
Main	Memory

CS	4410,	Opera3ng	Systems	

Fall	2016	
Cornell	University

Rachit	Agarwal	
Anne	Bracy	

See:	Ch	8	&	9	in	OSPP	textbook	

The	slides	are	the	product	of	many	rounds	of	teaching	CS	4410	by	Professors	Sirer,	
Bracy,	Agarwal,	George,	and	Van	Renesse.

Main	Memory

2

• Address	Transla3on	(Chapter	8)	
• Caching	&	Virtual	Memory	(9.1-9.7)	

New:	all	in	the	broader	context	of	the	OS		
										(and	its	perspecNve)

Social	Network

Address	Transla+on

3

• Paged	Transla,on	
• Efficient	Address	Transla3on	

Paged	TranslaNon	in	the	Abstract

4

Physical
Memory

ProcesVRU·V View

Code 0

Data 0
Heap 1
Code 1
Heap 0
Data 1

Heap 2

Stack 1

Stack 0

Code

Data

Heap

Stack

VPage 0
VPage 1

VPage N

Frame 0

Frame M

TERMINOLOGY	ALERT	
Page:		
			the	data	itself	
Frame:		
		the	physical	loca3on	

No	more	external	fragmenta3on!	😀	

Paged	Address	TranslaNon

5

Frame Access

Physical
Memory

Page Table

Processor

Frame 0
Frame 1

Frame M

Page # Offset

Virtual
Address

Page # Offset

Virtual
Address

Frame Offset

Physical
Address

Frame Offset

Physical
Address

struct	{	
			int	frame;	
			bit	is_valid,	is_dirty,	…;	
}	PTE;	
struct	PTE	page_table[NUM_VIRTUAL_PAGES];	

int	translate(int	vpn)	{	
		if	(page_table[vpn].is_valid)	
					return	page_table[vpn].frame;	
		else…		
}

Address	TranslaNon,	Conceptually

6

Translation

Physical
Memory

Virtual
Address

Raise
Exception

Physical
Address

Valid

Processor

Data

Data

Invalid

5	Paging	QuesNons

7

What	is	saved/restored	on	a	context	switch?	
What	if	page	size	is	very	small?	
What	if	page	size	is	very	large?	
What	if	the	address	space	is	sparse?	
What	if	the	virtual	address	space	is	large?		

5	Paging	QuesNons

8

What	is	saved/restored	on	a	context	switch?	
•	Pointer	to	page	table,	size	of	page	table	
•	Page	Table	itself	is	in	main	memory	

What	if	page	size	is	very	small?	
What	if	page	size	is	very	large?	
What	if	the	address	space	is	sparse?	
What	if	the	virtual	address	space	is	large?		

5	Paging	QuesNons

9

What	is	saved/restored	on	a	context	switch?	
What	if	page	size	is	very	small?	

•	Lots	and	lots	of	page	table	entries!	

What	if	page	size	is	very	large?	
What	if	the	address	space	is	sparse?	
What	if	the	virtual	address	space	is	large?		

5	Paging	QuesNons

10

What	is	saved/restored	on	a	context	switch?	
What	if	page	size	is	very	small?	
What	if	page	size	is	very	large?	

•	Internal	fragmenta3on	

What	if	the	address	space	is	sparse?	
What	if	the	virtual	address	space	is	large?		

5	Paging	QuesNons

11

What	is	saved/restored	on	a	context	switch?	
What	if	page	size	is	very	small?	
What	if	page	size	is	very	large?	
What	if	the	address	space	is	sparse?	

•	Lots	of	wasted	space	in	the	page	table	
•	Per-processor	heaps	
•	Per-thread	stacks	
•	Memory-mapped	files	
•	Dynamically	linked	libraries	

What	if	the	virtual	address	space	is	large?		

5	Paging	QuesNons

12

What	is	saved/restored	on	a	context	switch?	
What	if	page	size	is	very	small?	
What	if	page	size	is	very	large?	
What	if	the	address	space	is	sparse?	
What	if	the	virtual	address	space	is	large?		

•	Even	more	wasted	space	
•	32-bits,	4KB	pages	=>	1M	page	table	entries	
•	64-bits	=>	4	quadrillion	page	table	entries	

Address	Transla+on

13

• Paged	Transla3on	
• Efficient	Address	Transla,on	

+	Mul3-level	Page	Tables	
+	Inverted	Page	Tables	
+	TLBs

MulN-Level	Page	Tables	to	the	Rescue!

14

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

+	Allocate	only	PTEs	in	use	
+	Simple	memory	alloca3on	
—	2+	lookups	per	memory	reference

Back	to	the	movies…

15

Can	we	do	beWer?		Inverted	Page	Table

16

Is	there	a	
problem?

CPU VPN
Virtual	Addr

offset
frame 7

frame 6

frame 5

frame 4

frame 3

frame 2

frame 1

frame 0

PID
PID
PID
PID

PID
PID
PID
PID

PID

VPN
VPN
VPN
VPN

VPN
VPN
VPN
VPN

Page	Table

0	
1	
2	
3	
4	
5	
6	
7

offseti

4
sear

ch Physical	
Addr

Memory

SoluNon:	
hashing

frame

Complete	Page	Table	Entry	(PTE)

17

Index	is	an	index	into	
	 -		table	of	memory	frames	(if	bohom	level)	
	 -		table	of	page	table	frames	(if	mul3level	page	table)	
	 -		backing	store	(if	page	is	not	valid)	

Synonyms:	
	 -	Valid	bit	==	Present	bit	
	 -	Dirty	bit	==	Modified	bit	
	 -	Referenced	bit	==	Accessed	bit

Valid Protection	R/W/X Ref Dirty Index

(the	contents	of)	A	Virtual	Page	Can	Be

18

Mapped	
•	to	a	physical	frame	

Not	Mapped		(→	Page	Fault)	
•	in	a	physical	frame,	but	not	currently	mapped	
•	s3ll	in	the	original	program	file	
•	zero-filled	(heap/BSS,	stack)	
•	on	backing	store	(“paged	or	swapped	out”)	
•	illegal:	not	part	of	a	segment	
						→	Segmenta3on	Fault

Address	Transla+on

19

• Paged	Transla3on	
• Efficient	Address	Transla3on	

+	Mul3-level	Page	Tables	
+	Inverted	Page	Tables	
+	TLBs

Cache	of	virtual	to		physical	page	transla3ons	
Major	efficiency	improvement		

TranslaNon	Lookaside	Buffer

20

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

5	TranslaNon	QuesNons

21

When	does	the	CPU	access	the	TLB?	
What	happens	on	a	TLB	miss?	
What	happens	to	the	TLB	on	a	context	switch?	
What	happens	when	a	page	is	shared	among	
many	processes?		
What	happens	when	a	page	is	swapped	out?	

5	TranslaNon	QuesNons

22

When	does	the	CPU	access	the	TLB?	
•	First	thing!	
•	While	you	access	the	L1	caches	

What	happens	on	a	TLB	miss?	
What	happens	to	the	TLB	on	a	context	switch?	
What	happens	when	a	page	is	shared	among	
many	processes?		
What	happens	when	a	page	is	swapped	out?	

5	TranslaNon	QuesNons

23

When	does	the	CPU	access	the	TLB?	
What	happens	on	a	TLB	miss?	

•	Trap	to	kernel,	kernel	fills	TLB	w/transla3on,	
resumes	execu3on	

What	happens	to	the	TLB	on	a	context	switch?	
What	happens	when	a	page	is	shared	among	
many	processes?		
What	happens	when	a	page	is	swapped	out?	

5	TranslaNon	QuesNons

24

What	happens	to	the	TLB	on	a	context	switch?	
•	Becomes	totally	useless?	Flush?	
•	Tag	the	TLB	with	a	PID	
•	TLB	hit	only	if	PID	matches	current	process	

Physical
Memory

Frame Offset

Physical
Address

Page
Frame

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Implementation

PageProcess ID Frame Access

Matching Entry

Process ID

Processor

Page Table
Lookup

5	TranslaNon	QuesNons

25

When	does	the	CPU	access	the	TLB?	
What	happens	on	a	TLB	miss?	
What	happens	to	the	TLB	on	a	context	switch?	
What	happens	when	a	page	is	shared	among	
many	processes?	

•	(Shared	frames	is	more	accurate)	
•	Examples:	NULL	Page	(invalid	to	all,	why?),	
exec-only	(libraries),	read-only	data	(strings),		

•	Mostly	nothing	changes…		
•	Need	to	indicate	sharing	in	inverted	page	table			

What	happens	when	a	page	is	swapped	out?	

5	TranslaNon	QuesNons

26

When	does	the	CPU	access	the	TLB?	
What	happens	on	a	TLB	miss?	
What	happens	to	the	TLB	on	a	context	switch?	
What	happens	when	a	page	is	shared	among	
many	processes?	
What	happens	when	a	page	is	swapped	out?	

•	Need	to	update	the	Page	Table(s)	
•	Core	Map	(frames	→	pages)	

•	Need	to	update	the	TLB	
•	TLB	Shootdown	

Nice	Addr	TranslaNon	Feature:	Copy-on-Write

27

Useful	for	“fork()”	and	ini3alized	data	

Ini3ally	map	page	read-only	
Upon	page	fault:	

• 	Allocate	a	new	frame	
• 	Copy	frame	
• 	Map	new	page	R/W	
• 	Also	map	“other”	page	R/W	

Physical
memory

P1 virtual
memory

R/W

P2 virtual
memory

R à
R/W

Address	TranslaNon	Uses

28

Process	isola3on	
• 	Keep	a	process	from	touching	anyone	else’s	memory,	
or	the	kernel’s		

Efficient	interprocess	communica3on	
• 	Shared	regions	of	memory	between	processes	

Shared	code	segments		
• 	common	libraries	used	by	many	different	programs	

Program	ini3aliza3on	
• 	Start	running	a	program	before	it	is	en3rely	in	
memory	

Dynamic	memory	alloca3on	
• 	Allocate	and	ini3alize	stack/heap	pages	on	demand

MORE	Address	TranslaNon	Uses

29

Program	debugging	
• 	Data	breakpoints	when	address	is	accessed	

Memory	mapped	files	
• 	Access	file	data	using	load/store	instruc3ons	

Demand-paged	virtual	memory	
• 	Illusion	of	near-infinite	memory,	backed	by	disk	or	
memory	on	other	machines	

Checkpoin3ng/restart	
• 	Transparently	save	a	copy	of	a	process,	without	
stopping	the	program	while	the	save	happens	

Distributed	shared	memory	
• Illusion	of	memory	that	is	shared	between	machines

Caching

30

• Assignment:	where	do	you	put	the	data?	
• Replacement:	who	do	you	kick	out?	
• Problems	with	Caching	

What	are	some	examples	of	caching?

31

• TLBs	
• hardware	caches	
• internet	naming	
• web	content	
• web	search	
• email	clients	
• incremental	compila3on	
• just	in	3me	transla3on	
• virtual	memory	
• file	systems	
• branch	predic3on

Memory	Hierarchy

32

Every	layer	is	a	cache	for	the	layer	below	it.	

Caching

33

• Assignment:	where	do	you	put	the	data?	
• Which	entry	in	the	cache?	—	not	much	choice	
• Which	frame	in	memory?		

• Replacement:	who	do	you	kick	out?	
• Problems	with	Caching	

Working	Set

34

First	Defini,on:		
Collec3on	of	a	process’	most	recently	used	pages	

											The	Working	Set	Model	for	Program	Behavior,	Peter	J.	Denning,	1968	
Formal	defini,on:		
Pages	referenced	by	process	in	last	Δ	3me-units	

Goal:	fit	working	set	in	the	cache	

0%

25%

50%

75%

100%

1 2 4 8 16

H
it

R
a
te

Cache Size (KB)

at	what	point	does	the	working	set	
of	this	applicaNon	fit	in	the	cache?

Thrashing

35

Excessive	rate	of	paging	
Cache	lines	evicted	before	they	can	be	reused	

Causes:		
•	Cache	not	big	enough	to	fit	working	set	
•	Bad	luck	(conflicts)	
•	Bad	evic3on	policies	(later)	
Preven,on:	
•	restructure	your	code	

(smaller	working	set,	shiu	data	around)	
•	restructure	your	cache	

Why	“thrashing”?

36

hhp://royal.pingdom.com/2008/04/08/the-history-of-computer-data-storage-in-pictures/

“Thrash” dates from the 1960’s, when disk drives were as large as
washing machines. If a program’s working set did not fit in memory, the
system would need to shuffle memory pages back and forth to disk. This
burst of activity would violently shake the disk drive.

The first hard disk
drive—the IBM

Model 350 Disk File
(came w/IBM 305
RAMAC, 1956).

Total storage =
5 million characters
(just under 5 MB).

Caching

37

• Assignment:	where	do	you	put	the	data?	
• Which	entry	in	the	cache?	—	not	much	choice	
• Which	frame	in	memory?	—	lots	of	freedom		

• Replacement:	who	do	you	kick	out?	
• Problems	with	Caching	

Virtually	Addressed	Caches	

38

Virtually	Addressed	
32	KB	L1	Cache

Virtual	
Memory	
Address		
Space

2n -1

.

.2
1
0

..

.

..

•	each	page	occupies	
some	#	of	consecu3ve	
cache		entries	

•	same-colored	pages	
mapped	to	sets	of	same	
color	in	cache	

•	Pages	live	across	en3re	
color	range	of	the	cache.	
Also	supports	spa3al	
locality.

4KB	
pages

4KB

Physically	Addressed	Caches…

39

Physically	
Addressed	
32	KB	L1

Virtual	Addr	Space

Hm 2n -1

.H2
G2
F2
E2
D2
C2
B2
A2
H1
G1
F1
E1
D1
C1
B1
A1
H0
G0
F0
E0
D0 .C0 2
B0 1
A0 0

..

.

..
4KB

D0

C0

B0

A0

..
What	if	virtual	

pages	are	assigned	
to	physical	pages	
that	are	64KB	

apart?	

BAD:	disrupts	
spa3al	locality	

WORSE:	cache	
effec3vely	smaller

Physical	Addr	Space

SoluNon:	Cache	Coloring	(AKA	Page	Coloring)

4032	KB	L1

4KB

Process 1

Process 2

Process 1

Process 1

Process 2

Process 2

Process 1

Process 1

Process 2

..

1. Color	frames	
according	to	cache	
configura3on.	

2. Spread	each	
process’	pages	
across	as	many	
colors	as	possible.

Physical	Addr	Space

P2’s	Virtual	Addr	Space

Hm

A1
H0
G0
F0
E0
D0 .C0
B0
A0

…

P1’s	Virtual	Addr	Space

Hm

D1
C1
B1
A1
H0
G0
F0
E0
D0 .C0
B0
A0

Caching

41

• Assignment:	where	do	you	put	the	data?	
• Replacement:	who	do	you	kick	out?	
• Problems	with	Caching	

What	happens	when	Memory	is	full?

Swapping	vs.	Paging

42

Swapping
• Loads entire process in memory, runs it, exit
• “Swap in” or “Swap out” a process
• Slow (for big, long-lived processes)
• Wasteful (might not require everything)

Paging
• Runs all processes concurrently, taking only pieces of memory

(specifically, pages) away from each process
• Finer granularity, higher performance
• Paging completes separation between logical memory and

physical memory – large virtual memory can be provided on
a smaller physical memory

The verb “to swap” is also used to refer to pushing contents of a
page out to disk in order to bring other content from disk; this is
distinct from the noun “swapping”

Demand	Paging	on	MIPS

43

1. TLB	miss
2. Trap	to	kernel
3. Page	table	walk
4. Find	page	is	invalid
5. Convert	virtual	address	

to	file	+	offset
6. Allocate	page	frame
– Evict	page	if	needed

7. Initiate	disk	block	read	
into	page	frame

8. Disk	interrupt	when	
DMA	complete

9. Mark	page	as	valid
10. Load	TLB	entry
11. Resume	process	at	

faulting	instruction
12. Execute	instruction

Demand	Paging

44

1. TLB	miss
2. Page	table	walk
3. Page	fault	(page	invalid	

in	page	table)
4. Trap	to	kernel
5. Convert	virtual	address	

to	file	+	offset
6. Allocate	page	frame
– Evict	page	if	needed

7. Initiate	disk	block	read	
into	page	frame

8. Disk	interrupt	when	
DMA	complete

9. Mark	page	as	valid
10. Resume	process	at	

faulting	instruction
11. TLB	miss
12. Page	table	walk	to	fetch	

translation
13. Execute	instruction

EvicNng	a	Page	Frame

45

• Select	old	page	to	evict
• Find	all	page	table	entries	that	refer	to	old	page
– If	page	frame	is	shared

• Set	each	page	table	entry	to	invalid
• Remove	any	TLB	entries
– Copies	of	now	invalid	page	table	entry

• Write	changes	on	page	back	to	disk,	if	
necessary

Caching

46

• Assignment:	where	do	you	put	the	data?	
• Replacement:	who	do	you	kick	out?	

• Random:	pros?	cons?	
• FIFO	
• MIN	
• LRU	
• LFU	
• Approxima3ng	LRU	

• Problems	with	Caching

First-In-First-Out	(FIFO)	Algorithm

47

Reference	string:	1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5	
4	frames	(4	pages	in	memory	at	a	3me	per	process):	

FRAMES time Request Result
0 1 miss

1 1 2 miss
1 2 2 3 miss
1 2 3 3 4 miss
1 2 3 4 4 1 hit
1 2 3 4 5 2 hit
1 2 3 4 6 5 miss
5 2 3 4 7 1 miss
5 1 3 4 8 2 miss
5 1 2 4 9 3 miss
5 1 2 3 10 4 miss
4 1 2 3 11 5 miss
4 5 2 3 12

←	contents	of	frames	at	3me	of	reference

f
marks	arrival	3me	
of	frame	f

10	page	faults	☹

OpNmal	Replacement	Algorithm	(MIN)	

48

Reference	string:	1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5	
4	frames	(4	pages	in	memory	at	a	3me	per	process):	

FRAMES time Request Result
0 1 miss

1 1 2 miss
1 2 2 3 miss
1 2 3 3 4 miss
1 2 3 4 4 1 hit
1 2 3 4 5 2 hit
1 2 3 4 6 5 miss
1 2 3 5 7 1 hit
1 2 3 5 8 2 hit
1 2 3 5 9 3 hit
1 2 3 5 10 4 miss
1 2 3 5 11 5 miss
1 2 3 5 12

7	page	faults	😊	

(is	7	actually	good?)	

Let’s	always	use	MIN!		🤔

←	Which	to	kick	out	at	t=6	?	
						MIN	says	the	one	you’ll	use				
						furthest	in	the	future	(here,	4)

use	this	as	an	upper-bound

Least	Recently	Used	(LRU)	

49

Reference	string:	1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5	
4	frames	(4	pages	in	memory	at	a	3me	per	process):	

FRAMES time Request Result
0 1 miss

1 1 2 miss
1 2 2 3 miss
1 2 3 3 4 miss
1 2 3 4 4 1 hit
1 2 3 4 5 2 hit
1 2 3 4 6 5 miss
1 2 5 4 7 1 hit
1 2 5 4 8 2 hit
1 2 5 4 9 3 miss
1 2 5 3 10 4 miss
1 2 4 3 11 5 miss
5 2 4 3 12

8	page	faults

←	Which	used	furthest	back?	5
←	Which	used	furthest	back?	4

←	Which	to	kick	out?	LRU	says	the	
one	used	furthest	back	(here,	3)		

←	Which	used	furthest	back?	1

Least	Frequently	Used	(LFU)	

50

Reference	string:	1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5	
4	frames	(4	pages	in	memory	at	a	3me	per	process):	

FRAMES time Request Result
0 1 miss

1 1 2 miss
1 2 2 3 miss
1 2 3 3 4 miss
1 2 3 4 4 1 hit
1 2 3 4 5 2 hit
1 2 3 4 6 5 miss
1 2 5 4 7 1 hit
1 2 5 4 8 2 hit
1 2 5 4 9 3 miss
1 2 5 3 10 4 miss
1 2 4 3 11 5 miss
1 2 4 5 12

8	page	faults	

←	Which	to	kick	out?	5
←	Which	to	kick	out?	4

←	Which	to	kick	out?		3			
(let’s	break	Nes	with	FIFO)

←	Which	to	kick	out?	3

use count

1
1 1
1 1 1
1 1 1 1
2 1 1 1
2 2 1 1
2 2 1 1
3 2 1 1
3 3 1 1
3 3 1 1
3 3 1 1
3 3 1 1

How	to	implement	LRU?

51

In	souware,	use	a	linked	list:	
•	every	hit	moves	you	to	the	front	of	the	list		
•	evict	from	the	back	of	the	list	

In	hardware:	
•	2-way	set-associa3ve	cache?	
•	4-way	set-associa3ve	cache?	
•	List	of	all	your	frames	in	memory?	

•	big	list,	costly	3mestamps	😢	
•	per	frame	use	bit

Clock	Algorithm:	Not	Recently	Used

52

Approxima3ng	LRU*	

Periodically,	sweep	
through	all	pages	
•	Used?	Clear	use	bit	
•	Unused?	reclaim	

•	update	core	map		
•	invalidate	page	table	
•	write	back	if	dirty	
•	TLB	shootdown	
•	add	to	free	list

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0

(*yes,	LRU	was	already	an	approximaNon…)

Clock	Algorithm	Problems

53

What	if	Memory	is	Large?	

Leading	edge	clears	use	bit	
•	slowly	clears	history	
•	finds	vic3m	candidates	

Trailing	edge	evicts	pages					
				with	use	bit	set	to	0	
•	fast:	original	clock	algorithm	
•	slow:	all	pages	look	used

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:00
0

0

1

0

0

1

blue	1’s	were	used	aler	use	
bit	was	cleared	by	green	hand

1

evicts	1st	use=0	
frame	it	finds

1

Caching

54

• Swapping	&	Paging	
• Assigning	a	virtual	page	a	physical	frame	
• Replacement	Policies	
• Problems	with	Caching	

• Ineffec3veness	
• Fairness	

ExploiNng	LRU	EvicNon	Policies

55

static char *workingSet; // memory program wants to acquire
static int soFar; // num pages program has so far
static sthread_t refreshThread;

// Thread touches pages in memory, keeping them recently used
void refresh () {
 int i;

 while (1) {
 // Keep every page in memory recently used.
 for (i = 0; i < soFar; i += PAGESIZE)
 workingSet[i] = 0;
 }
}

int main (int argc, char **argv) {
 // Allocate a giant array.
 workingSet = malloc(ARRAYSIZE);
 soFar = 0;

 // Create a thread to keep our pages in memory
 thread_create(&refreshThread, refresh, 0);

 // Touch every page to bring it into memory
 for (; soFar < ARRAYSIZE; soFar += PAGESIZE)
 workingSet[soFar] = 0;

 // Now that everything is in memory, run computation...
}

