Making Sense of Spark Performance

eecs.berkeley.edu/~keo/traces

Kay Ousterhout UC Berkeley

In collaboration with Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun

About Me

PhD student in Computer Science at UC Berkeley

Thesis work centers around performance of large-scale distributed systems

Spark PMC member

About This Talk

Overview of how Spark works

How we measured performance bottlenecks

In-depth performance analysis for a few workloads

Demo of performance analysis tool

Count the # of words in the document

Count the # of occurrences of each word

Performance considerations

Caching PACMan [NSDI '12], Spark [NSDI '12], Tachyon [SoCC '14]

Scheduling Sparrow [SOSP '13], Apollo [OSDI '14], Mesos [NSDI '11], DRF [NSDI '11], Tetris [SIGCOMM '14], Omega [Eurosys '13], YARN [SoCC '13], Quincy [SOSP '09], KMN [OSDI '14]

Stragglers Scarlett [EuroSys '11], SkewTune [SIGMOD '12], LATE [OSDI '08], Mantri [OSDI '10], Dolly [NSDI '13], GRASS [NSDI '14], Wrangler [SoCC '14]

Network VL2 [SIGCOMM '09], Hedera [NSDI '10], Sinbad [SIGCOMM '13], Orchestra [SIGCOMM '11], Baraat [SIGCOMM '14], Varys [SIGCOMM '14], PeriSCOPE [OSDI '12], SUDO [NSDI '12], Camdoop [NSDI '12], Oktopus [SIGCOMM '11]), EyeQ [NSDI '12], FairCloud [SIGCOMM '12]

Generalized programming model

Dryad [Eurosys '07], Spark [NSDI '12]

Caching PACMan [NSDI '12], Spark [NSDI '12], Tachyon [SoCC '14]

Scheduling Sparrow [SOSP '13], Apollo [OSDI '14], Mesos [NSDI '11], DRF [NSDI '11], Tetris [SIGCOMM '14], Omega [Eurosys '13], YARN [SoCC '13], Quincy [SOSP '09], KMN [OSDI '14]

Network and disks I/O are bottlenecks [OSDI '08], Mantri [OSDI '10], Dolly [NSDI '13], GRASS [NSDI '14],

Wrangler [SoCC '14]

Stragglers are a major issue with

[SIGCOMM '13], Ordenk[howh'16auséSCOMM '14], Varys [SIGCOMM '14], Periscope [OSDI '12], SUDO [NSDI '12], Camdoop [NSDI '12], Oktopus [SIGCOMM '11]), EyeQ [NSDI '12], FairCloud [SIGCOMM '12]

Generalized programming model

Dryad [Eurosys '07], Spark [NSDI '12]

This Work

(1) Methodology for quantifying performance bottlenecks

(2) Bottleneck measurement for 3 SQL workloads (TPC-DS and 2 others)

Network optimizations can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck

Most straggler causes can be identified and fixed

Example Spark task:

Fine-grained instrumentation needed to understand performance

How much faster would a job run if the network were infinitely fast?

What's an upper bound on the improvement from network optimizations?

How much faster could a **task** run if the network were infinitely fast?

: blocked on network

: blocked on disk

compute

Task runtime with infinitely fast network

How much faster would a job run if the network were infinitely fast?

t_n: Job completion time with infinitely fast network

SQL Workloads

TPC-DS (20 machines, 850GB;

60 machines, 2.5TB)

www.tpc.org/tpcds

Big Data Benchmark (5 machines, 60GB) amplab.cs.berkeley.edu/benchmark

Databricks (9 machines, tens of GB) databricks.com

2 versions of each: in-memory, on-disk

How much faster could jobs get from optimizing network performance? Percentiles

Median improvement at most 2%

How can we sanity check these numbers?

How much data is transferred per CPU second?

Microsoft '09-'10: **1.9–6.35 Mb / task second** Google '04-'07: **1.34–1.61 Mb / machine second**

How can this be true?

Shuffle Data < Input Data

What kind of hardware should I buy?

10Gbps networking hardware likely not necessary!

How much faster would jobs complete if the disk were infinitely fast?

How much faster could jobs get from optimizing disk performance?

Median improvement at most 19%

Disk Configuration

Our instances: 2 disks, 8 cores

Cloudera:

- At least 1 disk for every 3 cores
- As many as 2 disks for each core

Our instances are under provisioned \rightarrow results are upper bound

How much data is transferred per CPU second?

Google: 0.8-1.5 MB / machine second Microsoft: 7-11 MB / task second

What does this mean about Spark versus Hadoop?

Faster-

This work says nothing about Spark vs. Hadoop!

What causes stragglers?

Takeaway: causes depend on the workload, but disk and garbage collection common

Fixing straggler causes can speed up other tasks too

Live demo

eecs.berkeley.edu/~keo/traces

I want your workloads!

spark.eventLog.enabled true

keo@cs.berkeley.edu

Network optimizations

can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck

19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed

Project webpage (with links to paper and tool): eecs.berkeley.edu/~keo/traces

Contact: keo@cs.berkeley.edu, @kayousterhout

Backup Slides

How do results change with scale?

Improvement from eliminating a particular perf. factor

How does the utilization compare?

