ψ > = ΨΩ

V [Ai] = Ψ[{VΩW (C)V †
Ω}] (25)

It is however easy to see that the action of V (x) and VΩ(x) on the Wilson
loop is identical - they both multiply it by the centergroup phase (which stays
unaffected by Ω) if x is inside C and do nothing otherwise. Therefore we see
that

V |Ψ >= VΩ|Ψ > (26)

for any physical state Ψ. Thus we have

ΩV |Ψ >= ΩV Ω†|Ψ >= V |Ψ > (27)

where the first equality follows from the fact that a physical state is invariant
under action of any gauge transformation Ω and the second equality follows
from eq.(26). But this equation is nothing but the statement that the state
V |Ψ > is physical, i.e. invariant under any nonsingular gauge transformation.

We have therefore proved that when acting on a physical state the vortex op-
erator creates another physical state. For an operator of this type the gauge
invariant projection only affects its matrix elements between unphysical states.
Since we are only interested in calculating correlators of V between physical
states, the gauge projection is redundant and we can freely use V rather than
Ṽ to represent the vortex operator.

It is instructive to note that this propery is not shared by the Wilson loop. One
can in fact represent the Wilson loop as a singlet gauge projection of a simple
Abelian loop operator. The second exponential in eq.(20) can be written as

exp
{
i
g

2

∫
C

dliAi
ana − i

2

∫
d2xεijε

abcna∂inb∂jnc

}
(28)

Using eq.(21) we can rewrite the integral in eq.(20) -omitting the regulating
kinetic piece- as:

WC =
∫

DΩ exp
{

i
g

2

∫
Trτ3

(
ΩAiΩ† + iΩ∂iΩ†)dli

}
(29)

The Wilson loop is therefore the gauge singlet part of the Abelian loop

UA
C = exp i

g

2

∫
TrAiτ3dli (30)
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The matrix elements of WC and UA
C on physical subspace therefore are the same.

However UA
C as opposed to V does have nonvanishing nondiagonal matrix ele-

ments, that is matrix elements between the physical and the unphysical sectors.
It therefore can not be used instead of WC in gauge theory calculations. For
example non gauge invariant states will contribute as intermediate states in the
calculation of quantities like the correlation function < UA

C1U
A
C2

>, while their
contribution vanishes in similar correlators which involve the Wilson loop.

The generalization of the preceding discussion to SU(N) gauge theories is
straightforward. Once again one can start with the Georgi-Glashow like model,
where the SU(N) is higgsed to U(1)(N−1)4. The construction of the vortex
operator and the generator of ZN in this case is very similar and the details are
given in [5]. Taking the mass of the Higgs field to infinity again projects the
generator onto the trace of the fundamental Wilson loop. The vortex operator
can be taken as

V (x) = exp{4πi

gN

∫
C

dyiεijTr(YEi(y)) (31)

where the hypercharge generator Y is defined as

Y = diag (1, 1, ...,−(N − 1)) (32)

and the electric field is taken in the matrix notation Ei = λaEa
i with λa - the

SU(N) generator matrices in the fundamental representation.

2.4 Generalization to 3+1 dimensions

To conclude this section we discuss how the magnetic symmetry structure gen-
eralizes to four dimensions. The conserved ZN generator in the Georgi-Glashow
model is defined through

US = exp
{
i
g

2

∫
S

d2Si
(
Ba

i na − 1
g
εijkεabcna(Djn)b(Dkn)c

)}
(33)

Although the definition of U contains explicitly the surface S through which
the abelian magnetic flux is integrated, the operator in fact does not depend
on S but is specified completely by its boundary. This is because changing S
changes the phase of U by the magnetic flux through the closed surface. The
only dynamical objects that carry magnetic flux in the theory are ’t Hooft-
Polyakov monopoles. Since their flux is quantized in units of 4π/g the change
in the phase is always a multiple integer of 2π. In the pure Yang-Mills limit
the operator US again reduces to the trace of the fundamental Wilson loop

4In SU(N) theories with N > 2 there in principle can be phases separated from each other
due to spontaneous breaking of some global symmetries. For instance the SU(3) gauge theory
with adjoint matter has a phase with spontaneously broken charge conjugation invariance [17].
Still even in this phase the confining properties are the same as in the strongly coupled pure
Yang-Mills theory, with the Wilson loop having an area law.
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along the boundary of S. Taking the contour to infinity defines the generator
of magnetic ZN . As we have already noted, this charge is a little unusual in
that it is defined as a surface integral rather than a volume integral. As a result
the order parameter for this symmetry transformation is not a local but rather
a stringy field. This is of course just a restatement of the fact that magnetic
vortices in 3+1 dimensions are stringlike objects. The operator that creates a
vortex can still be defined in a way similar to 2+1 dimensions. Skipping the
intermediate steps which we went through in the previous discussion we give the
final result for the pure Yang Mills SU(N) gauge theory. The magnetic vortex
along the curve C is created by the following operator of the ”singular gauge
transformation”5

V (C) = exp{ i

gN

∫
d3xTr(DiωCY)Ei} = exp{4πi

gN

∫
S

d2SiTr(YEi)} (34)

with ωC(x), the singular gauge function which is equal to the solid angle sub-
tended by C as seen from the point x. The function ω is continuos everywhere,
except on a surface S bounded by C, where it jumps by 4π. Other than the
fact that S is bounded by C, its location is arbitrary. The vortex loop and the
spatial Wilson loop satisfy the ’t Hooft algebra

V †(C)W (C′)V (C) = e
2πi
N n(C,C′)W (C′) (35)

where n(C, C′) is the linking number of the curves C and C′. One can consider
closed contours C or infinite contours that run through the whole system. For
an infinite contour C and the Wilson loop along the spatial boundary of the
system the linking number is always unity. The V (C) for an infinite loop is
therefore an eigenoperator of the ZN magnetic symmetry and is the analog of
the vortex operator V (x) in 2+1 dimensions. Any closed vortex loop of fixed
size commutes with the Wilson loop if the contour C′ is very large. Such a
closed loop is thus an analog of the vortex-antivortex correlator V (x)V †(y),
which also commutes with the global symmetry generator, but has a nontrivial
commutator with UC if C encloses only one of the points x or y.

To summarize this section, we have shown that pure Yang Mills theory in 2+1
and 3+1 dimensions has a global ZN magnetic symmetry. The generator of the
symmetry group in both cases is the trace of the fundamental Wilson loop along
the spatial boundary of the system. The order parameter for this symmetry in
2+1 dimensions is a local scalar field V (x), while in 3+1 dimensions a stringlike
field V (C). In both cases the field V is gauge invariant on physical states and is
a bona fide canonical order parameter which distinguish in gauge invariant way
the phases of the theory. In the next section we discuss the realization of the
magnetic symmetry in the confined and the deconfined phases.

5The derivative term ∂iω in this expression should be understood to contain only the
smooth part of the derivative and to exclude the contribution due to the discontinuity of ω
on the surface S.
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3 Hot and cold realizations of the magnetic ZN .

As with any global symmetry, it is important to understand what is the mode
of realization of magnetic ZN in the ground state of the theory. This mode of
realization depends of course on the parameters of the theory as well as on the
temperature. The situation at zero temperature is well understood.

3.1 2+1 dimensions.

Again we start with three dimensions. There is a very general argument due
to ’tHooft[2]6 stating that if the theory does not have zero mass excitations the
area law of the Wilson loop implies the nonvanishing expectation value of the
vortex operator V (x). Conversely if the Wilson loop has a perimeter law the
expectation value of V (x) must vanish and the correlation function V (x)V †(y)
must have an exponential falloff with |x − y|. It follows that in the pure Yang
Mills theory the vacuum expectation value of the vortex operator does not vanish
and therefore the ZN magnetic symmetry is spontaneously broken. The same
is true in the partially broken Higgs phase of the Georgi-Glashow model. As
mentioned in the last section the confining and the Higgs regimes in this model
are analytically connected and therefore the realization of all global symmetries
in the two regimes is the same.

In fact in the weakly coupled Higgs phase this can be verified by the direct calcu-
lation of the expectation value of V [5]. This calculation maps very simply into
the classic monopole plasma calculation of Polyakov and was discussed in detail
in [5]. One can also explicitly construct the low energy effective Lagrangian in
terms of the field V which realizes the spontaneously broken ZN symmetry and
describes the low energy spectrum of the Georgi - Glashow vacuum.

L = ∂µV ∗∂µV − λ(V ∗V − µ2)2 − ζ(V 2 + V ∗2) (36)

Similar effective Lagrangian with some quantitative differences was argued to
be valid also for the pure Yang-Mills theory in [10].

The application of the ’t Hooft argument at finite temperature is somewhat
less straightforward. Since at finite temperature the Lorentz invariance is bro-
ken, the temporal and spatial Wilson loops do not necessarily have the same
behaviour and one has to be more careful. The original argument relates the
behaviour of the vortex operator and the temporal Wilson loop. At finite tem-
perature in the Euclidean formalism the extent of the system in the temporal
direction is finite. As a result it is not possible to distinguish between the area
and perimeter law for ”asymptotically” large temporal loops. Instead the role
of the temporal Wilson loop is taken over by the Polyakov line - the loop that

6The original argument as stated in [2] is formulated for 3+1 dimensional theories, however
its generalization to 2+1 dimensions requires only linguistic changes.
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winds around the total volume of the system in the temporal direction. Thus
one expects that in the deconfining phase where the Polyakov line has a nonva-
nishing vacuum average, the vortex operator should have vanishing expectation
value. Indeed this can be easily confirmed by the explicit calculation of the
VEV of the vortex operator using the method of [1]. In [1] the calculation was
performed in 3+1 dimensions, but adapting it to 2+1 dimensional case is trivial.
We give below a brief outline.

Consider the equal time vortex-antivortex correlation function. At finite tem-
perature is it given by the following expression

< V (x)V †(y) >= Tre−
β
2 (E2+B2)e

i 2πi
g

∫ y

x
εijdliEj

3 (37)

The line integral can be taken along the straight line L connecting the points
x and y. For definiteness we take x and y to be separated in the direction of
the first axis. Introducing the imaginary time axis and the Lagrange multiplier
field A0 in the standard way this expression can be transformed to

< V (x)V †(y) >=
∫

DAiDA0 exp{−1
2

∫ β

0

dt

∫
d3x (∂0A

a
i − (DiA0)a − Taa

i )
2+(Ba)2}

(38)
where the “external field “ ai is given by

aa
i (x) = δa3δi2

2π

g
δ(x − L) (39)

The nonzero Matsubara modes are integrated out in precisely the same way as
in the standard calculation of the finite temperature effective potential [12],[11]
and the effective action in the presence of the external field is easily calculated
to one loop order

Seff =
2T 2

g2
(∂iq +

g

2
ai)2 + U(q) (40)

Here q is defined ([11]) as the average value of the first eigenvalue of the matrix
A0 = Aa

0τa

gT at zero Matsubara frequency. The matrices τa are the generators
of SU(2) in the fundamental representation and are normalized according to
trτaτb = 1

2δab. The effective potential U to one loop is related to Bernoulli
polynomial and can be read off the expressions in [11] [18]. The only property
of U which is important to us is that it has two degenerate minima at q = 0, π.

To calulate the correlator we have to find the configuration of q which minimizes
the action eq.(40). Qualitatively the form of the solution is clear. The consid-
erations identical to those in [1] tell us that it must be the “broken” electric Z2

domain wall: half a wall ( q →x2→∞ 0, q(x2 = 0) = π
2 ) above the line L and

half a wall ( q(x2 = 0) = −π
2 , q →x2→−∞ 0,) below the line L separated by

a discontinuity δq = π. The action of such a configuration is Seff = α̃|x − y|
where α̃ is the “Z2 domain wall tension”. The vortex correlator is thus given
by

< V (x)V †(y) >= exp{−α̃|x − y|} (41)
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As |x−y| become large the correlation function decreases exponentially, and thus
the expectation value of the vortex operator vanishes. For the SU(N) group
this calculation trivially generalizes and gives the same result. The exponential
decay is also obtained for the correlator of V m with any power m < N .

Recall that the vortex operator is the order parameter for the magnetic ZN sym-
metry. Moreover the powers of V exhaust all possible local order parameters7.
Their vanishing is therefore an unambiguous indication that the magnetic ZN

is restored in the high temperature deconfined phase.

In hindsight this is not very surprising. Indeed, we are dealing with physical
discrete symmetry which is spontaneously broken at zero temperature. When
the system is heated it is unavoidable that entropy effects take over and at
some sufficiently high temperature the symmetry must be restored. A good
qualitative guide here is the effective Lagrangian eq.(36). It describes a simple
Z2 invariant scalar theory. There is very little doubt that a system described by
this Lagrangian indeed undergoes a symmetry restoring phase transition at some
Tc. Moreover the effective Lagrangian approach also suggests that this phase
transition has deconfining character. As shown in [5, 8, 10] the charged states
in the effective theory eq.(36) are represented by solitonic configurations of the
vortex field V with unit winding number. The energy of any such state is linearly
divergent in the infrared. The reason is that due to finite degeneracy of vacuum
states, the minimum energy configuration looks like a quasi onedimensional strip
across which the phase of V winds. The energy density inside this ”electric
flux tube” is proportinal to the vacuum expectation value of V . When the
VEV vanishes, so does the string tension. Stated in other words, when V
vanishes, the phase fluctuations are large and the winding number is not a
sharp observable. An external charge is thus screened easily by regions of space
around it with vanishing V . The phase with < V >= 0 is therefore not
confining. In the theory with several Higgs fields this phase exists even at zero
temperature and corresponds to a completely Higgsed phase - where the gauge
group is broken completely. In such a Higgs phase indeed the colour is screened
rather than confined. In the pure Yang-Mills theory this phase is absent at zero
temperature, but is realized as the deconfined phase at T > Tc. We thus see that
the behaviour of the vortex operator at high temperature does indeed match
the simple intuition coming from a ZN invariant effective Lagrangian very well.

3.2 Extension to 3+1 dimensions

The ’t Hooft argument now states that the vanishing vacuum average of the
Polyakov line is incompatible with the area law behaviour of the spatial ’t Hooft
loop and vice versa. This means that in the confining phase the ’t Hooft loop

7The latter statement is correct modulo multiplication of V m by local gauge invariant and
ZN invariant operators. These possible factors do not change the fact of the exponential decay
of the corelators and are therefore unimportant for our discussion.
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has perimeter law. In the high temperature deconfined phase the behaviour of
the spatial ’t Hooft loop must become area since the average of the Polyakov
line is finite. Again this is confirmed by explicit calculation in [1].

A more subtle question is how the behaviour of the ’t Hooft loop relates to the
realization of the magnetic ZN symmetry. The ZN symmetry does not have
an order parameter which is a local field defined at a point. The only order
parameters in the strict sense (an eigenoperator with a nonvanishing eigenvalue)
is a ’t Hooft line V (C) which runs through the whole system [13].

In a system which is finite in the direction of the loop, but is infinite in the
perpendicular directions everything is clear cut. In this case there are two
possibilities:

a) < V > 6= 0 and the magnetic ZN broken, or

b). < V >= 0 and the nagnetic ZN restored.

In the system infinite in all directions C is necessarily an infinite line, and the
expectation value < V (C) > clearly vanishes irrespective of whether ZN is
broken or not. The ’t Hooft loop along a closed contour on the other hand
is never zero, since it is globally invariant under the ZN transformation. It is
therfore impossible to find an operator whose VEV distinguishes between the
two possible realizations of the magnetic symmetry by vanishing in one phase
and not vanishing in the other. Nevertheless the behaviour of the closed loop
does indeed reflect the realization mode of the symmetry, since it is qualitatively
different in the two possible phases. Namely vacuum expectation value of a large
closed ’tHooft loop (by large, as usual we mean that the linear dimensions of
the loop are much larger than the correlation length in the theory) has an area
law decay if the magnetic symmetry is spontaneously broken, and perimeter law
decay if the vacuum state is invariant.

To understand the physics of this behaviour it is useful to think of the ’t Hooft
line as built of “local” operators - little “magnetic dipoles”. Consider eq.(34)
with the contour C running along the x- axis and the surface S chosen as the
(x, y) plane. Let us mentally divide the line into (short) segments of length
2∆ centered at xi. Each one of these segments is a little magnetic dipole and
the ’t Hooft loop is a product of the operators that create these dipoles. The
definition of these little dipole operators is somewhat ambiguous but since we
only intend to use them here for the purpose of an intuitive argument any
reasonable definition will do. It is convenient to define a single dipole operator
in the following way

D∆(x) = exp{i
∫

d3y[a+
i (x + ∆ − y) + a−

i (x − ∆ − y)]Tr(YEi(y))} (42)

where a±
i (x − y) is the c-number vector potential of the abelian magnetic

monopole (antimonopole) of strength 4π/gN . The monopole field correpsonding
to ai contains both, the smooth xi/x3 part as well as the Dirac string contribu-
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tion. The Dirac string of the monopole - antimonopole pair in eq.(42) is chosen
so that is connects the points x − ∆ and x + ∆ along the straight line. The
dipole operators obviously have the property

D∆(x)D∆(x + 2∆) = D2∆(x + ∆) (43)

This is because in the product the smooth field contribution of the monopole in
D∆(x) cancels the antimonopole contribution in D∆(x + 2∆), while the Dirac
string now stretches between the points (x−∆) and (x+3∆). When multiplied
over the closed contour, the smooth fields cancel out completely, while the sur-
viving Dirac string is precisely the magnetic vortex created by a closed ’t Hooft
loop operator. The ’t Hooft loop can therefore be written as

V (C) = ΠxiD∆(xi) (44)

The dipole operator D(xi) is an eigenoperator of the magnetic flux defined
on a surface that crosses the segment [xi − ∆, xi + ∆]. Suppose the magnetic
symmetry is broken. Then we expect the dipole operator to have a nonvanishing
expectation value8 < D >= d(∆). If there are no massless excitations in the
theory, the operators D(xi) and D(xj) should be decorrelated if the distance
xi − xj is greater than the correlation length l. Due to eq.(44), the expectation
value of the ’t Hooft loop should therefore roughly behave as

< V (C) >= d(l)L/l = exp{− ln
( 1

d(l)

)L

l
} (45)

where L is the perimeter of the loop. In the system of finite length Lx, the
vacuum expectation value of the vortex line which winds around the system in
x-direction is therefore finite as in eq.(45) with L → Lx.

On the other hand in the unbroken phase the VEV of the dipole operator de-
pends on the size of the system in the perpendicular plane Ly. For large Ly it
must vanish exponentially as d = exp{−aLy}. So the expectation value of V
behaves at finite Ly in the unbroken phase as:

< V (C) >= exp{−aLyLx} (46)

and vanishes as Ly → ∞. Thus in a system which is finite in x direction, but
infinite in y direction, the ’t Hooft line in the x direction has a finite VEV in
the broken phase and vanishing VEV in the unbroken phase.

In the limit of the infinite system size Lx → ∞ the VEV obviously vanishes in
both phases. This is of course due to the fact that V is a product of infinite
number of dipole operators, and this product vanishes even if individual dipole

8The magnetic dipole operators defined above are strictly speaking not local, since they
carry the long range magnetic field of a dipole. However, the dipole field falls off with distance
very fast. Therefore even though this fall off is not exponential the slight nonlocality of D
should not affect the following qualitative discussion.
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operators have finite VEV9. However one can avoid any reference to finite size
system and infinite vortex lines by considering closed ’t Hooft loops.

For a closed loop with long sides along x axis at y = 0 and y = R the above argu-
ment leads to the conclusion that in the broken phase V must have a perimeter
law, eq.(45). In the unbroken phase the correlation between the dipoles at y = 0
and dipoles at y = R should decay exponentially < D(0)D(R) >∝ exp{−αR

l }
and thus

< V (C) >= exp{−α
LR

l2
} = exp{−α

S

l2
} (47)

Thus the perimeter behaviour of < V (C) > indicates vacuum state which breaks
spontaneously the magnetic ZN while the area behaviour means that the mag-
netic ZN is unbroken.

The results of [1] then mean that in 3+1 dimensions as well as in 2+1 dimension
the magnetic symmetry is restored above the deconfining phase transition, in
the sense of eq.( 46).

In the next section we discuss what is the implication of this conclusion on the
behaviour of the spatial Wilson loop.

4 Spatial Wilson loop at high temperature.

As we have shown in Section 2 the spatial Wilson loop is the generator of the
magnetic ZN symmetry. We expect therefore that the mode of realization of the
magnetic ZN determines directly the behaviour of W . We will formulate the
general argument shortly, but first let us consider a toy model which exemplifies
the basic physics in a very simple setting.

Rather than talk about nonabelian gauge theory, consider a scalar theory of a
complex field φ with global ZN theory in 2+1 dimensions.

L = ∂µφ∂µφ∗ + λ(φ∗φ − µ2)2 + ζ
(
φN + (φ∗)N

)
(48)

The generator of the ZN symmetry is given by

U = exp
{
i
2π

N

∫
d2xj0(x)

}
= exp

{2π

N

∫
d2x(πφ − π∗φ∗)

}
(49)

where π = ∂0φ
∗ is the momentum conjugate to the field φ. Obviously with the

canonical commutation relations between π and φ one has

Uφ(x)U † = ei 2π
N φ(x) (50)

9The VEV of the dipole D must be smaller than one since D is defined as a unitary
operator.
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We will be interested in the behaviour of the operator which generates the ZN

transformation only inside some region S of the two dimensional plane.

U(S) = exp
{2π

N

∫
S

d2x(πφ − π∗φ∗)
}

(51)

U(S)φ(x)U †(S) = ei 2π
N φ(x) x ∈ S

= φ(x), x /∈ S

We will refer to this operator as the U-loop. Throughout this discussion we
assume that there are no massless excitations in the spectrum of the theory and
that the linear dimensions of the area S are much larger than the correlation
length.

The statement we are aiming at is that in the phase with broken ZN the U-loop
has an area law behaviour while in the phase with unbroken ZN this changes
into the perimeter law behaviour.

4.1 U-loop in the broken phase

Consider the broken phase first. We are interested in the vacuum expectation
value of U(S). This is nothing but the overlap of the vacuum state < 0| and the
state which is obtained by acting with U(S) on the vacuum state |S >= U |0 >.
If the symmetry is broken, the field φ in the vacuum state is pointing in some
fixed direction in the internal space. In the state |S > on the other hand its
direction in the internal space is different - rotated by 2π/N - at points inside
the area S. In the local theory with finite correlation length the overlap between
the two states approximatelly factorises into the product of the overlaps taken
over the region of space of linear dimension of order of the correlation length l

< 0|S >= Πx < 0x|Sx > (52)

where the label x is the coordinate of the point in the center of a given small
region of space. For x outside the area S the two states |0x > and |Sx > are
identical and therefore the overlap is unity. However for x inside S the states
are different and the overlap is therefore some number e−γ smaller than unity.
The number of such regions inside the area is obviously of order S/l2 and we
thus

< U(S) >= exp{−γ
S

l2
} (53)

In a weakly coupled theory this argument is confirmed by explicit calculation.
The expectation value of the U-loop in the theory eq.(48) is given by the fol-
lowing path integral

< U(C) >=
∫

dφdφ∗ exp

{
−

∫
(∂µφ+iφχµ)(∂µφ∗−iφ∗χµ)+λ(φ∗φ−µ2)2+ζ

(
φN+(φ∗)N

)}

(54)
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with

χµ(x) =
2π

N
δµ0δ(x0), x ∈ S (55)

= 0, x /∈ S (56)

This expression directly follows from eq.(51) and integration over the canonical
momentum in the phase space path integral. At weak coupling this path integral
is dominated by a simple classical configuration. First, it is clear that the
solution must be such that the phase of the field φ has a discontinuity of 2π/N
when crossing the surface S since otherwise the action is UV divergent due
to singular χ. Asymtotically at large distance from the surface the field should
approach its vacuum expectation value. Since the source term χ vanishes outside
S, eveywhere where φ is continuous it has to solve classical equations of motion.
Also, for values of x1 and x2 which are well inside S the profile φ should not
depend on these coordinates, but should only depend on x0. It is easy to see
that a solution with these properties exists: it is given by the “broken” domain
wall solution. Recall that the vacuum is degenerate and so there certainly exists
a classical solution of the equations of motion which interpolates between two
adjacent vacuum states φ →x0→∞ φ0 and φ →x0→−∞ ei 2π

N φ0. Breaking this
classical solution along the plane x0 = 0 and rotating the piece x0 < 0 by 2π/N
produces precisely the configuration with the correct boundary conditions and
the discontinuity structure. The path integral in eq.(54) is therefore dominated
by this classical configuration. Its action (up to corrections associated with the
boundary effects of S) is αS where α is the classical wall tension of the domain
wall which separates two adjacent ZN vacua. Thus we find that the expectation
value of the U-loop is related to the domain wall tension of the ZN domain wall
by

< U(S) >= exp{−αS} (57)

4.2 U-loop in the unbroken phase

Now consider the unbroken phase. Again the U-loop average has the form
of the overlap of two states which factorizes as in eq.(52). Now however all
observables noninvariant under ZN vanish in the vacuum. The action of the
symmetry generator does not affect the state |0 >. The state |S > is therefore
locally exactly the same as the state |0 > except along the boundary of the area
S. Therefore the only regions of space which contribute to the overlap are those
which lay within one correlation length from the boundary. Thus

< U(S) >= exp{−γP (S)} (58)

where P (S) is the perimeter of the boundary of S. The absence of the area law
is again easily verified by a perturbative calculation. In the unbroken phase the
fluctuations of the field φ as well as the current density j0 = i(πφ − π∗φ∗) are
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small. To leading order in the coupling constant

< U(S) >= exp
{ − 1

2

∫
x,y∈S

d2xd2y < j0(x)j0(y) >
}

(59)

The possible area law contribution in the exponent is

S

∫
d2x < j0(0)j0(x) >= S lim

p→0
G(p) (60)

where G(p) is the Fourier transform of the charge density correlation function.
The correlator of the charge densities however vanishes at zero momentum.
This is because in the leading perturbative order the symmetry of the theory
is actually U(1) and not just ZN as seen in eq. 54. Since the vacuum state is
invariant it follows that the total charge Q =

∫
d2xj0(x) = j0(p = 0) on this

state vanishes, and so does any correlation function that involves zero momen-
tum component of the charge density. So the area contribution in eq.(60) is
zero. Strictly speaking in the leading order in perturbation theory eq.(59) is
not the complete result. The exact expression contains in the exponential also
higher point correlators of the current density. Again however the possible area
law contribution contains correlators of the total charge Q with powers of j0
and therefore vanishes.

4.3 U-loop at high temperature

At nonzero temperature the argument has to be only slightly modified. The only
difference now is that the vacuum is not a pure state but rather a statistical
ensemble. The average of the U-loop is therefore not given by a single matrix
element but rather by

< U >=
∑

i

e−EiT < i|U |i > (61)

Let us consider the theory in which the ZN symmetry is broken at zero temper-
ature. Then for temperatures below the critical temperature TC the states that
contribute in the trace are not invariant under ZN . The average of U in each
one of these states has an area law behaviour and so does the whole temperature
average of U .

When the temperature reaches TC the phase transition occurs. The reason for
the onset of the phase transition is the following. The spectrum of the theory
contains both ZN invariant and noninvariant states. The ZN invariant states
have all finite energy density, the lowest one being the state which sits at the
maximum of the potential between the adjacent ZN invariant minima. As long
as the equilibrium thermal energy density is lower than the energy density of
this lowest invariant state, there is no contribution from the invariant states to
any physical observable since the Boltzman factor for these states vanishes in the
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infinite volume. However when the energy density reaches the critical threshold
value the invariant states become accesssible and they start contributing to the
thermal ensemble. The sudden change in the entropy due to these new channels
drives the phase transition. Above the phase transition therefore there are two
kinds of states that contribute to thermal averages: the noninvariant and the
invariant ones. One can then write

< U >T>Tc=
∑

n

e−En/T < n|U |n > +
∑

s

e−Es/T < s|U |s > (62)

where the first term is due to averaging over the nonsymmetric states and the
second - due to the symmetric states in the thermal ensemble. As discussed ear-
lier each state in the first term gives an area contribution of the type exp{γnS}
while each state in the second term gives a perimeter contribution exp{γsP}.
For large enough surfaces S the perimeter term dominates and therefore above
the phase transition we again expect to have the perimeter law for the U-loop.
A more subtle question is how large S should be for the perimeter term to domi-
nate. We expect that the size is determined by the spatial correlation length, but
in general this is a nontrivial dynamical question the answer to which depends
on entropy considerations, and it is out of scope of our present discussion.

Our conclusion is that at finite as well as at zero temperature the mode of
the realization of the ZN symmetry is in one to one correspondence with the
behaviour of the U-loop. The argument is very general and does not depend
on the exact form of the ZN invariant potential and more generally on the field
content of the theory - we could have added any number of extra fields to the
theory eq.(48) without changing the conclusions.

To reiterate, the physics involved is very simple. When acting on a state, the
U -loop performs the ZN transformation inside the loop. The only degrees of
freedom that are changed by this operation inside the loop, are the ZN - non-
invariant fields. If the vacuum wavefunction depends on the configuration of
the noninvariant degrees of freedom (the state in question is not ZN invariant)
the action of U -loop affects the state everywhere inside the loop. The VEV of
U -loop then falls off as an area. If the vacuum is ZN invariant, the wavefunction
does not depend on the configuration of the noninvariant degrees of freedom.
The action of U -loop then perturbs the state only along the perimeter, hence
the perimeter law in the unbroken phase.

Clearly the same exact correspondence must exist between the mode of realiza-
tion of the magnetic ZN symmetry and the behaviour of the Wilson loop in the
pure Yang-Mills theory. The direct analogs of the scalar field φ(x) in eq.(48)
and the U-loop of the scalar theory are correspondingly the vortex field V (x),
and the spatial Wilson loop W (C).

As we have shown in the previous section, the magnetic ZN is restored at high
temperature. It thus follows that the behaviour of the spatial Wilson loop must
change at the deconfining phase transition - in the hot phase it must have a
perimeter law behaviour.
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Unfortunately the Yang-Mills theory is strongly coupled in the infrared both
at low and high temperature. We therefore do not have a simple semiclassical
perturbative method to actually calculate the expectation value of the Wilson
loop. We are aware that our conclusion bluntly contradicts the common lore.
Nevertheless we think that the argument presented above is very compelling, and
since the common lore is based on indirect arguments and numerical calculations
it is worthwhile to examine this question with greater care. In the next section
we will discuss some possible loopholes in the standard argumentation.

4.4 Wilson loop in 3+1 dimensions

The previous considerations generalizes to the 3+1 dimensons. In the broken
phase when acting with the Wilson loop W (C) on the vacuum one changes
the state of those magnetic vortices which loop through C. The number of
such vortices which are present in a generic configuration in the broken phase
is proportional to the minimal area subtending C. The number of the degrees
of freedom that is changed by the action of W is thus proportional to the area
S. Each of these degrees of freedom contributes a factor smaller than unity
to the overlap with the vacuum state and so the VEV of W scales with the
exponential of the area. In the unbroken phase the vacuum does not contain
vortices of arbitrarily large size. The size of the vortices present in the vacuum
is cutoff by the relevant correlation length. In the case of the hot Yang Mills
theory this correlation length should be smaller, or of the order of the magnetic
mass 1/g2T . Therefore for contours C of linear dimension much larger than
this length, the action of W (C) only disturbs degrees of freedom close to the
contour C itself and the VEV must have the perimeter behaviour.

In this case we do not have a simple scalar toy model to use as an illustration
for this argument like we did in the 2+1 dimensional case. The generality of
the argument however does not depend on this. It is especially clear in the
unbroken phase. Since the vacuum is invariant, there is no way that the action
of the symmetry generator can have any nontrivial effect in the bulk, and thus
only perimeter behaviour of W is possible.

To close this section we note that the considerations of this section do not apply
to Abelian theories. The magnetic symmetry does exist in this case too, but
here it is the continuos U(1) group and the spectrum is massless at low and
probably also at high temperature. In this case there is no reason to expect the
local factorization of the overlap and generically therefore the arguments of this
section do not hold. In particular in the presence of long range correlations it
is perfectly possible that the Wilson loop has area law even though the state is
perturbed only along the perimeter of the loop10.

10In 2+1 dimensions it is actualy only the noncompact Abelian theories that are excluded
from the consideration. Compact theories are massive and therefore should behave in the
same way as the nonabelian Yang-Mills.
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5 Discussion.

In this paper our aim was to point out two facts. First that the calculation of
the VEV of the ’t Hooft loop [1] implies the restoration of the magnetic ZN

symmetry above the deconfinement transition. Second, that this in turn implies
perimeter law for the spatial Wilson loop in the hot phase. Both of these points
raise interesting further questions.

In particular the second point is rather in contradiction with the accepted com-
mon wisdom. We however urge the reader not to discard it right away as
nonsense based solely on this argument. It is unfortunate that we are unable
to present an explicit analytical calculation of the spatial Wilson loop, but such
is life - the infrared region of the Yang - Mills theory is strongly coupled even
at high temperature. However the argument we presented is very simple and
general and seems to us extremely compelling. In a nutshell: the “activity” of
the magnetic flux loops in the hot phase is so small, that it can only bring about
perimeter behaviour for the spatial Wilson loop.

It is therefore worthwhile to explore this question further by the available nu-
merical methods. If they unambiguously show an area law behaviour, it may
mean there is additional magnetic activity in some different form; this caveat in
itself may teach us something interesting about the Yang - Mills theory. This
however is far beyond the scope of this note. What we rather want to do in
this section is to discuss possible loopholes in the arguments which underly the
standard paradigm.

The standard argument is this. At very high temperature the nonzero frequency
Matsubara modes are very heavy. In the vacuum therefore they can not be
excited and so the physics in the static sector is completely dominated by the
zero Matsubara modes. The Lagrangian for these modes is just the Yang - Mills
Lagrangian in one lower dimension with an additional light adjoint scalar field -
the zeroth component of the vector potential. This dimensionally reduced theory
is certainly confining in 2 and 3 dimensions. Since the leading contribution to
the Wilson loop comes from this confining theory, W (C) must have an area law.
If one wishes to be more careful, rather than discarding the nonzero Matsubara
frequency modes one integrates them out thus generating corrections to the
effective Lagrangian. These corrections renormalize the scalar potential and
also add higher dimensional terms to the Yang-Mills part, but they are believed
to be inessential for the qualitative behaviour of the reduced theory at long
distances.

Although this argument may seem quite convincing it is certainly not water-
proof. It may sometimes happen that heavy degrees of freedom are important
for certain aspects of long distance physics. An example of this kind is heavy
fundamental charges. The Wilson loop in a theory with fundamental charges
is known to have a perimeter law at any temperature. However if one follows
this logic - integrate out heavy fundamental charges to generate the effective
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potential for light fields, and then calculate the Wilson loop in the effective the-
ory, the result will be an area law. This is bound to happen since the reduced
theory does not contain fundamental charges and is confining. This conclusion
is equally true at zero and high temperature. The reason for the breakdown of
the reduced theory for this particular quantity is clear. Physically the perimeter
law is the result of the snapping of the fundamental confining string, due to cre-
ation of a pair of heavy fundamental particles from the vacuum. If we insist on
integrating out the heavy fields, we are allowing them to appear only as virtual
states but not as real particles in the final state. The string breaking is then
impossible and the area law follows. The core of the problem is that a state with
a long confining string has large energy even though spatial momenta associated
with light fields in this state are small. Thus we are trying to use the reduced
Lagrangian where it is clearly not applicable: to describe the state with large
energy. Such misguided application of low energy effective Lagrangians often
leads to similar problems, see for example discussion in [14].

It is clear that the operators of the type of large Wilson loops are precisely the
dangerous ones from this point of view. They are liable to excite high energy
states and one therefore has to be very careful. It seems to us that it is entirely
possible that for very large loops the high temperature path integral for the Yang
- Mills theory will be dominated by configurations with large nonzero Matsubara
frequency fields in some spatial regions (presumably close to the loop) which
will screen the loop dynamically and thus produce perimeter law. Such large
fields do not appear in the vacuum and in the reduced theory. This would mean
that W has an area law behaviour at intermediate sizes, while the perimeter
behaviour takes over for large loops. We note that this scenario is quite in
line with our discussion in the previous section. In particular this precisely is
suggested by eq.(62), where the area behaviour is due to the contribution of the
nonsymmetric state in the thermal ensemble and is likely to dominate for not
too large loops.

Another argument that has been brought up in favour [19] of the area behaviour
of the spatial Wilson loop is that the action of a vortex winding through the pe-
riodic time direction is finite. These vortices then may be expected to contribute
to the path integral and disorder the spatial Wilson loop. However for this to be
the case the vortices must be uncorrelated. If strong correlations between the
temporal vortices exist it is far from clear that they have an effect on the Wilson
loop. In fact the result < V >= 0 in 2+1 dimensions rules out the existence of
the condensate of the short vortices and therefore suggests that they are indeed
correlated. In 3+1 dimensions the same should be true whenever < V (C) >
has an area law fall off.

We also note that there are several lattice gauge theory calculations which seem
to support the area law behaviour of W in the hot phase [15]. However if the
mechanism of the type we just mentioned in fact exists it would make it quite
difficult to see the crossover into perimeter law on the lattice. The situation
would be analogous to the (non)observation of the breaking of the string in
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QCD with fundamental charges. Lattice calculations are unable to see this
breaking without explicitly allowing the unbroken string state to mix with the
broken string state which also contains the pair of charges created from the
vacuum. This latter calculation has only been performed quite recently [16]
and it is quite possible that the much earlier results of [15] are affected by a
similar phenomenon.

It would be very interesting to perform additional lattice calculations which
could clarify the situation.

In particular it will be very interesting to measure on the lattice the free energy
of a magnetic vortex. In ref.([13]) the behaviour of the free energy of magnetic
and electric fluxes has been discussed in the low temperature phase. To be
able to do it in the lattice framework one has to define the theory in a finite
volume. As discussed by ’t Hooft this can be achieved by imposing on the
potentials periodic boundary conditions modulo a gauge transformation. As
discussed in ref. [13] this admits the presence of vortices in 2+1 and of the
vortex lines in 3+1 dimensions. ’t Hooft’s discussion was based on a Euclidean
rotation identity for the twisted 4d path integrals valid for any temperature, and
a factorization property of magnetic and electric fluxes, whose validity at low
T is very reasonable, but is inconsistent with the Euclidean rotation identity at
high T. Based on this ’t Hooft could prove (N ≤ 3) that in the confining phase,
where the free energy of an electric flux is linear with the length (with the string
tension ρ), the free energy of magnetic flux vanishes exponentially in the infinite
volume limit. For a magnetic flux in, say the z-direction it is exp−ρLxLy. Thus
the free energy of a magnetic flux is related to the behaviour of the Wilson loop.

One can therefore reasonably ask how the magnetic flux free energy behaves in
the hot phase. Our arguments presented above suggest that this free energy
should be finite in the infinite volume limit and proportional to the length of
the vortex. In 2+1 dimensions one similarly expects a finite free energy of a
vortex. We note that an interesting recent lattice calculation [20] measures the
monopole-antimonopole correlation. The results of [20] point to the screened
behaviour of this correlation function just like its electric partner, the correlator
of Polyakov loops. This via ’t Hoofts argument, is consistent with the measured
area behaviour of Wilson loops [15]. It is inconsistent with our prediction of fi-
nite free energy denisity per unit length for a magnetic vortex. We note however
that this simulation [20] also points to the Coulomb behaviour for the spatial
’t Hooft loop in the hot phase, in contradiction to analytic results [1][21] and
lattice results [22]. We feel that also here more work should be done to clarify
the situation.

Finally we note that the restoration of the ZN symmetry at high temperature
should have phenomenological consequences which are worth exploring. One
obvious feature is that at high temperature the magnetic vortices must have
finite free energy density per unit length and therefore are stable objects. The
high temperature excitations should therefore be ”made” out of the magnetic
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strings. This possibly may have implications for some characteristics of the final
states in heavy ion collisions.
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