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SECTION I 

1. 

(i) Analytical method:

Consider a particle revolving in the anticlockwise sense along the circumference of a

circle of radius r with centre O as shown.

Let 


= angular velocity of the particle 

       v


 = linear velocity of the particle  

       r


 = radius vector of the particle  

In vector form, the linear displacement is 
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Dividing both side by ,  we get
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(ii) 

Consider a satellite of mass m revolving round the Earth at a height ‘h’ above the 

surface of the Earth. 

Let M be the mass and R be the radius of the Earth.  

The satellite is moving with velocity Vc and the radius of the circular orbit is r = R + 

h. 

Centripetal force = Gravitational force 
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This is the expression for critical velocity of a satellite moving in a circular orbit

around the Earth. 
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We know that,
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R h

GM g R h

Substituting in equation 1, we get

g R h
V

R h

V g R h

where g  is the acceleration due to gravity at a height h

above the surface of the Earth.
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(iii) Let M and R be the mass and radius of the body, V is the translation speed,  is the

angular speed and I is the moment of inertia of the body about an axis passing

through the centre of mass.
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Thus,the total kinetic energy 'E' of the rolling body is
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Hence proved.
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(iv) Emissive power of a body at a given temperature is the quantity of radiant energy

emitted by the body per unit time per unit surface area of the body at that

temperature.

If ‘Q’ is the amount of radiant energy emitted, ‘A’ is the surface area of the body

and ‘t’ is the time for which body radiates energy, then the emissive power is

Q
E

At


Coefficient of emission of a body is the ratio of the emissive power of the body at a 

given temperature to the emissive power of a perfectly black body at the same 

temperature. 

b

Coefficient of emission,  e
E

E


(v) Given that r = 5 cm = 0.05 m,

n = 90 r.p.m. = 1.5 Hz 

Limiting force of static friction = Centrifugal force 
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(vi) Given that n3 = no

where n3 = frequency of the third overtone of the open pipe

            no = fundamental frequency of the closed pipe 
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(vii) 
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Here, T 6.28 sec, 

       Pathlength 20 cm a 10 cm 10 10 m

x 6 10 m

2 2
=1 rad/s

T 6.28s

v 100 36 10

1 8 10

v 8 10 m/s 
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(viii) Given that E = 5T

Surface energy E = T  dA -------- (Equation 1)

dA = 4r2 -------- (where r is the radius of the liquid drop)

Substituting in Equation 1, we get

E = T  4r2

5T = T  4r2 -------- (since E = 5T)
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(i) (d)
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(ii) (b)W1 < W2
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(iii) (a)four times that of A.
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(iv) (d) rad

There is a phase change of 180, i.e. the phase of the wave changes by  radians.



(v) (b)
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3. Linear S.H.M. is defined as the linear periodic motion of a body in which the restoring

force (or acceleration) is always directed towards its mean position and its magnitude

is directly proportional to the displacement from the mean position.

Consider a particle ‘P’ moving along the circumference of a circle of radius 'a' and centre

O, with uniform angular speed of '' in anticlockwise direction as shown.

Particle P along circumference of the circle has its projection particle on diameter AB at

point M.



Suppose that particle P starts from the initial position with initial phase  (angle 

between radius OP and the x-axis at the time t = 0). 

In time t, the angle between OP and x-axis is (t  ) as particle P moving with constant 

angular velocity () as shown. 
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As acceleration of particle is the time rate of change of velocity, we have
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Hence, the projection of a uniform circular motion on a diameter of a circle is simple 

harmonic motion. 



Numerical: 
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Consider two simple harmonic progressive waves of equal amplitude and frequency 

propagating on a long uniform string in opposite directions.  
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Numerical: 

Given that n1 = 1.5 n48 and beat frequency = 5 Hz 
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The set of tuning forks are arranged in decreasing order of frequencies.
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4. 

(i) Given that m = 600 kg, d = 5000 m,

R = 6400 km = 6.4  106 m

Weight of the body on the surface of the Earth = 600  9.8 = 5880 N

At depth d, gravitation acceleration is

d

d

2

d

d

d
g g 1

R

5
g g 1 9.8 0.999

6400

g 9.7902 m/s
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(ii) Theorem of parallel axes: The moment of inertia of a body about any axis is equal

to the sums of its moment of inertia about a parallel axis passing through its centre

of mass and the product of its mass and the square of the perpendicular distance

between the two parallel axes.



Consider a rigid of mass ‘M’ rotating about an axis passing through a point ‘O’ and 

perpendicular to the plane of the figure. 

Let ‘Io’ be the moment of inertia of the body about an axis passing through point ‘O’. 

Take another parallel axis of rotation passing through the centre of mass of the 

body. 

Let ‘Ic’ be the moment of inertia of the body about point ‘C’.  

Let the distance between the two parallel axes be OC = h. 

OP = r and CP = ro  

Take a small element of body of mass ‘dm’ situated at a point P. Join OP and CP, then 
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From point P draw a perpendicular to OCproduced.

Let CD x

From the figure,

OP OD PD

OP h CD PD
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Multiplying the above equation with 'dm' on both the sides

and integrating, we get

r dm r dm h dm 2hxdm

r dm r dm h dm 2h xdm

xdm 0 as 'C' is the centre of mass and algebriac sum of moments o
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the particles about the centre of mass is always zero, for body in equilibrium.

r dm r dm h dm 0........ Equation 1

But dm M Massof the body,

r dm I and r dm I

Substituing in equation 1, w
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This proves the theorm of parallel axes about moment of inertia.
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(iii) Consider a spherical liquid drop and let the outside pressure be Po and inside

pressure be Pi, such that the excess pressure is Pi − Po.

Let the radius of the drop increase from r to r, where r is very small, so that the 

pressure inside the drop remains almost constant. 

Initial surface area (A1) = 4r2 

Final surface area (A2) = 4(r  r)2 

 = 4(r2  2rr  r2) 



       = 4r2  8rr  4r2 

As r is very small, r2 is neglected (i.e. 4r2   0) 

Increase in surface area (dA) = A2  A1 = 4r2  8rr  4r2  

Increase in surface area (dA) = 8rr  

Work done to increase the surface area 8rr is extra energy. 

 dW = TdA

 dW = T  8rr --------- (Equation 1)

This work done is equal to the product of the force and the distance r.

dF = (Pi − Po) 4r2

The increase in the radius of the bubble is r.

dW = dFr = (Pi − Po) 4r2  r --------- (Equation 2)

Comparing Equations 1 and 2, we get

(Pi − Po) 4r2  r = T  8rr

(Pi − Po) = 2T/r

This is called the Laplace’s law of spherical membrane.

(iv) Given that A = 1.5 mm2, lateral strain = 1.5  10−5,

Ysteel = 2  1011 N/m2,  = 0.291 and g = 9.8 m/s2 
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SECTION II 

5. 

(i) Bending of light near the edges of an obstacle or slit and spreading into the region of

geometrical shadow is known as diffraction of light.

The diffraction phenomenon is classified into two types:

1. Fraunhofer diffraction: The source of light and the screen on which the

diffraction pattern is obtained are effectively at infinite distance from the diffracting

system. In this case, we consider plane wavefront. The diffraction pattern is

obtained by using a convex lens.

2. Fresnel diffraction: The source of light and the screen are kept at finite distance

from the diffracting system. In this case, we consider a cylindrical or spherical

wavefront.

(ii) 

(iii) 

Paramagnetic substance Ferromagnetic substance 
Substances which are weakly attracted 
by a magnet are called paramagnetic 
substances.  

Substances which are strongly attracted 
by a magnet are called ferromagnetic 
substances. 

Paramagnetic materials lose their 
magnetism on removal of the external 
field and hence cannot be used to make 
permanent magnets. 

Ferromagnetic materials retain some 
magnetism on removal of external field 
and hence can be used to make 
permanent magnets. 

The susceptibility is positive but small. The susceptibility is positive but very 
high. 

In the absence of electric field, the net 
dipole moment is zero.  

In the absence of electric field, the net 
dipole moment is non-zero. 

Aluminium, manganese, chromium and 
platinum are some examples of 
paramagnetic substances. 

Iron, nickel, cobalt, gadolinium, 
dysprosium and their alloys are some 
examples of ferromagnetic substances. 



(iv) 

 When the radio waves from the transmitting antenna propagate along the

surface of the Earth to reach the receiving antenna, the wave propagation is

called ground wave propagation or surface wave propagation.

 Electromagnetic waves which are vertically polarised can travel in this mode.

 The horizontal component of electric field in contact with the Earth is short

circuited. The radio waves induce current in the ground through which they

pass.

 There is loss of power in a signal during its propagation on the surface of the

Earth due to partial absorption of energy by the ground. Loss of energy is also

due to the diffraction effect. The absorption of energy is high for high frequency.

Hence, groundwave propagation is suitable for low frequency and medium

frequency.

 It is used for local broadcasting, e.g. ship communication and radio navigation.

For TV and FM signals (HF), groundwave propagation is not used.

(v) Here, G = 500 and Req = 21

eq

eq

eq eq

eq

eq

1 1 1

R G S

G R1 1 1

S R G R G

R G
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G R

500 21 10500
S

500 21 479

S 21.92
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(vi) Given,  T = 200K, 1 = 1.8  10−5
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(vii) Here, the co-efficient of mutual induction, M = 2H

4A is cut-off in 2.5  10-4 seconds.

4

4

di
Induced e.m.f.,  E M

dt

4A
E 2H

2.5 10

E 3.2 10 V







  


  

(viii) Here,  = 4.33  10−4 per year

1/2

1/2 4

1/2

4

1/2

1/2

0.6931
t

0.6931 0.6931
t

4.33 10

t 1600.69 years 

or t 0.16 10 365 days

t 584000 days 






  
 

 

  

 

6. 

(i) (d) 3

P
Refractive index, tani

tan60

3

 

   

 

(ii) (c) diameter of an objective

1 a
R.P of telescope

d 1.22
 

 

Thus, it is clear that a telescope with a large diameter of the objective has higher 

resolving power. Thus, the resolving power of a telescope depends on the 

diameter of an objective. 

(iii) (b) increase in dielectric constant

2

Electric feild intensity at a point outside a charged conducting sphere is given as

1 q
E

4 r




(iv) (a) 1 2

R r
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 



 

 

2

2

2

2

2

1 2

1 2

1 2

1

1

The internal resistance of a cell is given as
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(v) (d) 
hc



Energy of a photon E = h = 
hc



(vi) (b) NOR

(vii) (c) modulation

The process of superimposing a low frequency signal on a high frequency wave is

known as modulation.

7. Principle of working of a transformer:

A transformer works on the principle that whenever the magnetic flux linked with a coil

changes, an emf is induced in the neighbouring coil.

Construction: 

It consists of two coils, primary (P) and secondary (S), insulated from each other and 

wound on a soft iron core as shown in the figure below. 



The primary coil is called the input coil and the secondary coil is called the output coil. 

Working: 

When an alternating voltage is applied to the primary coil, the current through the coil 

goes on changing. Hence, the magnetic flux through the core also changes. As this 

changing magnetic flux is linked with both coils, an emf is induced in each of them. 

The amount of magnetic flux linked with the coil depends on the number of turns of the 

coil. 

Derivation: 

Let ‘’ be the magnetic flux linked per turn with both coils at a certain instant of time ‘t’. 

Let the number of turns of the primary and secondary coils be ‘Np’ and ‘Ns’, respectively. 

Therefore, the total magnetic flux linked with the primary coil at certain instant of time 

‘t’ is Np. Similarly, the total magnetic flux linked with the secondary coil at certain 

instant of time ‘t’ is Ns. 

Now, the induced emf in a coil is 

d
e

dt


 

Therefore, the induced emf in the primary coil is 

p p

p p

d dN d
e N  ...... (1)

dt dt dt

  
     

Similarly, the induced emf in the secondary coil is 

s s
s s

d dN d
e N  ...... (2)

dt dt dt

  
     

Dividing equations (1) and (2), we get

s
s s

p p
p

d
N

e Ndt ...... (3)
de N

N
dt




 




The above equation is called the equation of the transformer and the ratio s

p

N

N
 is known 

as the turns ratio of the transformer. 

Now, for an ideal transformer, we know that the input power is equal to the output 

power. 



p s

p p s s
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From equation (3), we have
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Numerical: 
6

2 4 2

12

0

0 0

6

4 12

Given: Q 0.2 C 0.2 10  C

A 40 cm 40 10  m

8.85 10  SI units

The electric field intensity just outside the surface of a charged conductor of any 

shape is

Q
E

A

0.2 10
E

40 10 8.85 10

E
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
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 65.65 10  N/C 

Now, the mechanical force per unit area of a conductor is 

 
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f E 8.85 10 5.65 10

2 2
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Geiger–Marsden experiment: 

The setup of the Geiger–Marsden experiment is as shown below. 

In this experiment, a narrow beam of -particles from a radioactive source was incident 

on a gold foil. The scattered -particles were detected by the detector fixed on a 

rotating stand. The detector used had a zinc sulphide screen and a microscope. 

The -particles produced scintillations on the screen which could be observed through 

a microscope. This entire setup is enclosed in an evacuated chamber. 

They observed the number of -particles as a function of scattering angle. Now, the 

scattering angle is the deviation () of -particles from its original direction. 

They observed that most -particles passed undeviated and only a few (~0.14%) 

scattered by more than 1. Few were deflected slightly and only a few (1 in 8000) 

deflected by more than 90. Some particles even bounced back with 180. 

Mass defect: 

It is observed that the mass of a nucleus is smaller than the sum of the masses of the 

constituent nucleons in the free state. The difference between the actual mass of the 

nucleus and the sum of the masses of constituent nucleons is called mass defect. 

The mass defect is 

 p nm Zm A Z m M      

where Z is the atomic number (number of protons), A is the mass number, (A − Z) is the 

mass of neutrons, mp is the mass of a proton, mn is the mass of a neutron and M is the 

measured mass of a nucleus.



Problem: 
19 19
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o
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34
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14
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Given: 2.3 eV 2.3 1.6 10  J 3.68 10  J

6800 A 6800 10  m; c 3 10  m/s;

h 6.63 10  Js

We know that the incident frequency is given as

c
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6800 10
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requency is greater than the threshold frequency, then 

photoelectrons will be emitted from the metal surface. The threshold frequency is 

given from work function as

h
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Since,  photoelectrons will not be emitted.  

8. 

(i) 

14 8
g

8 o
7 10

a 14

Given: 1.5; n 4 10  Hz; c 3 10  m/s

The wavelength of light incident on glass from air is

c 3 10
7.5 10  m 7500 10  m 7500 A

n 4 10

Now, the velocity of light in glass is given from its refra
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We also know that velocity is product of frequency and wavelength.

nc

v n

7500
5000 A

1.5

Therefore, the difference in wavelength is

7500 5000 2500 A
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The wave number is the reciprocal of the wavelength. 



Therefore, the wave number in glass is 

g

g

6 -1
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1
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(ii) In the biprism experiment, the 10th dark band is observed.

The distance between the mth dark band with the central bright band is

 m

D
x 2m 1

2d


 

Therefore, the distance for the 10th dark band is 

  10

D 19 D
x 2 10 1

2d 2d

 
   

Now, when red light is used, we have 

  r
10 r

19 D
x  ...... (1)

2d




Similarly, for blue light, we have 
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Now, the fringe width is 
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From equations (1) and (3), we get
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Dividing equations (1) and (2), we get 
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Now, from equations (2) and (4), we get 



  b
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Therefore, the change in fringe width when blue light is used instead of red is

X X 0.22 0.165 0.055 mm
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(iii) Kelvin’s method to determine the resistance of the galvanometer by using a

meter bridge:

A galvanometer whose resistance 'G' is to be determined is connected in one gap (left

gap) of a Wheatstone's meter bridge and a resistance box is connected in the other

gap (right gap).

G: Galvanometer  

R: Resistance from the resistance box 

AC: Metal wire one metre long  

Rh: Rheostat  

E: Cell  

K: Plug key  

K': Jockey  

 A cell of emf 'E', key K and rheostat Rh are connected in series with the bridge wire

AC. The junction 'B' of the galvanometer and the resistance box is

connected to the jockey which can slide along wire AC.

 A suitable resistance 'R' is taken in the resistance box and a current 'J' is sent

round the circuit. Without touching the jockey to any point of AC, note the

deflection in the galvanometer.

 A rheostat is adjusted to get a suitable deflection (e.g. 0.15, 20 divisions) in the

galvanometer.

 Place the jockey at points A and C, and see the deflection on the galvanometer. It

should be on opposite sides.

 By touching the jockey to different points of wire AC, find (obtain) the point of

contact 'D' for which the galvanometer shows the same deflection as before, i.e.

points B and D are equipotential (i.e. the point gives the same deflection in the

galvanometer with or without the contact of the jockey.)



 In this method, the null point is not obtained. Thus, Kelvin's method is a

deflection method. The point 'D' is called the balanced point.

 Let lg and lr be the distances of point 'D' from ends 'A' and 'C' of wire AC,

respectively. The resistance per unit length of wire AC is ''. Here also G, R and

resistances of wire of lengths lg and lr form four arms of a balanced Wheatstone’s

network.

 
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 Thus, the resistance of galvanometer 'G' can be calculated by knowing the values

of R and lg in the above equation.

(iv) Oscillator:

An oscillator is an electronic device which generates an AC signal from a DC source.

Oscillators are used in radio/TV receiver sets, radio/TV transmitters, RADAR,

smartphones and microwave ovens. No input is applied to the oscillator, yet an output

is obtained from it.

An oscillator requires an amplifier and a feedback network with frequency-determining 

components. When a part of the output of an amplifier is coupled to the input of the 

amplifier, it is called feedback. When the feedback sample is out of phase with the input, 

it is called negative feedback. When the feedback sample is in phase with the input, it is 

called positive feedback. For an oscillator, a positive feedback is required. The block 

diagram of an oscillator is shown below. 



The voltage gain of a complete system is given by 

f

A
A

1 A


 

where Af is the voltage gain with feedback, A is voltage gain without feedback and

 is the feedback factor.

If for some frequency A = 1, then the system gain becomes  and the circuit begins to 

oscillate at that frequency. This condition (A = 1) is called the Barkhausen criterion for 

sustained oscillations. 

The frequency of oscillations depends on the LC or RC combinations used in a feedback 

network. When the power supply connected to the oscillator is turned ON, electrical 

noise of a wide range of frequencies is generated in the circuit, but the condition A = 1 

is satisfied only for a particular frequency and the oscillator oscillates at that frequency. 




