

(3) CENIER FOR FAMILY \& DEMOGRAPHIC RESEARCH Making Graphs with Excel

 Summer 2014 Workshop Series
$w+1 y-$

 CHARTS?Picture Superiority Effect Information is better remembered in tests of recall and item recognition when presented as pictures rather than words

> Fruit

Why is is 80 difficult forSOCIOLOGISTS?

- Analytical
- Logical
- Precise
- Repetitive
- Organized
- Details
- Scientific
- Detached
- Literal
- Sequential
- Creative
- Imaginative
- General
- Intuitive
- Conceptual
- Big picture
- Heuristic
- Empathetic
- Figurative
- Irregular

I Propose we Marry the Two The pun is intended!

Organization of Presentation

- Structure of an Excel Chart
- Different Types of Excel Charts
- Basic Principles of Chart Design
- Graphing Interaction Effects
- Creating a Chart with a Double Axis

What makes upTHE STRUCTURE OF AN EXCEL CHART?

Le4's Dissect...

What areTHE DIFFERENT TYPES OF CHARTS?

Alis tograms

A vertical bar chart that depicts the distribution of a set of data

His4ograms, example

Pie Charts

Generally used to show percentage or proportional data classified into nominal or ordinal categories

Pie Char4s, examples

Simple Pie

Top Reasons for Fathers Leaving the Workforce in 2008

Pie-of-Pie

Percent of births by informal

 marital status of mother, 2005-$$
2010
$$

Pie Char4s, examples

Simple Pie

College experiences of young adults (by age 25)

Doughnut

Percent of young adults who enroll in a 4-year program by degree earned by age 25

Source: National Longitudinal Survey of Youth 1997, Rounds 1-13: 1997-2009 weighted. U.S. Department of Labor, Bureau of Labor Statistics, NCFMR analyses of valid cases.

Bar Char4, example

Prevalence of Pre-union First Birth across Demographic Characteristics

Prevalence of Pre-union First Birth by Race/Ethnicity: Whites

Hispanics

Blacks

Source: National Longitudinal Survey of Youth 1997 (NLSY97), Rounds 1-13: 1997-2009 (weighted). U.S. Department of Labor, Bureau of Labor Statistics, NCFMR analyses of valid cases.

Column \& Bar Char4s

Useful for showing data changes over a period of time or for illustrating comparisons among items

Column Char4s, examples

Simple

Fathers Living with All of Their Children
Race, Ethnicity \& Nativity

Side-by-Side

Percentage of Same-Sex Couple Households with Minor Children by Sex of Couple and Race/Ethnicity of Household

Head

Source: U.S. Census Bureau, American Community Survey, 1Year Estimates, 2012

Column Char4s, examples

Percent Change in Share of Aggregate Income from 1970-2009

Source: U.S. Census Bureau, Current Population Survey, Annual Social and Economic Supplements

Column Char4s, examples

Public Assistance Participation among U.S. Children in Poverty

by Family Structure, 2010
$\square S N A P \square T A N F$

Column Char4s, examples

Changes in the Shares of Births to Single and Cohabiting Mothers Under Age 40
\square Single \square Cohabiting \rightarrow Total Non-Marital

Sources: 1980-1984 data, Bumpass \& Lu (2000) using NSFH, 1987/1988; 1990-1994 \& 1997-2001 data, Kennedy \& Bumpass (2008) using NSFG 1995 \& NSFG 2002; 2005-2009, NCFMR analyses using NSFG 2006-2010.

Line Char4s

Ideal for showing trends over time

Line Char4s, examples

Share of Married Mothers Experiencing a Premarital Birth, by Race and Marriage Cohort

Line Char4s, examples

Young Adults Living in a Parent's Household and Economic Recession Years by Sex and Ages, 1940-2010

Source: U.S. Census Bureau, Decennial Census, 1940-2000 (IPUMS); U.S. Census Bureau, American Community Survey, 1-year estimates 2010 (IPUMS)

Line Char4s, examples

Annual HMI Spending and Marriage \& Divorce Rates, 2000-2010
\rightarrow Marriage Rate \rightarrow-Divorce Rate $\rightarrow-\mathrm{HMI}$ Spending

Sources: CDC/NCHS, National Vital Statistics System, 2000; Glass \& Levchak, 2010, NCFMR County-Level Marriage \& Divorce Data, 2000; U.S. Census Bureau, Decennial Census, 2000; U.S. Census Bureau, American Community Survey, 1-Year Estimates, 2008 - 2010; HMI Spending data - Hawkins et al., 2013.

Line Char4s, examples

Crossover in median age at first marriage and first birth: Rising proportion of births to unmarried women, 1980-Present

Sources:

1. U.S. Census Bureau, Current Population Survey, March and Annual Social and Economic Supplements, 2012 and earlier.
2. Centers for Disease Control and Prevention. National Center for Health Statistics. Vital Stats. http://www.cdc.gov/nchs/vitalstats.htm. [March 2013].
3. Martin JA, Hamilton BE, Ventura SJ, et al. Births: Final data for 2009. National vital statistics reports; vol 60 no 1. Hyattsville, MD: National Center for Health Statistics. 2011
4. Hamilton BE, Martin JA, Ventura SJ. Births: Preliminary data for 2010. National vital statistics reports web release; vol 60 no 2. Hyattsville, MD: National Center for Health Statistics. 2011.

Scawter Plows

Commonly used to show the relationship between two variables e.g. correlation

Sca4ter Plo4s, example

State Math Scores and Students' TV Viewing Habits

Source: National Center for Educational Statistics, 1994

Show percentage or proportional data classified into nominal or ordinal categories over time

Area Char4s, example

Marital Status of U.S. Population Aged 15 and Older, 1970-2012

Source: 1970-2000 data, U.S. Census Bureau, Current Population Survey, March and Annual Social and Economic Supplements.
2008 and 2012 data, U.S. Census Bureau, American Community Survey, (IPUMS)

What are some-

BASIC PRINCIPLES OF CHART DESIGN?

1. Simplify

- Minimize ink-to-data ratio
- Remove unneeded chart elements
- Gridlines
- Chart borders
- Axis titles
- Legends
- Markers \& data labels
- Decimal points (in axis \& data labels)
- Trend lines
- NO 3D charts!!!!!!!!!!!!!!!!!!!
- Sort data in a meaningful way

Example of a 3D Chart:

Fathers Living with All of Their Children

Race, Ethnicity \& Nativity

2. Color vs. Black \ddagger Whise

- When in doubt \rightarrow black \& white
- Color can help tell a story
- Color = branding (e.g. CFDR, NCFMR, BGSU)
- Use a cohesive and consistent color palette
- Be mindful of how audience will view
- Excel vs. Word vs. PDF
- Color vs. B\&W print copy

3. Do NOT Use Distorted Charts

- Do NOT misrepresent your data!
- Use appropriate and consistent axis and scales

4. Present Rela4ed Char4s Simultaneously

- One-after-another or side-by-side if possible
- Emphasizes importance of appropriate axis and scales

5. Know Your Qudience

- Academics vs. lay folks
- Undergraduate students vs. graduate students
- Graduate students vs. professors
- PAA presentation vs. job talk

6. TMC $=$ TMI

- Too many charts (TMC) is as bad as too much information (TMI) \rightarrow Do NOT overload your audience!

Let's apply some principles: Which is easier 40 understand?

Sources: U.S. Census Bureau, American Community Survey, 2008-2011; HMI spending data-Hawkins et al., 2013.

7. Do you need a char4?

$\$ 1177^{\frac{1}{2}}$

Sources: U.S. Census Bureau, American Community Survey, 2008-2011; HMI spending data- Hawkins et al., 2013.

How do I-

CHART INTERACTION EFFECTS?

Logistic Regression Predicting Ever Marrying

- An interaction between a categorical and continuous predictor (DeMaris 2004, p 143):
$E(Y)=\beta_{0}+\delta_{1}$ Black $+\beta_{1}$ Parity $+\gamma_{1}$ Black*Parity
- The subpop consists of only White and Black women
- Black is a dummy variable
- Parity indicates number of live births, range 0-15
- Analyses is weighted

Logistic Regression Predicting Ever Marrying, con4.
 - Stata Output for Full Model:

. svy, subpop(blkwht): logistic evermar black PARITY PARITYblk, coef (running logistic on estimation sample)

Survey: Logistic regression

Number of strata	$=$	56
Number of PSUs	$=$	152

Number of obs	$=$	12279
Population size	$=$	61754741
Subpop. no. of obs	$=$	8568
Subpop. size	$=$	45835139
Design df	$=$	96
F(3, 94)	$=$	186.25
Prob > F	$=$	0.0000

evermar	Linearized					
	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Con	Interval]
black	-. 4698438	. 1172022	-4.01	0.000	-. 7024885	-. 2371992
PARITY	1.458909	. 0707637	20.62	0.000	1.318444	1.599374
PARITYblk	-. 9253343	. 0978554	-9.46	0.000	-1.119576	-. 7310928
_cons	-. 8652098	. 0616793	-14.03	0.000	-. 9876423	-. 7427772

Logistic Regression Predicting Ever Marrying, con4.

- Table of Results

	Model 1 (Zero-Order)		Model 2		Model 3 (Full)	
	Coef.	SE	Coef.	SE	Coef.	SE
Black	-0.854	0.325***	-1.589	0.113***	-0.470	0.117***
Parity	1.040	0.054***	1.150	0.053***	1.459	0.071***
Black X Parity					-0.925	0.098***
Constant			-0.679	$0.06{ }^{* * *}$	-0.865	0.062***

Logistic Regression Predicting Ever Marrying, con 4.

- Equation for Full Model

$$
E(Y)=\beta_{0}+\delta_{1} \text { Black }+\beta_{1} \text { Parity }+\Upsilon_{1} \text { Black*Parity }
$$

- Equation for Black Women

$$
E(Y)=\beta_{0}+\delta_{1}+\beta_{1} \text { Parity }+\gamma_{1} * \text { Parity }
$$

- Equation for White Women

$$
E(Y)=\beta_{0}+\beta_{1} \text { Parity }
$$

- Now, Plug and Play in Excel!

Logisuic Regression Predicuing Ever

 Marrying, cont.

Formatted

Effect of Parity on Ever Marrying for Black and White Women

