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About Me

PhD student in Computer Science at UC
Berkeley

Thesis work centers around performance of
large-scale distributed systems

Spark PMC member



About This Talk

Overview of how Spark works
How we measured performance bottlenecks

In-depth performance analysis for a few
workloads

Demo of performance analysis tool



Cluster of machines
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Spark driver:
6+6+4+5 = 21

Spark (or Hadoop/Dryad/etc.) task



Count the # of occurrences of each word
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- Performance considerations
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(3) Straggler tasks
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Caching racman [NsDI12], Spark [NSDI "12], Tachyon [SoCC "14]

Scheduling sparrow [sosP *13], Apolio [0SDI *14], Mesos [NSDI
“11], DRF [NSDI “11], Tetris [SIGCOMM ’14], Omega [Eurosys "13], YARN
[SOCC '13], Quincy [SOSP ‘09], KMN [OSDI *14]

Stragglers Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE

[OSDI ‘08], Mantri [OSDI “10], Dolly [NSDI ‘13], GRASS [NSDI ‘14],
Wrangler [SoCC ’14]

Network vi2 siccomm 9], Hedera [NSDI "10], Sinbad

SIGCOMM ’13], Orchestra [SIGCOMM ’11], Baraat [SIGCOMM ‘14], Varys
SIGCOMM ’14], PeriSCOPE [OSDI “12], SUDO [NSDI ’12], Camdoop
INSDI '12], Oktopus [SIGCOMM ‘11]), EyeQ [NSDI “12], FairCloud
SIGCOMM ’12]

Generalized programming model
Dryad [Eurosys ‘07], Spark [NSDI "12]



Network and disk I/O are bottlenecks

Stragglers are a major issue with
unknown causes



This Work

(1) Methodology for quantifying
performance bottlenecks

(2) Bottleneck measurement for 3
SQL workloads (TPC-DS and 2
others)



Network optimizations

can reduce job completion time by at
most 2%

CPU (not 1/0O) often the bottleneck

Most straggler causes can be
identified and fixed



Example Spark task:
networkread N | T

compute

disk write

time— >
: time to handle one record

Fine-grained instrumentation needed to
understand performance



How much faster would a job run if
the network were infinitely fast?

4

What's an upper bound on the
improvement from network
optimizations?
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How much faster could a task run if
the network were infinitely fast?
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Task runtime with infinitely fast network



How much faster would a job run if

the network were infinitely fast?
time >

2 TaskiO JTask 2

: time blocked
Task 1 on network

t.: Original job completion time
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Task O
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t.: Job completion tlme with infinitely fast network



SQL Workloads

TPC-DS (20 machines, 850GB;

)
www.tpc.org/tpcds
Big Data Benchmark (5 machines, 60GB)

amplab.cs.berkeley.edu/benchmark

Databricks (9 machines, tens of GB)
databricks.com

2 versions of each: in-memory, on-disk



Reduction in JCT

How much faster could jobs get
from optimizing network

performance?
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Median improvement at most 2%



How can we sanity check these
numbers?



How much data is transferred per
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BDBench TPC-DS Production Facebook

Microsoft '09-'10: 1.9-6.35 Mb / task second
Google '04-'07: 1.34-1.61 Mb / machine second



Ratio
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How can this be true?
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What kind of hardware should |
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BDBench TPC-DS Production Facebook

10Gbps networking hardware likely not
necessary!



How much faster would jobs
complete if the disk were
infinitely fast?



Reduction in JCT

How much faster could jobs get
from optimizing disk performance?
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Median improvement at most 19%



Disk Configuration

Our instances: 2 disks, 8 cores

Cloudera:
— At least 1 disk for every 3 cores
— As many as 2 disks for each core

Our instances are under provisioned -
results are upper bound



MB transferred / CPU sec.

How much data is transferred per
CPU second?
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Google: 0.8-1.5 MB / machine second
Microsoft: 7-11 MB / task second



What does this mean about Spark
versus Hadoop?

This work:
19%

AN
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serialized + serialized +

compressed c?ompressed

on-disk In-memory
data data

Faster




This work says nothing about Spark
vs. Hadoop!

up to 10x This work: 6X or more
0 amplab.cs.berkeley.e
spark.apache.org 19% e

Wy Seak’ spalk’ spark

compressed compressed in-memory
(on- dISk data) on-disk in-memory data

Faster >




Fraction of stragglers

What causes stragglers?
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Output size (inherent)
First task (inherent) <=

Scheduler delay ===
HDEFS read (disk) —

Shuffle write (disk) x=x=xx
Shuffle read (network) ez

Garbage collection
Unexplained s

Takeaway: causes depend on the workload, but

disk and garbage collection common

Fixing straggler causes can speed up other

tasks too



Live demo



Scheduler delay
Task deserialization
Network wait

Compute
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Output write wait
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eecs.berkeley.edu/~keo/traces



| want your workloads!

spark.eventlLog.enabled true

keo@cs.berkeley.edu



Network optimizations
can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck
19% reduction in completion time from optimizing disk

Many straggler causes can be identified and
fixed

Project webpage (with links to paper and tool):
eecs.berkeley.edu/~keo/traces

Contact: keo@cs.berkeley.edu, @kayousterhout




Backup Slides



Reduction in JCT

How do results change with scale?
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Improvement from eliminating a particular perf. factor



Utilization

How does the utilization compare?
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