
Florida Institute of Cyber Security (FICS) Research

USENIX Security’16, Austin, TX
Aug 11, 2016

Making USB Great Again with
USBFILTER

Dave Tian*, Nolen Scaife*, Adam Bates**, Kevin Butler*, Patrick Traynor*
*University of Florida, Gainesville, FL

**University of Illinois, Urbana-Champaign, IL

Florida Institute of Cyber Security (FICS) Research 2

Make it real…

Florida Institute of Cyber Security (FICS) Research 3

• Universal Serial Bus
• USB 1.0/2.0/3.0/3.1/Type-C

• Speed
• 10 gigabits per second

• Ubiquitous

Why USB was great

Florida Institute of Cyber Security (FICS) Research 4

Why USB is not great anymore

Florida Institute of Cyber Security (FICS) Research 5

USB enumeration
Host Device

SetAddress(n)

ACK

GetDescriptor(Device)

MNF: Kingston, Product: Flash Drive

GetDescriptor(Interface)

Storage

Human Interface

Florida Institute of Cyber Security (FICS) Research 6

USB device
rules can stop attacks on hosts by identifying and
dropping unwanted USB packets before they reach
their destination in the host operating system.

• Implement and characterize performance: We
demonstrate how USBFILTER imposes minimal
overhead on USB traffic. As a result, our system
is well-suited for protecting any USB workload.

• Demonstrate effectiveness in real-world scenar-
ios: We explore how USBFILTER can be used
to thwart attacks and provide security guarantees
for benign devices. USBFILTER can pin devices
(e.g., webcams) to approved programs (e.g., Skype,
Hangouts) to prevent malicious software on a host
from enabling or accessing protected devices.

USBFILTER is different from previous works in this
space because it enables the creation of rules that explic-
itly allow or deny functionality based on a wide range
of features. GoodUSB [41] relies on the user to explic-
itly allow or deny specific functionality based on what
the device reports, but cannot enforce that the behav-
ior of a device matches what it reports. SELinux [35]
policies and PinUP [13] provide mechanisms for pinning
processes to filesystem objects, but USBFILTER expands
this by allowing individual USB packets to be associated
with processes. This not only allows our system to per-
mit pinning devices to processes, but also individual in-
terfaces of composite devices.

Our policies can be applied to differentiate individual
devices by identifiers presented during device enumera-
tion. These identifiers, such as serial number, provide
a stronger measure of identification than simple prod-
uct and vendor codes. While not a strong authentication
mechanism, USBFILTER is able to perform filtering with-
out additional hardware. The granularity and extensibil-
ity of USBFILTER allows it to perform the functions of
existing filters [41] while permitting much stronger con-
trol over USB devices.

The remainder of this paper is structured as follows: In
Section 2, we provide background on the USB protocol
and explain why it is not great anymore; in Section 3,
we discuss the security goals, design and implementation
of our system; in Section 4, we discuss how USBFILTER
meets our required security guarantees; in Section 5, we
evaluate USBFILTER and discuss individual use cases; in
Section 6, we provide additional discussion; in Section 7,
we explore related work; and in Section 8, we conclude.

2 Background

A USB device refers to a USB transceiver, USB hub, host
controller, or peripheral device such as a human-interface

USB Device
Interface 0 Interface 1 Interface 2

In Out In InOut Out

EP 0 EP 0
EP 1 EP1

EP 0 EP 0 EP 0 EP 0
EP 1 EP 1 EP 1 EP 1
EP 2 EP 2EP 2 EP 2

EP n EP n

Figure 1: A detailed view of a generic USB device. Sim-
ilar to a typical USB headset, this device has three inter-
faces and multiple endpoints.

device (HID, e.g., keyboard and mouse), printer, or stor-
age. However, the device may have multiple functions
internally, known as interfaces. An example device with
three interfaces is shown in Figure 1. USB devices with
more than one interface are known as composite devices.
For example, USB headsets often have at least three in-
terfaces: the speaker, the microphone, and the volume
control functionalities. Each interface is treated as an in-
dependent entity by the host controller. The operating
system loads a separate device driver for each interface
on the device.

The USB protocol works in a master-slave fashion,
where the host USB controller is responsible to poll the
device both for requests and responses. When a USB
device is attached to a host machine, the host USB con-
troller queries the device to obtain the configurations of
the device, and activates a single configuration supported
by the device. For instance, when a smartphone is con-
nected with a host machine via USB, users can choose
it to be a storage or networking device. By parsing the
current active configuration, the host operating system
identifies all the interfaces contained in the configura-
tion, and loads the corresponding device drivers for each
interface. This whole procedure is called USB enumera-
tion [10]. Once a USB device driver starts, it first parses
the endpoints information embedded within this interface
as shown in Figure 1.

While the interface provides the basic information for
the host operating system to load the driver, the endpoint
is the communication unit when a driver talks with the
USB device hardware. Per specification, the endpoint 0
(EP0) should be supported by default, enabling Control
(packet) transfer from a host to a device to further probe
the device, prepare for data transmission, and check for
errors. All other endpoints can be optional though there
is usually at least EP1, providing Isochronous, Inter-
rupt, or Bulk (packet) transfers, which are used by au-
dio/video, keyboard/mouse, and storage/networking de-
vices respectively. All endpoints are grouped into either
In pipes, where transfers are from the device to the host,

2

Florida Institute of Cyber Security (FICS) Research 7

USB packet

USB_packet(“key”)

USB_packet(“data”)

USB_packet(“key”)

Florida Institute of Cyber Security (FICS) Research 8

USBFILTER

Rule
DB

USBFILTER

App1 App2 App3

keyboard
storage

headset
cameramouse

wireless

Kernel Space

User Space I/O operation

USB packet

Figure 2: USBFILTER implements a USB-layer reference
monitor within the kernel, by filtering USB packets to
different USB devices to control the communications be-
tween applications and devices based on rules config-
ured.

to enable or access authorized devices from unauthorized
processes or devices. In either case, the adversary may
attempt to exfiltrate data from the host system via both
physical and virtual USB devices.

We consider the following actions by an adversary:

• Device Tampering: The adversary may attempt
to attach or tamper with a previously-authorized
device to add unauthorized functionality (e.g.,
BadUSB [27]).

• Unauthorized Devices: Unauthorized devices at-
tached to the system either physically or virtu-
ally [21] can be used to discreetly interact with the
host system or to provide data storage for future ex-
filtration.

• Unauthorized Access: The adversary may attempt
to enable or access authorized devices on a host
(e.g., webcam, microphone, etc.) via unauthorized
software to gain access to information or function-
ality that would otherwise inaccessible.

We assume that as a kernel component, the integrity of
USBFILTER depends on the integrity of the operating sys-
tem and the host hardware (except USB devices). Code
running in the kernel space has unrestricted access to the
kernel’s memory, including our code, and we assume that
the code running in the kernel will not tamper with USB-
FILTER. We discuss how we ensure runtime and platform
integrity in our experimental setup in Section 3.4.

3.2 Design Goals
Inspired by the Netfilter [40] framework in the Linux
kernel, we designed USBFILTER to enable administrator-

Rule
DB

USBFILTER

App1 App2 App3

Kernel Space

User Space

usbtables

Host Controller

USB Devices

Storage
Driver

Input
Driver

Video
Driver

USB packet

I/O
operation

URB

netlink

usbfilter
modules

Figure 3: The architecture of USBFILTER.

defined rule-based filtering for the USB protocol. To
achieve this, we first designed our system to satisfy the
concept of a reference monitor [2], shown in Figure 2.
While these goals are not required for full functionality
of USBFILTER, we chose to design for stronger security
guarantees to ensure that processes attempting to access
hardware USB devices directly would be unable to cir-
cumvent our system. We define the specific goals as fol-
lows:

G1 Complete Mediation. All physical or virtual USB
packets must pass through USBFILTER before deliv-
ery to the intended destination.

G2 Tamperproof. USBFILTER may not be bypassed or
disabled as long as the integrity of the operating sys-
tem is maintained.

G3 Verifiable. The user-defined rules input into the
system must be verifiably correct. These rules may
not conflict with each other.

While the above goals support the security guarantees
that we want USBFILTER to provide, we expand upon
these to provide additional functionality:

G4 Granular. Any mutable data in a USB packet
header must be accessible by a user-defined rule. If
the ultimate destination of a packet is a userspace
process, USBFILTER must permit the user to specify
the process in a rule.

G5 Modular. USBFILTER must be extensible and allow
users to provide submodules to support additional
types of analysis.

3.3 Design and Implementation
The core USBFILTER component is statically compiled
and linked into the Linux kernel image, which hooks the

4

Florida Institute of Cyber Security (FICS) Research 9

Goals
• Complete mediation
• Tamperproof
• Verifiability
• Granularity
• Extensibility

Reference Monitor

Florida Institute of Cyber Security (FICS) Research 10

Rule constructions

Process pid,ppid,pgid,uid,euid,gid,egid,comm

Device bus#,dev#,port#,if#,devpath,manufacturer,product,serial

Packet type,direction,endpoint,address

LUM name

Florida Institute of Cyber Security (FICS) Research 11

Rule consistency
• General conflict

• Weak conflict

• Strong conflict

existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)
8Ci 3 C :

(9Ca
i 3 Ra^9Cb

i 3 Rb^ value(Ca
i) 6= value(Cb

i))_
(9Ca

i 3 Ra^ 6 9Cb
i 3 Rb)_

(6 9Ca
i 3 Ra^ 6 9Cb

i 3 Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) 6= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)
8Ci 3 C :

(9Ca
i 3 Ra^9Cb

i 3 Rb^ value(Ca
i) 6= value(Cb

i))_
(9Ca

i 3 Ra^ 6 9Cb
i 3 Rb)_

(6 9Ca
i 3 Ra^ 6 9Cb

i 3 Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) 6= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)
8Ci 3 C :

(9Ca
i 3 Ra^9Cb

i 3 Rb^ value(Ca
i) 6= value(Cb

i))_
(9Ca

i 3 Ra^ 6 9Cb
i 3 Rb)_

(6 9Ca
i 3 Ra^ 6 9Cb

i 3 Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) 6= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

Florida Institute of Cyber Security (FICS) Research 12

Linux USBFILTER Module (LUM)
• User-defined extension for USBFILTER

• <linux/usbfilter.h>
• Rule construction unit

• writing new rules with LUM
• Looking into the USB packet

• SCSI commands, IP packets, HID packets, and etc.

Florida Institute of Cyber Security (FICS) Research 13

LUM: detect the SCSI write cmd

Appendix

1 /*
2 * lbsw - A LUM kernel module
3 * used to block SCSI write command within USB packets
4 */
5 #include <linux/module.h>
6 #include <linux/usbfilter.h>
7 #include <scsi/scsi.h>
8
9 #define LUM_NAME "block_scsi_write"

10 #define LUM_SCSI_CMD_IDX 15
11
12 static struct usbfilter_lum lbsw;
13 static int lum_registered;
14
15 /*
16 * Define the filter function
17 * Return 1 if this is the target packet
18 * Otherwise 0
19 */
20 int lbsw_filter_urb(struct urb *urb)
21 {
22 char opcode;
23
24 /* Has to be an OUT packet */
25 if (usb_pipein(urb->pipe))
26 return 0;
27
28 /* Make sure the packet is large enough */
29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)
30 return 0;
31
32 /* Make sure the packet is not empty */
33 if (!urb->transfer_buffer)
34 return 0;
35
36 /* Get the SCSI cmd opcode */
37 opcode = ((char *)urb->transfer_buffer)[LUM_SCSI_CMD_IDX];
38
39 /* Current only handle WRITE_10 for Kingston */
40 switch (opcode) {
41 case WRITE_10:
42 return 1;
43 default:
44 break;
45 }
46
47 return 0;
48 }
49
50 static int __init lbsw_init(void)
51 {
52 pr_info("lbsw: Entering: %s\n", __func__);
53 snprintf(lbsw.name, USBFILTER_LUM_NAME_LEN, "%s", LUM_NAME);
54 lbsw.lum_filter_urb = lbsw_filter_urb;
55
56 /* Register this lum */
57 if (usbfilter_register_lum(&lbsw))
58 pr_err("lbsw: registering lum failed\n");
59 else

60 lum_registered = 1;
61
62 return 0;
63 }
64
65 static void __exit lbsw_exit(void)
66 {
67 pr_info("exiting lbsw module\n");
68 if (lum_registered)
69 usbfilter_deregister_lum(&lbsw);
70 }
71
72 module_init(lbsw_init);
73 module_exit(lbsw_exit);
74
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("lbsw module");
77 MODULE_AUTHOR("dtrump");

Figure 9: An example Linux USBFILTER Module that blocks writes to USB removable storage.

16

Florida Institute of Cyber Security (FICS) Research 14

Overview
• USBFILTER - 27 kernel source files

• 4 new files, 23 modified files
• Across USB, SCSI, Block, and Networking subsystems

• USBTABLES
• Internal Prolog engine
• 21 rule constructions

Florida Institute of Cyber Security (FICS) Research 15

Stop BadUSB attacks

For my keyboard/mouse:

5 Evaluation

The USBFILTER host machine is a Dell Optiplex 7010
with an Intel Quad-core 3.20 GHz CPU with 8 GB mem-
ory and is running Ubuntu Linux 14.04 LTS with kernel
version 3.13. The machine has two USB 2.0 controllers
and one USB 3.0 controller, provided by the Intel 7 Se-
ries/C210 Series chipset. To demonstrate the power of
USBFILTER, we first examine different USB devices and
provide practical use cases which are non-trivial for tra-
ditional access control mechanisms. Finally we measure
the overhead introduced by USBFILTER.

The default behavior of USBFILTER in our host ma-
chine is to allow the USB packet if no rule matches the
packet. A more constrained setting is to change the de-
fault behavior to drop, requiring each permitted USB de-
vice to need an allow rule. In this setting, malicious de-
vices have to impersonate benign devices to allow com-
munications, which are still regulated by the rules, e.g.,
no HID traffic allowed for a legit USB storage device.
All tests use the same front-end USB 2.0 port on the ma-
chine.

5.1 Case Studies
Listen-only USB headset. The typical USB headset
is a composite device with multiple interfaces includ-
ing speakers, microphone, and volume control. Sen-
sitive working environments may ban the use of USB
headsets due to possible eavesdropping using the micro-
phone [17]. Physically disabling the headset microphone
is often the only mechanism for permanently removing
it, as there is no other way to guarantee the microphone
stays off. Users can mute or unmute the microphone
using the desktop audio controls at any time after lo-
gin. However, with USBFILTER, the system administra-
tor can guarantee that the headset’s microphone remains
disabled and cannot be enabled or accessed by users.

We use a Logitech H390 Headset to demonstrate how
to achieve this guarantee on the USBFILTER host ma-
chine:
usbtables -a logitech-headset -v ifnum=2,product=

"Logitech USB Headset",manufacturer=Logitech -k
direction=1 -t drop

This rule drops any incoming packets from the
Logitech USB headset’s microphone. By adding the
interface number (ifnum=2), we avoid breaking other
functionality in the headset.

Customizing devices. To further show how USBFIL-
TER can filter functionalities provided by USB devices,
we use Teensy 3.2 [29] to create a complex USB de-
vice with five interfaces including a keyboard, a mouse,
a joystick, and two serial ports. The keyboard contin-

ually types commands in the terminal, while the mouse
continually moves the cursor. We can write USBFILTER
rules to completely shutdown the keyboard and mouse
functionalities:
usbtables -a teensy1 -v ifnum=2,manufacturer=

Teensyduino,serial=1509380 -t drop
usbtables -a teensy2 -v ifnum=3,manufacturer=

Teensyduino,serial=1509380 -t drop

In these rules, we use condition “manufacturer” and “se-
rial” (serial number) to limit the Teensy’s functionality.
Different interface numbers represent the keyboard and
the mouse respectively. After these rules applied, both
the keyboard and the mouse return to normal.

Default-deny input devices. Next, we show how to de-
fend against HID-based BadUSB attacks using USBFIL-
TER. These types of devices are a type of trojan horse;
they appear to be one device, such as a storage device,
but secretly contain hidden input functionality (e.g., key-
board or mouse). When attached to a host, the device
can send keystrokes to the host and perform actions as
the current user.

First, we create a BadUSB storage device using a Rub-
ber Ducky [18], which looks like a USB thumb drive but
opens a terminal and injects keystrokes. Then we add
following rules into the host machine:
usbtables -a mymouse -v busnum=1,devnum=4,portnum=2,

devpath=1.2,product="USB Optical Mouse",
manufacturer=PixArt -k types=1 -t allow

usbtables -a mykeyboard -v busnum=1,devnum=3,
portnum=1,devpath=1.1,
product="Dell USB Entry Keyboard",
manufacturer=DELL -k types=1 -t allow

usbtables -a noducky -k types=1 -t drop

The first two rules whitelist the existing keyboard and
mouse on the host machine; the last rule drops any USB
packets from other HID devices. After these rules are
inserted into the kernel, reconnecting the malicious de-
vice does nothing. Attackers may try to impersonate the
keyboard or mouse on the host machine. However, we
have leveraged information about the physical interface
(busnum and portnum) to write the first two rules,
which would require the attacker to unplug the existing
devices, plug the malicious device in, and impersonate
the original devices including the device’s VID/PID
and serial number. We leave authenticating individual
USB devices to future work, however USBFILTER is
extensible so that authentication can be added and used
in rules.

Data exfiltration. To prevent data exfiltration from the
host machine to USB storage devices, we write a LUM
(Linux USBFILTER Module) to block the SCSI write
command from the host to the device, as shown in Fig-
ure 9 in the Appendix. The LUM then registers itself
with USBFILTER and can be referenced by its name in

8

Florida Institute of Cyber Security (FICS) Research 16

Pin Skype to webcam

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

For Logitech webcam C310:

Florida Institute of Cyber Security (FICS) Research 17

Stop data exfiltration

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

For any USB storage devices:

Florida Institute of Cyber Security (FICS) Research 18

Just speaker, no microphone

5 Evaluation

The USBFILTER host machine is a Dell Optiplex 7010
with an Intel Quad-core 3.20 GHz CPU with 8 GB mem-
ory and is running Ubuntu Linux 14.04 LTS with kernel
version 3.13. The machine has two USB 2.0 controllers
and one USB 3.0 controller, provided by the Intel 7 Se-
ries/C210 Series chipset. To demonstrate the power of
USBFILTER, we first examine different USB devices and
provide practical use cases which are non-trivial for tra-
ditional access control mechanisms. Finally we measure
the overhead introduced by USBFILTER.

The default behavior of USBFILTER in our host ma-
chine is to allow the USB packet if no rule matches the
packet. A more constrained setting is to change the de-
fault behavior to drop, requiring each permitted USB de-
vice to need an allow rule. In this setting, malicious de-
vices have to impersonate benign devices to allow com-
munications, which are still regulated by the rules, e.g.,
no HID traffic allowed for a legit USB storage device.
All tests use the same front-end USB 2.0 port on the ma-
chine.

5.1 Case Studies
Listen-only USB headset. The typical USB headset
is a composite device with multiple interfaces includ-
ing speakers, microphone, and volume control. Sen-
sitive working environments may ban the use of USB
headsets due to possible eavesdropping using the micro-
phone [17]. Physically disabling the headset microphone
is often the only mechanism for permanently removing
it, as there is no other way to guarantee the microphone
stays off. Users can mute or unmute the microphone
using the desktop audio controls at any time after lo-
gin. However, with USBFILTER, the system administra-
tor can guarantee that the headset’s microphone remains
disabled and cannot be enabled or accessed by users.

We use a Logitech H390 Headset to demonstrate how
to achieve this guarantee on the USBFILTER host ma-
chine:
usbtables -a logitech-headset -v ifnum=2,product=

"Logitech USB Headset",manufacturer=Logitech -k
direction=1 -t drop

This rule drops any incoming packets from the
Logitech USB headset’s microphone. By adding the
interface number (ifnum=2), we avoid breaking other
functionality in the headset.

Customizing devices. To further show how USBFIL-
TER can filter functionalities provided by USB devices,
we use Teensy 3.2 [29] to create a complex USB de-
vice with five interfaces including a keyboard, a mouse,
a joystick, and two serial ports. The keyboard contin-

ually types commands in the terminal, while the mouse
continually moves the cursor. We can write USBFILTER
rules to completely shutdown the keyboard and mouse
functionalities:
usbtables -a teensy1 -v ifnum=2,manufacturer=

Teensyduino,serial=1509380 -t drop
usbtables -a teensy2 -v ifnum=3,manufacturer=

Teensyduino,serial=1509380 -t drop

In these rules, we use condition “manufacturer” and “se-
rial” (serial number) to limit the Teensy’s functionality.
Different interface numbers represent the keyboard and
the mouse respectively. After these rules applied, both
the keyboard and the mouse return to normal.

Default-deny input devices. Next, we show how to de-
fend against HID-based BadUSB attacks using USBFIL-
TER. These types of devices are a type of trojan horse;
they appear to be one device, such as a storage device,
but secretly contain hidden input functionality (e.g., key-
board or mouse). When attached to a host, the device
can send keystrokes to the host and perform actions as
the current user.

First, we create a BadUSB storage device using a Rub-
ber Ducky [18], which looks like a USB thumb drive but
opens a terminal and injects keystrokes. Then we add
following rules into the host machine:
usbtables -a mymouse -v busnum=1,devnum=4,portnum=2,

devpath=1.2,product="USB Optical Mouse",
manufacturer=PixArt -k types=1 -t allow

usbtables -a mykeyboard -v busnum=1,devnum=3,
portnum=1,devpath=1.1,
product="Dell USB Entry Keyboard",
manufacturer=DELL -k types=1 -t allow

usbtables -a noducky -k types=1 -t drop

The first two rules whitelist the existing keyboard and
mouse on the host machine; the last rule drops any USB
packets from other HID devices. After these rules are
inserted into the kernel, reconnecting the malicious de-
vice does nothing. Attackers may try to impersonate the
keyboard or mouse on the host machine. However, we
have leveraged information about the physical interface
(busnum and portnum) to write the first two rules,
which would require the attacker to unplug the existing
devices, plug the malicious device in, and impersonate
the original devices including the device’s VID/PID
and serial number. We leave authenticating individual
USB devices to future work, however USBFILTER is
extensible so that authentication can be added and used
in rules.

Data exfiltration. To prevent data exfiltration from the
host machine to USB storage devices, we write a LUM
(Linux USBFILTER Module) to block the SCSI write
command from the host to the device, as shown in Fig-
ure 9 in the Appendix. The LUM then registers itself
with USBFILTER and can be referenced by its name in

8

For Logitech USB headset:

Florida Institute of Cyber Security (FICS) Research 19

Charge safe

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

For Nexus 4:

For any phone:

Florida Institute of Cyber Security (FICS) Research 20

Scalability

Adding a new rule Avg (ms)
20 Base Rules 5.9

100 Base Rules 5.9

Packet filtering Avg (µs)
20 Base Rules 2.6

100 Base Rules 9.7

USBTABLES:

USBFILTER:

Florida Institute of Cyber Security (FICS) Research 21

Throughput

Figure 5: Filebench throughput (MB/s) using
fileserver workload with different mean
file sizes.

Figure 6: Iperf bandwidth (MB/s) using TCP
with different time intervals.

Figure 7: Iperf bandwidth (MB/s) using UDP
with different time intervals.

Figure 8: Performance comparison of real-
world workloads.

Rule Adding Min Avg Med Max Dev
Time (20 rules) 5.1 5.9 6.1 6.6 0.3
Time (100 rules) 4.9 5.9 6.1 6.8 0.4

Table 2: Rule adding operation time (ms) averaged by
100 runs.

100 rules and measured the time to process the rules. For
each new rule, the Prolog engine needs to go through the
existing rules and check for conflicts.

We measured 100 trials of each test. The performance
of the Prolog engine is shown in Table 1. The average
time used by the Prolog engine is 239.8 µs with 20
rules and 251.7 µs with 100 rules. This fast speed is the
result of using GNU Prolog (gplc) compiler to compile
Prolog into assembly for acceleration. We also measure
the overhead for USBTABLES to add a new rule to the
kernel space. This includes loading existing rules into
the Prolog engine, checking for conflicts, saving the rule

USB Enumeration Min Avg Med Max Dev Cost
Stock Kernel 32.0 33.9 34.1 34.8 0.6 N/A

USBFILTER (20 rules) 33.2 34.4 34.3 35.8 0.7 1.5%
USBFILTER (100 rules) 33.9 34.8 34.6 36.0 0.5 2.7%

Table 3: USB enumeration time (ms) averaged by 20
runs.

locally, passing the rule to the kernel, and waiting for the
acknowledgment. As shown in Table 2, the average time
of adding a rule using USBTABLES stays at around 6 ms
in both cases, which is a negligible one-time cost.

USB Enumeration Overhead. For this test, we used
the Logitech H390 USB headset, which has 4 interfaces.
We manually plugged the headset into the host 20 times.
We then compare the results between the USBFILTER
kernel with varying numbers of rules loaded and the
stock Ubuntu kernel, where USBFILTER is fully disabled,

10

Florida Institute of Cyber Security (FICS) Research 22

Latency

Latency (µs) 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

Stock 97.6 98.1 99.2 105.5 741.7 5177.7

USBFILTER 97.7 98.2 99.6 106.3 851.5 6088.4

Overhead 0.1% 0.1% 0.4% 0.8% 14.8% 17.6%

Florida Institute of Cyber Security (FICS) Research 23

Performance in real world

Florida Institute of Cyber Security (FICS) Research 24

Limitations & Future Work
• IRQ contexts
• Vendor-specific drivers
• Response-path filtering
• Making it faster - BPF
• More useful LUMs
• Usability - targeting administrators

Florida Institute of Cyber Security (FICS) Research 25

Conclusion
• USBFILTER

• A USB layer firewall in the Linux kernel
• USBTABLES

• A user-space tool to manage policies/rules
• Controlling USB device behaviors

• Defending against BadUSB attacks
• Limiting USB device functionalities

• Introducing minimum overhead

Florida Institute of Cyber Security (FICS) Research 26

Q&A
Get USBFILTER now:

https://github.com/daveti/usbfilter

All bugs are introduced by:
root@davejingtian.org

Thanks!

https://github.com/daveti/usbfilter
mailto:root@davejingtian.org

Florida Institute of Cyber Security (FICS) Research 27

USBTABLES -h
existing rules maintained by USBFILTER. If the new rule
has a unique name, all the values of conditions are in
range, and it does not conflict with any existing rules, the
rule is correct.

While the name and the value checks are straightfor-
ward, there are different conflicting cases between the
conditions and the action, particularly when a rule does
not contain all conditions. For example, a rule can be
contradictory with, a sub rule of, or the same as another
existing rule. As such, we define the general conflict be-
tween two rules as follows:

general_con f lict(Ra,Rb)
8Ci 3 C :

(9Ca
i 3 Ra^9Cb

i 3 Rb^ value(Ca
i) 6= value(Cb

i))_
(9Ca

i 3 Ra^ 6 9Cb
i 3 Rb)_

(6 9Ca
i 3 Ra^ 6 9Cb

i 3 Rb).

A rule Ra is generally conflicted with another rule Rb if
all conditions used by Ra are a subset of the ones spec-
ified in Rb. We consider a general conflict to occur if
the new rule and an existing rule would fire on the same
packet.

Based on the general conflict, we define weak conflict
and strong conflict as follows:

weak_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) = action(Rb).

strong_con f lict(Ra,Rb)
general_con f lict(Ra,Rb)^action(Ra) 6= action(Rb).

While weak conflict shows that the new rule could be
a duplicate of an existing rule, strong conflict presents
that this new rule would not work. The weak conflict,
however, depending on the requirement and the imple-
mentation, may be allowed temporarily to shrink the
scope of an existing rule while avoiding the time gap
between the old rule removed and the new rule added.
For instance, rule A drops any USB packets writing
data into any external USB storage devices. Later on,
the user decides to block write operations only for
the Kingston thumb drive by writing rule B, which is
weak conflicted with rule A, since both rules have the
same destination and action. When the user wants to
unblock the Kingston storage by writing rule C, rule C
is strong conflicted with both rule A and B, since rule C
has a different action, and will never work as expected
because of rule A/B. By relying on the logic reasoning
of Prolog, we are able to guarantee that a rule before
added is formally verified no conflict with existing rules
3.

3Note that all rules are monotonic by design, which means rules to
be added cannot override existing ones. Future work will add general
rules, which can be overwritten by new rules.

-d|--debug enable debug mode
-c|--config path to configuration file (TBD)
-h|--help display this help message
-p|--dump dump all the rules
-a|--add add a new rule
-r|--remove remove an existing rule
-s|--sync synchronize rules with kernel
-e|--enable enable usbfilter
-q|--disable disable usbfilter
-b|--behave change the default behavior
-o|--proc process table rule
-v|--dev device table rule
-k|--pkt packet table rule
-l|--lum LUM table rule
-t|--act table rule action

proc: pid,ppid,pgid,uid,euid,gid,egid,comm
dev: busnum,devnum,portnum,ifnum,devpath,product,

manufacturer,serial
pkt: types,direction,endpoint,address
lum: name
behavior/action: allow|drop

Figure 4: The output of “usbtables -h”. The per-
mitted conditions are divided into 4 tables: the process
table, the device table, the packet table, and the Linux
USBFILTER Module (LUM) table.

Granular (G4). A USBFILTER rule can contain 21
different conditions, excluding the name and action
field. We further divide these conditions into 4 tables,
including the process, device, packet, and the Linux
USBFILTER Module (LUM) table, as shown in Figure 4.
The process table lists conditions specific to target
applications; the device table contains details of USB
devices in the system; the packet table includes impor-
tant information about USB packets; and the LUM table
determines the name of the LUM to be used if needed.
Note that all LUMs should be loaded into the kernel
before being used in USBFILTER rules.

Module Extension (G5). To support customized rule
construction and deep USB packet analysis, USBFILTER
allows system administrators to write Linux USBFIL-
TER Modules (LUMs), and load them into the kernel as
needed. To write a LUM, developers need only include
the <linux/usbfilter.h> header file in the kernel module,
implement the callback lum_filter_urb(), and register the
module using usbfilter_register_lum(). Once registered,
the LUM can be referenced by its name in the construc-
tion of a rule. When a LUM is encountered in a rule,
besides other condition checking, USBFILTER calls the
lum_filter_urb() callback within this LUM, passing the
USB packet as the sole parameter. The callback returns
1 if the packet matches the target of this LUM, 0 other-
wise. Note that the current implementation supports only
one LUM per rule.

7

Florida Institute of Cyber Security (FICS) Research 28

A LUM written by dtrumpAppendix

1 /*
2 * lbsw - A LUM kernel module
3 * used to block SCSI write command within USB packets
4 */
5 #include <linux/module.h>
6 #include <linux/usbfilter.h>
7 #include <scsi/scsi.h>
8
9 #define LUM_NAME "block_scsi_write"

10 #define LUM_SCSI_CMD_IDX 15
11
12 static struct usbfilter_lum lbsw;
13 static int lum_registered;
14
15 /*
16 * Define the filter function
17 * Return 1 if this is the target packet
18 * Otherwise 0
19 */
20 int lbsw_filter_urb(struct urb *urb)
21 {
22 char opcode;
23
24 /* Has to be an OUT packet */
25 if (usb_pipein(urb->pipe))
26 return 0;
27
28 /* Make sure the packet is large enough */
29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)
30 return 0;
31
32 /* Make sure the packet is not empty */
33 if (!urb->transfer_buffer)
34 return 0;
35
36 /* Get the SCSI cmd opcode */
37 opcode = ((char *)urb->transfer_buffer)[LUM_SCSI_CMD_IDX];
38
39 /* Current only handle WRITE_10 for Kingston */
40 switch (opcode) {
41 case WRITE_10:
42 return 1;
43 default:
44 break;
45 }
46
47 return 0;
48 }
49
50 static int __init lbsw_init(void)
51 {
52 pr_info("lbsw: Entering: %s\n", __func__);
53 snprintf(lbsw.name, USBFILTER_LUM_NAME_LEN, "%s", LUM_NAME);
54 lbsw.lum_filter_urb = lbsw_filter_urb;
55
56 /* Register this lum */
57 if (usbfilter_register_lum(&lbsw))
58 pr_err("lbsw: registering lum failed\n");
59 else

60 lum_registered = 1;
61
62 return 0;
63 }
64
65 static void __exit lbsw_exit(void)
66 {
67 pr_info("exiting lbsw module\n");
68 if (lum_registered)
69 usbfilter_deregister_lum(&lbsw);
70 }
71
72 module_init(lbsw_init);
73 module_exit(lbsw_exit);
74
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("lbsw module");
77 MODULE_AUTHOR("dtrump");

Figure 9: An example Linux USBFILTER Module that blocks writes to USB removable storage.

16

Appendix

1 /*
2 * lbsw - A LUM kernel module
3 * used to block SCSI write command within USB packets
4 */
5 #include <linux/module.h>
6 #include <linux/usbfilter.h>
7 #include <scsi/scsi.h>
8
9 #define LUM_NAME "block_scsi_write"

10 #define LUM_SCSI_CMD_IDX 15
11
12 static struct usbfilter_lum lbsw;
13 static int lum_registered;
14
15 /*
16 * Define the filter function
17 * Return 1 if this is the target packet
18 * Otherwise 0
19 */
20 int lbsw_filter_urb(struct urb *urb)
21 {
22 char opcode;
23
24 /* Has to be an OUT packet */
25 if (usb_pipein(urb->pipe))
26 return 0;
27
28 /* Make sure the packet is large enough */
29 if (urb->transfer_buffer_length <= LUM_SCSI_CMD_IDX)
30 return 0;
31
32 /* Make sure the packet is not empty */
33 if (!urb->transfer_buffer)
34 return 0;
35
36 /* Get the SCSI cmd opcode */
37 opcode = ((char *)urb->transfer_buffer)[LUM_SCSI_CMD_IDX];
38
39 /* Current only handle WRITE_10 for Kingston */
40 switch (opcode) {
41 case WRITE_10:
42 return 1;
43 default:
44 break;
45 }
46
47 return 0;
48 }
49
50 static int __init lbsw_init(void)
51 {
52 pr_info("lbsw: Entering: %s\n", __func__);
53 snprintf(lbsw.name, USBFILTER_LUM_NAME_LEN, "%s", LUM_NAME);
54 lbsw.lum_filter_urb = lbsw_filter_urb;
55
56 /* Register this lum */
57 if (usbfilter_register_lum(&lbsw))
58 pr_err("lbsw: registering lum failed\n");
59 else

60 lum_registered = 1;
61
62 return 0;
63 }
64
65 static void __exit lbsw_exit(void)
66 {
67 pr_info("exiting lbsw module\n");
68 if (lum_registered)
69 usbfilter_deregister_lum(&lbsw);
70 }
71
72 module_init(lbsw_init);
73 module_exit(lbsw_exit);
74
75 MODULE_LICENSE("GPL");
76 MODULE_DESCRIPTION("lbsw module");
77 MODULE_AUTHOR("dtrump");

Figure 9: An example Linux USBFILTER Module that blocks writes to USB removable storage.

16

Florida Institute of Cyber Security (FICS) Research 29

Just read, seriously
rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

For Kingston USB flash drive:

rule constructions. In this case study, we use a Kingston
DT 101 II 2G USB flash drive, and insert the following
rule:

usbtables -a nodataexfil -v manufacturer=Kingston
-l name=block_scsi_write -t drop

This rule prevents modification of files on the stor-
age device. Interestingly, vim reports files on the de-
vice to be read-only, despite the filesystem reporting that
the files are read-write. Since USBFILTER is able to trace
packets back to the applications initiating I/O operations
at the Linux kernel block layer, we are able to write rules
blocking (or allowing) specific users or applications from
writing to flash drive:

usbtables -a nodataexfil2 -o uid=1001
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

usbtables -a nodataexfil3 -o comm=vim
-v manufacturer=Kingston
-l name=block_scsi_write -t drop

The first rule prevents the user with uid=1001 from
writing anything to the USB storage; the second blocks
vim from writing to the storage. We can also block any
writes to USB storage devices:

usbtables -a nodataexfil4
-l name=block_scsi_write -t drop

USBFILTER logs dropped USB packets, and these logs
can easily be used in a centralized alerting system, noti-
fying administrators to unauthorized access attempts.
Webcam pinning. Webcams can easily be enabled and
accessed by attackers from exploiting vulnerable appli-
cations. Once access has been established, the attacker
can listen or watch the environment around the host com-
puter. In this case study, we show how to use USBFILTER
to restrict the use of a Logitech Webcam C310 to specific
users and applications.

usbtables -a skype -o uid=1001,comm=skype -v
serial=B4482A20 -t allow

usbtables -a nowebcam -v serial=B4482A20 -t drop

The serial number of the Logitech webcam is spec-
ified in the rules to differentiate any others that may
be attached to the system as well as to prevent other
webcams from being attached. The first rule allows
USB communication with the webcam only if the user is
uid=1001 and the application is Skype. The following
nowebcam rule drops other USB packets to the webcam
otherwise. As expected, the user can use the webcam
from his Skype but not from Pidgin, and other users
cannot start video calls even with Skype.

USB charge-only. Another form of BadUSB attacks is
DNS spoofing using smartphones. Once plugged into the
host machine, the malicious phone automatically enables
USB tethering, is recognized as a USB NIC by the host,

Prolog Engine Min Avg Med Max Dev
Time (20 rules) 128.0 239.8 288.0 329.0 73.2

Time (100 rules) 132.0 251.7 298.0 485.0 78.6

Table 1: Prolog reasoning time (µs) averaged by 100
runs.

then injects spoofed DNS replies into the host. The re-
sulting man-in-the-middle attack gives the attacker ac-
cess to the host’s network communications without the
authorization of the user. To prevent this attack, we use
USBFILTER to prevent all USB packets from a Google
Nexus 4 smartphone:
usbtables -a n4-charger -v product="Nexus 4" -t drop

This rule rule drops any USB packets to/from the
phone, which enforces the phone as a pure charging de-
vice without any USB functionality. The phone is unable
to be used for storage or tethering after the rule is applied.

We can construct a more specific charge-only rule:
usbtables -a charger -v busnum=1,portnum=4 -t drop

This rule specifies a specific physical port on the host
and this port can only be used for charging. This type
of rule is useful where USB ports may be exposed (e.g.,
on a point of sale terminal) and cannot be physically
removed. It is also vital to defend against malicious
devices whose firmware can be reprogrammed to forge
the VID/PID such as BadUSB, since this type of rule
only leverages the physical information on the host
machine. USBFILTER can partition all physical USB
ports and limit the USB traffic on each port.

5.2 Benchmarks
We first measure the performance of the user-space tool,
USBTABLES. We then measure the overhead imposed by
USBFILTER.

The measurement host is loaded with the rules men-
tioned in the case studies above before beginning bench-
marking. When coupled with the default rules provided
by USBFILTER, there are 20 total rules loaded in the ker-
nel. We chose 20 because we believe that a typical en-
terprise host’s USB devices (e.g., keyboard, mouse, re-
movable storage, webcam, etc.) will total less than 20.
Then we load 100 rules in the kernel to understand the
scalability of USBFILTER.

5.2.1 Microbenchmark

USBTABLES Performance. We measure the time used
by the Prolog engine to formally verify a rule before it is
added into the kernel. We loaded the kernel with 20 and

9

Florida Institute of Cyber Security (FICS) Research 30

What is wrong with USB
• Unlimited capabilities
• No authentication
• BadUSB attacks

