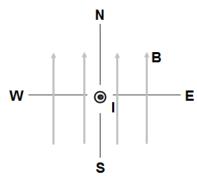
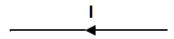
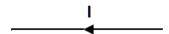
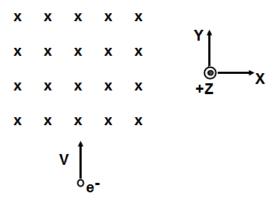

PSI AP Physics B

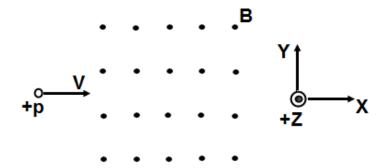

- 1. A straight wire carries a current down. What is the direction of the magnetic field at the point to the East from the wire?
 - (A) West
 - (B) East
- (C) North
- (D) South
- (E) Down


- 2. A loop of wire carries a current in counterclockwise direction. What is the direction of the magnetic field inside the loop?
 - (A) Point to the left
- (B) Points to the right (C) Points out of the page
- (D) Points into the page
- (E) Curls in a clockwise direction


- 3. A current carrying wire is placed horizontally and has a current flow to the right. What is the direction of the magnetic field at point P?
 - (A) Points to the right
- (B) Points to the left
- (C) Points to the top of the page
- (D) Points to the bottom of the page (E) Points out of the page

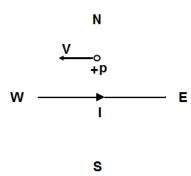

- 4. A vertical wire carries a current straight up in a region of the magnetic field directed north. What is the direction of the magnetic force on the current due to the magnetic field?
 - (A) East
- (B) South
- (C) North
- (D) West
- (E) Applied force is zero

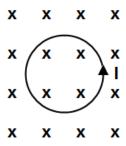
- 5. A horizontal thin wire has a mass m and length L. The wire carries a constant current I. What must be the direction of the magnetic field in order to cancel the gravitational force?
 - (A) Left
- (B) Right
- (C) Down the page (D) Out of the page (E) Into the page



- 6. A horizontal thin wire has a mass m and length L. The wire carries a constant current I. What must be the magnitude of the magnetic field in order to cancel the gravitational force?
 - (A) IL/mg
- (B) mg/IL
- (C) Ig/mL (D) Im/gL (E) Zero

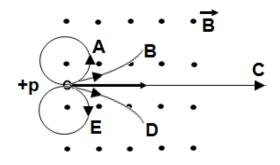
- 7. An electron enters a uniform magnetic field directed in –Z. What is the direction of the magnetic force on the electron due to the magnetic field?
 - (A) +X direction (B) +Y direction (C) -X direction (D) -Y direction


(E) Applied force is zero

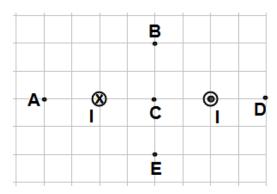

- 8. A proton enters a uniform magnetic field directed in +Z. What is the direction of the magnetic force on the proton due to the magnetic field?

 - (B) +X direction (B) +Y direction
- (C) -X direction (D) -Y direction

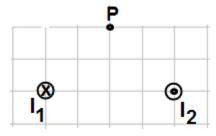
(E) Applied force is zero



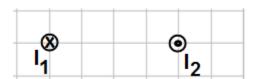
- 9. A horizontal wire carries a current to the east. A proton moves to the west in the region north from the current. What is the direction of the magnetic force on the proton?
 - (A) West
- (B) North
- (C) East
- (D) South
- (E) Applied force is zero

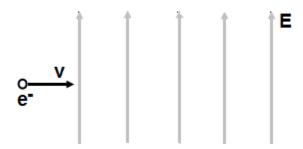


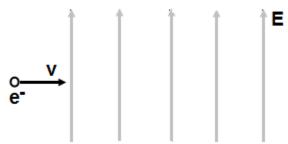
- 10. A circular loop of wire carries a constant current in counterclockwise direction. The loop is placed in a uniform magnetic field directed into the page. What is the effect of the magnetic force on the loop?
 - (A) Rotates with respect to its axis
- (B) Rotates with respect to its diameter

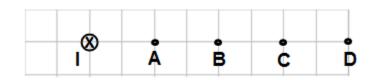

- (B) Contracts its size
- (D) Expends its size
- (E) No effect on the loop

- 11. A proton enters a uniform magnetic field perpendicular to the field lines. What is the new path of the proton as it passes the field?
 - (A) A
- (B) B
- (C) C
- (D) D
- (E) E


- 12. A magnetic field is created by two parallel currents flowing in opposite directions. At which location the magnetic field is greatest in magnitude?
 - (A) A
- (B) B
- (C) C
- (D) D
- (E) E


- 13. Two parallel wires carry currents in opposite directions. What is the direction on the net magnetic field at point P?
 - (A) Left
- (B) Right
- (C) Top the page (D) Bottom the page (E) Into the page


- 14. Two parallel wires carry currents in the same direction. What is the direction of the magnetic force on current I_2 due to current I_1 ?
 - (A) Left (B) Right
 - (C) Top the page
- (D) Bottom the page (E) Out of the page


- 15. Two parallel wires carry currents in opposite directions. What is the direction of the magnetic force on current I_1 due to current I_2 ?
 - (A) Left
- (B) Right
- (C) Top the page
- (D) Bottom the page (E) Out of the page

- 16. An electron enters a uniform electric field perpendicular to the field lines. What must be the direction of the magnetic field in order to cancel the electric force effect?
 - (A) Left
- (B) Right
- (C) Top the page
- (D) Into the page
- (E) Out the page

- 17. An electron enters a uniform electric field perpendicular to the field lines. What is the magnitude of the magnetic field if the electric effect completely canceled?
 - (A) Ev
- (B) v/E
- (C) zero
- (D) E/v (E) eEv

18. What is the magnitude of the magnetic field at point B produced by a current I if the magnitude of the field at point A is B_0 ?

(A) B₀

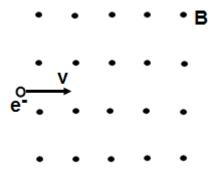
(B) $2B_0$

(C) $4B_0$

(D) $B_0/2$

(E) $B_0/4$

19. Two parallel wires carry currents I_1 and I_2 in the same direction and separated by a distance d. The magnitude of the magnetic force between the wires is F_0 . What is the force between the wires if each current is doubled and the separation is quadrupled?


(A) $2F_0$

(B) $4F_0$

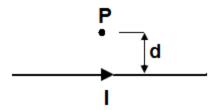
(C) F_0

(D) $F_0/2$

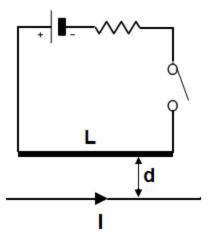
(E) $F_0/4$

20. An electron with a mass m and charge e enters at a constant speed v a uniform magnetic field B. What is the radius of the curvature of the electron in the field?

(A) mv/eB

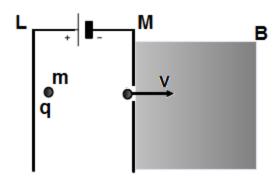

(B) eB/mv

(C) me/vB

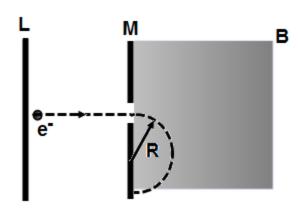

(D) mB/ev

(E) zero

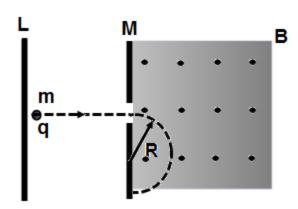
Free-Response Problems



- 1. A long horizontal wire carries an electric current I = 50 A. Point P is located at a distance 2.5 mm above the current.
 - a. What is the direction of the magnetic field at point P?
 - b. What is the magnitude of the magnetic field at point P?

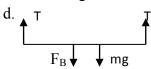


A thin horizontal rod has a length L = 1 m and mass m = 50 g is connected to a circuit. The circuit contains a battery V = 12 V, a resistor R = 0.06Ω , a switch, and connecting wires. The rod is supported in horizontal position by two light connecting wires.


- c. What is the direction of the electric current in the rod?
- d. On the diagram below show all the applied forces on the rod.
- e. What is the tension force in supporting wires?

- 2. Charged particle of mass m and charge q is released from rest in region between two charged plates M and L. After passing the region of the electric field with an accelerating voltage V_a the particle enters another region filled with a magnetic field of magnitude B and directed out of the page.
 - a. What is the sign of the charge on the particle?
 - b. What is the velocity of the particle as it enters the magnetic field?
 - c. What is the direction of the magnetic force on the particle?
 - d. Describe the path of the particle in the magnetic field.
 - e. What is the radius of the curvature of the particle in the magnetic field?
 - f. What is the direction and magnitude of the electric field that can be used to make the path of the particle straight?

- 3. An electron is accelerated by an electric field produced by two parallel plates M and L. When the electron enters a region filled with a magnetic field of magnitude B = 0.5 T its velocity v = $1.6 \cdot 10^7$ m/s.
 - a. What is the direction of the accelerating electric field between the plates M and L?
 - b. What is the accelerating voltage of the electric field?
 - c. What is the direction of the magnetic field?
 - d. What is the radius of the curvature of the electron in the magnetic field?
 - e. What is the direction of the deflecting electric field required to make the electron's path straight?
 - f. What is the magnitude of the deflecting electric field?


- 4. In a mass spectrometer a charged particle is accelerated to a velocity $v = 5.9 \cdot 10^7$ m/s by an electric field and allowed to enter a magnetic field B, where it is deflected in a semi-circular path of radius R = 10 cm. The magnetic field is uniform of magnitude B = 16 T and oriented out of the page.
 - a. What is the sign of the charge on the particle?
 - b. What is the acceleration of the particle in the magnetic field?
 - c. What is the ratio between the charge and mass of the particle q/m?
 - d. What is the direction of the accelerating electric field?
 - e. What is the accelerating voltage of the electric field?

Multiple Choice Answers

- 1. D
- 2. C
- 3. E
- 4. D
- 5. D
- 6. B
- 7. A
- 8. D
- 9. B
- 10. B
- 11. E
- 12. C
- 13. D
- 14. A
- 15. A
- 16. E
- 17. D
- 18. D
- 19. C
- 20. A

Free Response Answers

- 1. a. Out of the Page
 - b. 4 x 10⁻³ T
 - c. To the Right

- e. 1.3 N or .65 N each
- 2. a. Positive

b.
$$\sqrt{\frac{2gVa}{m}}$$

- c. Down
- d. Circular

e.
$$\frac{m}{gB}\sqrt{\frac{2gVa}{m}}$$

f.
$$\sqrt{\frac{2gVa}{m}}B$$

- 3. a. Left
 - b. 729 V
 - c. Into the page
 - d. 1.8 x 10⁻⁴ m
 - e. Down
 - $f. 8 \times 10^6 \text{ N/C}$
- 4. a. Positive
 - b. $3.5 \times 10^{16} \text{ m/s}^2$
 - c. $3.7 \times 10^7 \text{ C/kg}$
 - d. Right
 - e. 4.7 x 10 ⁷ V