
UCRGJC- 12 1507
PREPRINT

Maintenance Simulation: Software Issues

C. H. Luk
M. A. Jette

This paper was prepared for submittal to the
Eurosim Simulation Congress 95

Vienna, Austria
September 11-15,1995

July 1995

Thieisaproprintofapap~intendedforpubli~tionina joumalorproceedinga Since
changes may be made before publication, this pmprint is made available with the
understanding that it will not be cited or reproduced without the permission of the

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of Cdifornianor any of their employees, makes any warranty, express or implied, or
nssumesPnylegalliabiPtyorresporrsibilityforthePccurpey,completeaess,orusefulngs
of any information, apparatus, product, or process disclosed, or represents that its use
wouldnot infringeprivatelyowned rights. Reference herein toanyspeciGccommercial
produds, process, or service by trade name, trademark, rnamfacturer, or otherwise,
does not necessarily constitute or imply its endorsement, reco~~~~endation, or favoring
by the United States Government or the University of W i o r n i a . The views and
opinions of authors expressed herein do not necessarily state or Aect those of the
United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Maintenance Simulation: Software Issues'

- 4

1

Clement H. Luk and Moms A. Jette

National Energy Research Supercomputer Center, Lawrence Livermore National
Laboratory, University of California, €? 0. Box 5509, L431, Livermore, California
94551, U. S. A.

Abstract
The maintenance of a distributed software system in a production environment involves: 1.

maintaining software integrity, 2. maintaining and database integrity, 3. adding new features, and
4. adding new systems. These issues will be discussed in general: what they are and how they are
handled.

This paper will present our experience with a distributed ~esource management system that
accounts for resources consumed, in real-time, on a network of heterogenous computers. The sim-
ulated environments to maintain this system will be presented =la& to the four maintenance
areas.

1 Introduction
The maintenance cost for a software system can range from 40% to 80% of the system's out-

lay pUCK89, EDEL92, SCHN891. Informally, softwaxe maintenance is generally effected with
repetition of review/walkthrough [OSB090]. More formally, software metrics is used to ensure
the quality of software [GIBS89, LI93, STAR941. While the need to simulate actions and objects
(e.g. databases) should be natural, there appear to be very little published materials on mainte-
nance simulation2.

In this paper, we briefly describe a distributed resource management system for an energy
research supercomputer center. The maintenance issues are then presented to provide discussions
on maintenance simulation.

1.1 The National Energy Research Supercomputer Center (NERSC)

consists of about 4,800 researchers worldwide. The user community is divided into about 600
project groups. The available compute resoutces include a massively parallel Cray T3D with 256
procesSing element and 16GB memory, one 16 CPU Cray C90 with 2GB memory, two older mul-
tiCPU Cray2s each with 1GB memory, SUNS, HPs and an assortment of workstations. Other
resources include an international network, a Common File System (CFS) with 12 terabytes of
data etc.

NEFZSC is funded by the United States Department of Energy (DOE). The user community

1.2 Unified Production Environment (UPE)

Wide Area Network (WAN). One important service is a highly reliable tesource allocation and
accounting system, called CUB (Centralized User Banking) [JETI'91]. CUB (FIG. I) has been
designed to provide resource management service in an environment of heterogeneous, UMX

Through WE, NERSC integrates services within a given computer and across computers on a

1. 'IbisworkhasbeensupportedbytheUSDepartmentofFmergyrardercontractW-7405-Eng-48 by LLF4L.
2. One study by Gibson & Senn[GIi3s89] addressed an experiment to help pgiammfxs visualize h t e -

nance complexity with simulation, as part of their investigatim on maintainabiity and system structure,

UNIFIED PRODUCTION ENVIRONMENT -
CENTRALBANKER

FIGURE I. UPE & CUB
based computers ranging from mid-sized workstations to the largest of supercomputers. CUB is
also integrated with the batch system (Network Queuing System, NQS) to control resource use in
as unobtrusive a fashion as possible.

On most UNIX computers, resource allocation is lacking and resource accounting is based
upon timecards generated when processes complete execution. Many processes run on NERSC’s
supercomputers for hundreds of hours, giving timecard based resource allocation very poor accu-
racg. CUB accounting and resource allocation is done in near real-time. Daemon processes mon-
itor resource use every ten seconds and report this use to a centralized CUB server at about the
same interval. The centralized CUB server reports back the resources remaining by user and
group. Once the resources allocated to an individual or his group have been exhausted, executing
batch and interactive jobs are suspended. Only limited work may be performed until additional
resources are made available, at which time suspended jobs mume execution.

Communications are UDP@ based, for the flexibility in addmsing time-outs, retransmis-
sions, etc. Transactions are protected by a crypto-checksum to insure security.

To insure reliability of CUB, three machines are available as central bankers: a production
machine, a “hot backup”, and a development platform. The central banker runs on the production
machine. A backup program runs on the “hot backup” machine and maintains database transac-
tion records that will be only a few minutes older than the database transaction records of the pro-

1. For example, aprogram using all the fesources on tbeT3D for one horapdmbly will take afew days on
tbe 6 CPU SUN Spam 2000. Resouwe management also bas to p r o v i d e opezatid facilities to move
reswrces from computer to computer in real time.

considered acceptable. With some pfocesses running fm hundreds of CHI hours, monitoring timecards

many users have discovered that they can avoid charges at some computer centers by preventing tk i r
jobs fram teminating. Theirjobs can complete useful wcxk and sleep until tbe computer crasbes, avoid-
ing the generation ofa timecard. [JETIp4]

3. UDP (Uses Datagram protocd) is asimple datagmmpFotocd which is layereddirectly above the Internet
-1 @I.

2. waiting for timecards tote generated onpocess~pleticm, as in standardm accounting, ism

would occasionally result in substantially more resoIpces being consumed than authaized. Additionally,

L

c

P

duction machine. The “hot backup” machine can be made into the production machine within
about 30 minutes, if needed. The development platform provides “warm backup”. All CUB data-
base and software are available on this machine. The database does not necessary contain the lat-
est information. However, should the production machine fail and the “hot backup” is caUed to
duty, the development platform can become the “hot backup”. The platform is normally used for
development, and provides an environment for maintenance simulation for the central banker.

1.3 Centralized User Banking (CUB)
FIG II shows a simplified structwe of CUB. On each user production machine, e.g. Cray C90,

E

FIG II. SIMPLIFIED STRUCTURE OF CUB
a local banker (daemon) gathers information on CPU time and other resources consumed on that
machine for each user and each project group at intervals of ten seconds’. The information is
recorded in local databases. Changes in resource consumption such as CPU time used are noted.
These changes are transferred for all active users and project groups to the central banker (CUB
Server) about once every 10 seconds unless the central banker is unavailable. The central banker
updates its central (ORACLE) database then transfers updated records of resou~ces remaining by
user and project group back to the local banker. The local banker updates it local database. This
way the local and the central databases are synchronized.

The local bankers can operate for an extended period without the support of the central
banker. The lack of an operating central banker merely prevents the local bankers from synchro-
nizing their databases and prevents correct updates to database on other machines. Once commu-
nications are reestablished, the databases are synchronized. Database alterations (other than
consumption of resources) are recorded in a journal to insure persistence across machine restarts.

The primary user interface to CUB communicates directly with the central banker. Resource
reallocation by users will be communicated by the central banker to the local banker as described
above.

2 Software Maintenance Issues
S o h a maintenance represents efforts to enswe that the. software operata as expected on its

database(s), even as the operating environment changes. For a system with distributed databases
and operations, software maintenance will involve the following:

1. ’Ibe fesoutces coaswned by the local banker itself are oniy 6.92CPUmioutes per day on a Cray Y-MP

2.1 Software Integrity

is frequently caused by the software engineer’s failure to anticipate or visualize some possible
operational requirements. Software maintenance to ensure integrity requires recognition of the
problem (bug), followed by design and engineering of a solution.

2.2 Database Integrity
Data entry can be made by users and operators or support personnel. Improved user interface

will help minimize problem potentials. There is still no guarantee that error entries will not be
made. Maintenance will require the ability to provide playback [OSB090] or the ability to backup
the databases.

When software does not perform as expected, it is commonly referred to as having bugs. This

J

2.3 New Feature Addition

environment. These changes may or may not conflict with original system requirements. They
may also be incompatible with original design and implementation assumptions.

As a system evolves, new features are frequently needed to support changes in the operational

2.4 New System Addition
When a new system is added, the most common problem is incompatibility. With CUB, the

local banker code required major rewrite to handle the addition of the Cray T3D Massively Paral-
lel System.

3 Maintenance Simulation
The burden (cost) of software maintenance is significantly affected by software complexity

[BANK93]. For distributed systems, software complexity and therefore maintenance cost will be
extremely high. For our system, maintenance is categorized based on the four mas described
above.

3.1 Software Integrity
Since integrity is based on whether software performs as expected, performance monitoring

will be the fist step. Problems discovered by the monitor are analyzed. The analysis frequently
requires the ability to recreate (playback) the situation so as to “cause the problem to occur
again”.

3.1.1 Perfonnamx Monitor
With only a limited operations staff at NERSC, a Sun workstation is used to monitor all key

systems. This monitors messages sent to each computer’s operator console and checks key sub-
systems with daemons on these computers. Staff members are alerted to notable events by e-mail
and/or audible message reporting the problem and computer(s) effected. The operations monitor
is configured to note CUB communications failures, lack of space in key CUB server file systems,
abnormally large or small resource rates, and restart of CUB components. Operations staff are
capable of investigating failures, restarting CUB clients, or contacting CUB developers, as
required.

-
r’

3.1.2 Playback
Playback involves event recreation to help analyze the environment and cause(s) of ttre prob-

lem. Obviously, if playback is successful, the problem will occur again, possibly bringing down
the system again. Playback must therefore be conducted in a simulated environment. With CUB,

transactions are recorded in such a way that their processing daemons can “playback” or re-act on
previous transactions.

3.2 Database Integrity

local banker is (=)started to insure current information. Alteration of this database would presum-
ably be accompanied by an alteration in the communications protocol. To accomplish such a tran-
sition, we would operate parallel banking systems for a time. Independent sets of local bankers
would communicate with a simulated central banker and results would be compared.

We could have simulated the databases. However, such an endeavor is not practical. With dis-
tributed database systems, the central database can act as backup to ensure integrity, provided
databases are synchronized frequently. In our case, synchronization happens every 10 seconds. In
the event of prolonged synchronization failure, maintaining information on changes in resource
usage enable us to “automatically” monitor the local bankers’ database integrity’.

On the other hand, the central banker database cannot be easily monitored predicated on
remote local databases without running a potential risk of deadlock. With CUB, the central data-
base is “backed up” every 30 minutes to the “hot backup” machine. It is possible to reconstruct
the central database from the “hot backup” with a loss of 30 minutes, or with a loss of about 10
seconds if we choose to modify our backup procedure to include “input” from local bankers.

For maintenance purpose, the two databases can be compared and any discrepancy of over 30
minutes indicates potential problems. At this point, maintenance can be performed on the &vel-
opment computer with a copy of the backup database. Real or experimental versions of the central
banker andor local bankers can be executed to simulate the events and its effects on the simulated
database.

The local banker’s database is synchronized with the central banker’s database each time the

3.3 New Feature Addition
When new features are added the local banker, it is built on the platform (e.g. C90) upon

which it will execute. Testing is initially performed on a limited subset of users with a simulated
central banker. Jobs are execute at various nice values (priorities), batch and interactive, single
and multi-threaded to validate a substantial portion of the local banker’s code. CUB accounting
information is compared with the UNIX accounting records generated upon process completion
to assure accuracy. Typical tests (e.g. boundary conditions of user account exhaustion for either
the user or the project group) are also performed.

After this limited testing, a local banker is built to account for all resources used by all users.
This versions of the banker is prevented from changing user shells or suspending/resuming jobs,
but does account for resource use. This banker is run in parallel with the production version for a
period of days to assure its integrity and consistency with the version used in current production.
Upon successful completion of this test period, the banker is rebuilt to perform all functions, com-
municate with the CUB server used for production, and replaces the former banker code.

The central banker with new features is built on the development platform. The actual central
banker database is “copied” on the development computer. Simulated local bankers are started on
production machines with simulated user account information. When these local bankers start, it
will synchronize its local “new” databases from the simulated central database. Monitoring pro-
grams will report on local banker transactions, transmission log, and central banker transactions.
By reviewing the events live, the software engineer can determine if the new features have been

1. For example, aprocess cannot use nxxe than 10 seconds of one CPU m less than 1Osecoads. The maxi-
mum amount of time deliverable to usea for a256 CpUT3D is 2,560CPU seconds overa 10 second
peaid. Opefatioas staffarealertedtoabnormallylargeorsmallresorpce userates.

implemented correctly. As part of maintenance simulation, the central database can be “backed
up” locally on the development machine and the databases can be compared, as described before.

3.4 New System Addition
For a heterogenous distributed system, the addition of a new system q u i r e s consideration of

both the new system features (e.g. multiple CPUs) and normalization of measures for resource
utilization [JETI94]. The approaches discussed above will apply. However, it will be necessary to
create initial databases for the new system and careful evaluation that the databases are correct.
Maintenance simulation can then be employed to ensured integrity of all software components
and the databases.

4 Concluding Remarks

need for maintenance simulation has not been widely addressed. In this paper, we present the
practical issues for software maintenance. From these, maintenance simulation is probably the
most effective way to provide visualization for the support a complex system such as the one at
NERSC.

While there are calls for “A standard for software mainten ance...” [EDEL92], [SCHN89]. the

Acknowledgment
Many people contributed to the CUB project. We would like to especially acknowledge Patty
Clemo, Harry Massaro, John Reynolds (currently at Sequent Corp.) and Suzanne Smith for their
software efforts and their helpful advice to the authors on this paper.

Bibliography
BANK93

BUCK89

EDEL92

GIBS89

JETl-91

JEm4

LI93

OSB090

SCHN89

STAR94

Banker, Rajiv D. et al, “Software Complexity and Maintenance Costs”, Communica-
tions of the ACM, Vol36, #11 (November, 1993)
Buckley, Fletcher J., “Some Standards for Software Maintenance”, Computer, Vol22,
lill (November, 1989)
Edelstein, D. Vera & Mamone, Salvatore, “A Framework for Managing and Execut-
ing Software Maintenance Activities”, Computer, Vol25, #d (June, 1992)
Gibson, Virginia R. & S ~ M , James A, “System Structure and Software Maintenance
Performance”, Communications of the ACM, Vol32, #3 (March, 1989)
Jette, Morris A. et al, “Report of the ERSUG Charging and Scheduling Algorithms
Working Group”, Lawrence Livermore National Laboratory, Report UCRL-ID-
106965 (March, 1991)
Jette, Moms A. & Reynolds, John J., “Centralized User Banking and User Adminis-
tration on UNICOS”, Cray User Group Meeting, Denver CO (March, 1994)
Li, Wei & Henry, Sallie, “Object-Oriented Metrics That Predict Maintainability”,
Journal of Systems and Software, Vol23, #2 (November, 1993)
Osborne, Wilma M. & Chikofsky, Elliot J., “Fitting Pieces to the Maintenance Puz-
zle”, IEEE Software, Vol7, #l (January, 1990)
Schneidewind, Norman E, “Software Maintenance: The Need for Standardization”,
Proceedings of the IEEE, Vol77, #4 (April, 1989)
Stark, George E., Kern, Louise C. & Vowell, C.W, “A Software Metric Set for Pro-
gram Maintenance Management”, Journal of Systems and Software, Vol24, #3
(March, 1994)

