Magneto-optic Studies of Spin Dynamics and Spin Torque in High Spin-Orbit Materials

Roland Kawakami

Department of Physics The Ohio State University

C-SP♠N

Acknowledgements

Students & Postdocs

Beth Bushong Yunqiu Kelly Luo Dante O'Hara Michael Newburger Simranjeet Singh Adam Ahmed Igor Pinchuk

Collaborators

Kathleen McCreary (NRL) Berend Jonker (NRL)

• Overview

• Spin Dynamics in Transition Metal Dichalcogenides

• Spin Torque Dynamics in FM/HM bilayers

• Summary

Overview: Spin-Orbit Coupling in 2D Materials

Low spin-orbit coupling is good for spin transport

Graphene exhibits spin transport at room temperature with spin diffusion lengths up to tens of microns

W. Han, RKK, M. Gmitra, J. Fabian, *Nature Nano.* **9**, 794–807 (2014)

Overview: Spin-Orbit Coupling in 2D Materials

• Spin Transport at RT

• Quantum spin Hall effect

A wide range of spin-dependent phenomena can be a realized in 2D materials by tuning spin-orbit coupling

Overview: Spin-Orbit Coupling in 2D Materials

2D Spin Transport Channels (Low SOC)

Graphene Phosphorene

2D Spin-Optical Materials TMDs

2D Spin Hall Materials, (High SOC)

TMDs

(?) Heavy graphene

2D Insulators/Barriers

hex. Boron Nitride

2D Ferromagnets (?) Mn:WSe₂ (?) GeCrTe₃ (?) Doped Graphene

2D Topological Materials (?) Stanene (?) TMDs (?) Layered Zintl

Unprecedented ability to combine properties through vertical stacking and proximity effects

• Overview

• Spin Dynamics in Transition Metal Dichalcogenides

• Spin Torque Dynamics in FM/HM bilayers

• Summary

Monolayer Transition Metal Dichalcogenide

Monolayer TMD, such as WS₂, with hexagonal structure and inversion symmetry breaking

Spin-valley coupling due to large spin-orbit interaction

Monolayer Transition Metal Dichalcogenide

Ultrafast Optical Microscopy of Spin Dynamics in Transition Metal Dichalcogenides

- What is the spin lifetime of WS₂?
- Strong Berry curvature for spin/valley Hall effect.
- How are the spin and valley degrees of freedom coupled?

Chemical Vapor Deposition Grown WS₂

- High quality, large area, single layer flakes
- n-type WS₂
- From collaborators at Naval Research Laboratory (NRL),
 Kathleen McCreary and Berry Jonker

Monolayer WS₂ Photoluminescence

Time Resolved Kerr Rotation Microscopy Layout

- 76 MHz rep rate
- 150 fs pulse width

Time Resolved Kerr Rotation Microscopy Layout

Recent Developments in TRKR on TMD

Zhu, et al. *Phys. Rev. B* **90**, 161302(R) (2014).

WSe₂: 6 ps at 4 K, 1.5 ps at 125 K

Plechinger, G., Nagler, P., C., S. & Korn, T. *ArXiv:* 1404.7674 (2014).

Dal Conte, S. et al. ArXiv: 1502.06817 (2015).

Yan, T., et al. arXiv:1507.04599v1 (2015).

MoS₂: <5 ps at 77 K

 MoS_2 : 10 ps at 4 K

WSe₂: 120 ps at 10 K

Yang et. al (Crooker), *Nature Phys.* **11**, 830 (2015). MoS₂: 5 ns at 10 K, signals up to 40 K Intervalley scattering model for spin relaxation

Hsu, W.-T., et al., *Nat. Commun.* 6:8963 doi: 10.1038/ncomms9963 (2015).

WSe₂: 1 ns at 10 K, signals up to RT

This work: Bushong et. al., arxiv: 1602.03568 (2016) WS₂: Imaging TRKR

Time Resolved Kerr Rotation of WS₂

Monolayer WS₂ exhibits long spin lifetimes

Spatial Mapping of the Kerr Rotation

Spatial variation of spin polarization in WS₂

Time Resolved Kerr Rotation Mapping

Spatial variation of spin density in WS₂

High Resolution Imaging of Spin Dynamics

Images appear to be more symmetrical with increasing time delay

Spatially Resolved Photoluminescence

Photoluminescence

TRKR vs. Photoluminescence

(a)

Possible Explanation

Selectively excite spins into the conduction band

Short Spin Lifetime, Strong Photoluminescence

Long Spin Lifetime, Weak Photoluminescence

Role of spin-orbit splitting

Intervalley scattering model for spin relaxation

Yang et. al (Crooker), *Nature Phys.* **11**, 830 (2015).

In-Plane Magnetic Field Dependence

Non-precessing spin in the spin-orbit stabilized regime

In-Plane Magnetic Field Dependence

Zoom in with finer scans:

In-Plane Magnetic Field Dependence

Small population of precessing spins

Temperature Dependence

Outlook

Next steps

Image Dynamics of Spin Hall Effect

• Overview

• Spin Dynamics in Transition Metal Dichalcogenides

• Spin Torque Dynamics in FM/HM bilayers

• Summary

Spin Torque Dynamics in FM/HM Bilayers

Use TRKR microscopy to image magnetization switching dynamics

- Spin-orbit torque switching
- Magneto-electric switching

- Sub ps temporal resolution → explore faster switching mechanisms
- Submicron spatial resolution

Quantifying spin-orbit torques

ARTICLE

Received 11 Nov 2013 | Accepted 2 Dec 2013 | Published 9 Jan 2014

DOI: 10.1038/ncomms4042

Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers

Xin Fan¹, Halise Celik¹, Jun Wu¹, Chaoying Ni², Kyung-Jin Lee^{3,4}, Virginia O. Lorenz¹ & John Q. Xiao¹

Quantify the Anti-Damping Torque and Field-Like Torque

Quantifying spin-orbit torques

MBE growth of magnetic multilayers

MBE growth: Fe, Pd, Cu, Bi, Ag

Cu on Pd(001)

Fe on Cu(001)

Cu on Fe(001)

• Observed complex spatial depedence of spin density in WS₂

• Anticorrelation between PL and TRKR in WS₂

 Spin in WS₂ are stabilized by spin-orbit against external fields and thermal fluctuations

• Progress on spin-orbit torques in FM/HM bilayers