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Introduction

Preventing code (binaries) analysis is a critical issue:

Protection of industrial secrets.
DRM and copyright enforcement.
Fighting against software piracy.
Hinder code undertanding as long as possible (malware context).

Two main approaches known:

Code encryption.
Code obfuscation.
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Introduction (2)

Code Obfuscation

Make machine code difficult to understand. Used to conceal code logic, to
prevent tampering, deter reverse engineering (security through obscurity
principle).

May induce anti-debugging, anti-decompilation and anti-disassembly
mechanisms.

Known as theoretically impossible techniques

Case of black-box obfuscation (Barak et al. - 2001).

In practice... well it is not so obvious.

On Best-possible Obfuscation (Goldwasser - Rothblum 2007)
What about white-box model (Josse - Eicar 2008)?

Does not necessarily increase the data entropy.
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Introduction (3)

Code encryption

Code encryption transforms native binary code (plaintext) into random
data (ciphertext) by means of an encryption algorithm and a secret key.
The process must be reverseable to come back to the native code upon
execution.

Increase data entropy (close to random data).

Very easy to identify and detect, even locally.

The secret key is somewhere in the code: just find it and decipher.

The encryption routine, even protected, can be used as an oracle.

In practice... well it is not so obvious to enforce strong code
encryption.
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Our aim

Imagine new methods to protect code from analysis and
reverse-engineering.

Use the power of malicious cryptography.

We want the analyst to be unable

to distinguish encrypted data from non encrypted data (TRANSEC
aspect).
to interpret data (COMSEC issue).

Provide a high level of code mutation (poly/metamorphism) while
preserving the previous unabilities (add more confusion).

Protect against both static (disassembly/decompilation) and dynamic
(debugging, functional analysis, sanboxing...) analysis at the same
time.
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Project Status

Our techniques are about to be implemented in the AndroGuard
project (http://code.google.com/p/androguard/).

Already implemented in the LibThor library (available soon on
http://libthor.avcave.org)

Source code and data presented in this talk are provided upon request

Technical paper available in http://arxiv.org/abs/1009.4000
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What a cryptosystem really is?
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Code Mutation: polymorphism/metamorphism

Code mutation

Ability for a binary code to change wholly (metamorphism) or partly
(polymorphism) in order to remove as much as possible code invariants.
Polymorphism aims at bypassing static analysis while metamorphism aims
additionally at preventing behavior-based detection.

To achieve efficient code mutation, critical instructions must be
changed to prevent the analyst to rely on code invariants.

CFG instructions are primarily concerned (change the course of
execution and the way to change it).

Invariants we want to get rid of:

Critical sequences of bytes (contiguous or not).
Behavior (time-indexed meta-patterns), functional traces...
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Malicious Cryptography

Emerging domain initiated in (Filiol & Josse, 2007; Filiol & Raynal, 2008;
Filiol, 2010).
Covers different fields:

Use cryptography to build totally undetectable and invisible malware
(Über-malware).

Use malware to perform cryptanalysis operations:

steal secret keys or passwords,
manipulate encryption algorithms on-the-fly to weaken them
dynamically and temporarily,
modify the cryptographic environment in the target computer.

Design of encryption algorithms with hidden trapdoors.

This is the interconnection of computer virology with cryptology and
mathematics for mutual benefit.
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Cryptographic Environment Manipulation

Let us consider an arbitrary encryption algorithm E. Three main
techniques can be used (Filiol, 2010):

1 Choose an arbitrary pair (P,C) and design a suitable pair (E′,K ′)
such that C = E′(K ′, P ) (resp. P = E′(K ′, C)), where K ′ is
purposedly weak.

⇒ use a malware to replace E with E′.

2 Choose an arbitrary (E,C, P ) and compute K such that
C = E(K,P ) (Filiol, 2006).

3 Modify an arbitrary algorithm on-the-fly (e.g. with a malware)

modify E in E′ to add some arbitrary 3-tuple (P ′, C ′,K ′) in the
working domains of E. Thus we have C ′ = E′(K ′, P ′) (resp.
P ′ = E′(K ′, C ′)) while still having Ci = E′(K,Pi) (resp.
Pi = E′(K,Ci)). for almost all legitimate pairs (Ci, Pi).
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Entropy Profile

Shannon entropy

Shannon entropy is a measure of information disorder or more precisely of
information unpredictability.

Let us consider an information source X. When parsed, the source
outputs characters xi (i = 0, . . . , 255) with probability
pi = P [X = xi]. The source entropy is given by

H(X) =
255∑
i=0

−pi log2(pi)

Random, compressed or encrypted data will exhibit a high entropy
value.

E. Filiol (ESIEA - (C + V )O lab) Unreversable Binaries H2HC 2010 14 / 50



Introduction Basics Our approach Malicious PRNG Implementation Conclusion

Entropy Profile (2)

Native executable (unprotected): average entropy H(X) = 5.099
Packed executable: average entropy H(X) = 6.801
Encrypted executable: H(X) = 7.175
Detecting local entropy is straighforward (E. Carrera’s tools)

COMSEC vs TRANSEC.

Existing solutions: steganography or Perseus technology (iAWACS
2010).
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Key Management

Using encryption requires to manage secret quantities (keys).

The knowledge of the key and of the encryption algorithm gives a
total access to the code.

The main issue lies in the fact that the key is always somewhere
hidden in the code.

Just find it and decipher.
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Key Management (2)

Figure: Black Energy Malware (Tarakanov - 2010)
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Key Management (3)

Figure: Zeus botnet (Binsalleeh et al., 2010)
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New Trends as Solutions

Change entropy profile while preserving security

Use of malicious random generator/encryption algorithm.

Change the way to generate/manage keys

Environmental key generation and management (Riordan & Schneier,
1998; Filiol, 2005/2007)
K-ary viruses (Filiol 2007 - Desnos 2009)
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Malicious PRNG

Sophisticated polymorphic/metamorphic and obfuscation techniques
must rely on PRNG (Pseudo-Random Number Generator).

Our aim is to generate sequences of random numbers (here bytecode
values) on-the-fly while hiding the code behavior.

Sequences are precomputed and we have to design a generator which
will afterwards output those data.

Three cases are to be considered:
1 the code is built from any arbitrary random sequence (refer to the

technical paper);
2 the sequence is given by a (non yet protected) instance of bytecode

and we have to design an instance of PNRG accordingly (non published
yet);

3 Produce random data that can be somehow interpreted by a
fixed PRNG as meaningful instructions (like jump 0x89) directly.
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Malicious PRNG (2)

We fix some arbitrary sequence of code (bytecode, opcode,
operands...)

X0, X1, . . . , Xn

we want to hardcode them under a protected (obfuscated) form given
by

K0,K1, . . . ,Kn

The Ki and Xi values must have the same, low entropy profile

Whenever the code wants to execute (protected) instruction Ki, it
inputs it to the dFSM which outputs the value Xi.
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Malicious PRNG (3)

We then have to find a deterministic Finite State Machine (dFSM)
acting as a malicious PRNG such that we have

X0 = dFSM(K0), X1 = dFSM(K1) . . . Xi = dFSM(Ki) . . .

either fix value Xi and find out the “key” Ki for an arbitrary dFSM,

or for an arbitrary set of pairs (Xi,Ki) design a unique suitable dFSM
for those pairs.

We are going to present the first case
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Malicious PRNG (4)

Security requirements

The analyst can only access to the malware code which contains
unprotected data Ui and protected code (Ki values) but he must not
be able to distinguish Ui from the Ki values.

He has no access to the dFSM and thus cannot use it as an oracle
(see further, implementation issues).

The dFSMs we design must be “malicious” enough to be used for
code mutation purposes at the same time,

a single Xi value must be produced from many different possible Ki

values

Generalization of obfuscation through obscure predicate (the dFSM is
such a predicate in itself).
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Case Study

Without loss of generality, case drawn from Desnos’ Libthor and
Androguard library (obfuscation through polymorphic VMs).

[X86ASM ]→ [REILIR]→ [BY TECODES]

Let us consider the following piece of (critical) code we want to
protect from reversing (extract).

[X86 ASM] MOV EAX, 0x3 [B803000000]
[REIL IR] STR (0x3, B4, 1, 0), (EAX, B4, 0, 0)
[BYTECODES] 0xF1010000 0x40004 0x3 0x0 0x6A

Values at 0x00 contributes directely to the TRANSEC aspect (very
low entropy profile).
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Case Study (2)

Five fields in the bytecode:

0xF1010000
0xF1: the opcode of the instruction (STR),
0x01: specifies that it is an integer value,
0x00: useless with respect to this instruction,
0x00: specifies that it is a register.

0x40004
0x04: the size of the first operand,
0x00: useless with respect this instruction,
0x04: the size of the third operand,

0x3: direct value of the integer,

0x0: useless with respect to this instruction,

0x6A: value of the register.
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Case Study (3)

In the rest of the talk, we take the following (critical) bytecodes we
intend to protect from the reversing and analysis.

0x2F010000 0x040004 0x3 0x0 0x89 (1)
0x3D010000 0x040004 0x3 0x0 0x50 (2)
0x5010000 0x040004 0x3 0x0 0x8D (3)

In real cases, we would consider far more instructions (as an example,
all the CFG instructions).
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Security Model

Our technique works under two specific requirements:

The encryption algorithm code we use, must never be accessible to
the analyst.

he can analyze it and understand its internals/principle!
So obfuscate it or better, use k-ary codes: the algorithm is deported
into a different file, out of access for the analyst.

The analyst cannot access to the encryption algorithm as an oracle

Black-box ability denied. He cannot send inputs and observe
corresponding outputs without being detected by the encryption
algorithm.
The encryption algorithm then behave differently and send wrong
output to fool the analyst.
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Security Model (2)

Security assumption

Our techniques work efficiently provided that these two conditions are
always fullfilled!

We will assume that they will be (see further, implementation issues)!

Remark: if we can prevent human analysis we will put any detection
software in check!
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Our Malicious PRNG

Without loss of generality, let us consider a 59-bit key stream cipher.

Three linear feedback shift-register R1, R2 and R3 of length 17, 19
and 23

One combination function

Reg 1

Reg 2

Reg 3

f

s_t

We have considered other kind of encryption system (stream and
block) with larger key size (available upon request).
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Implementation issues

Implemented as

void sco(unsigned long long int * X,
unsigned long long int K)
{
/* K obfuscated value (input),
X unobfuscated value (output) */
...
}

Two major cases:

Either the dFSM outputs critical data under a concatenated form
Or data segmentation is preserved (32-bits values).
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Concatenated form

The five 32-bit integer sequence (1) is processed as a unique 160-bit
quantity

0x2F010000 0x040004 0x3 0x0 0x89

→ 0x2F01000000040004000000030000000000000089

At the implementation level we break this 160-bit quantity into three
59-bit integers (note that 59 is the entropy of our dFSM; see further)
M1,M2 and M3:

M1 = 0x0BC04000000LL

M2 = 0x080008000000060LL

M3 = 0x000000000000089LL

E. Filiol (ESIEA - (C + V )O lab) Unreversable Binaries H2HC 2010 33 / 50



Introduction Basics Our approach Malicious PRNG Implementation Conclusion

Concatenated form (2)

To transform the Ki values (obfuscated form in the code) into
(unobfuscated values) Xi

/* Generate the M i values */
sco(&M 1, K 1);
sco(&M 2, K 2);
sco(&M 3, K 3);
X 1 = M 1 >> 10; /* X 1 = 0x2F010000L */
X 2 = ((M 2 >> 37) | (M 1 << 22)) & 0xFFFFFFFFL
/* X 2 = 0x00040004L */
X 3 = (M 2 >> 5) & 0xFFFFFFFFL; /* X 3 = 0x3 */
X 4 = ((M 3 >> 32) | (M 2 << 27)) & 0xFFFFFFFFL;
/* X 4 = 0x0 */
X 5 = M 3 & 0xFFFFFFFFL; /* X 5 = 0x89 */
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Concatenated form (3)

We must (pre-)compute the Ki values outputing the Mi values.

Cryptanalytic step (not addressed here; too much mathematics)

This step cannot be achieved in less than 30 minutes!

For sequence (1), we get for instance

K1 = 0x6AA006000000099LL

K2 = 0x500403000015DC8LL

K3 = 0x0E045100001EB8ALL
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Concatenated form (4)

For sequence (2), we get for instance

M1 = 0x0F404000000LL K1 = 0x7514360000053C0LL

M2 = 0x080008000000060LL K2 = 0x4C07A200000A414LL

M3 = 0x000000000000050LL K3 = 0x60409500001884ALL

For sequence (3), we get for instance

M1 = 0x01404000000LL K1 = 0x76050E00001F0B1LL

M2 = 0x080008000000060LL K2 = 0x00000010C80C460LL

M3 = 0x00000000000008DLL K3 = 0x000000075098031LL
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Results Analysis

The code interpretation is not straightforward since code/data are no
longer aligned

The dFSM entropy must not be a power of 2!

The entropy of quantities Ki is close to that of values Xi (no local
entropy pick).

Unicity distance

The unicity distance UD is the minimal size for a dFSM output to be
produced by a single secret key

The design of our dFSM has been carefully designed to have
UD > H(K) = 59.

Consequently a large number of 59-bit keys can output an arbitrary
output sequence

Enable a huge poly/metamorphic power.

E. Filiol (ESIEA - (C + V )O lab) Unreversable Binaries H2HC 2010 37 / 50



Introduction Basics Our approach Malicious PRNG Implementation Conclusion

Results Analysis (2)

Serie Mi values Number of secret keys Ki

(1) M1 314 (file res11)
(1) M2 2,755 (file res12)
(1) M3 8,177 (file res13)

(2) M1 319 (file res21)
(2) M2 2,755 (file res22)
(2) M3 26,511 (file res23)

(3) M1 9,863 (file res31)
(3) M2 2,755 (file res32)
(3) M3 3,009 (file res33)

Table: Number of possible keys for a given output value
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Results Analysis (3)

This implies that we can randomly select our 9 Mi values and thus we
have

314× (2, 755)3 × 8, 177× 319× 26, 511× 9, 863× 3, 009
= 13, 475, 238, 762, 538, 894, 122, 655, 502, 879, 250

different possible code variants (≈ 2103 variants).

Files (resij with i, j ∈ {1, 2, 3}) are freely available upon request.

The mutation engine in this case has size less than 400 Kb.
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Results Analysis: code mutation

C code of mutation:

f1 = fopen("res11","r");
f2 = fopen("res12","r");
f3 = fopen("res13","r");
randval = (314.0*(rand()/(1 + RAND MAX));
for(i = 0; i < randval; i++)
fscanf(f1,
K 1 = y1 | (y2 << 17) | (y3 << 36);
/* do the same for values M 2 and M 3 of serie (1) */
....
/* repeat the same for series (2) and (3) */
....
/* Generate M 1 value for series(1) */
sco(&M 1, K 1);
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Non concatenated form

In this case, the dFSM outputs 59-bit chunks of data whole only the
32 least significant bits are useful.

We consider five 32-bit values M1,M2,M3,M4 and M5 instead of
three.

For sequence (1), for instance we get

M1 = 0x???????2F010000LL

M2 = 0x???????00040004LL

M3 = 0x???????00000003LL

M4 = 0x???????00000000LL

M5 = 0x???????00000089LL

where? describes any random nibble.

Recover the Xi values with Xi = Mi & 0xFFFFFFFFL;
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Non concatenated form (2)

Provides better TRANSEC features.

Increased code mutation capability

Around 2140 5-tuples (K1,K2,K3,K4,K5) whenever input in our
dFSM produces the same set of three 5-tuples (X1, X2, X3, X4, X5)
(sequences (1) to (3)).
With only three 160-bit sequences of bytecode, it is possible to have a
huge poly/metamorphic power.

When considering more complex structures (a 100-instruction CFG for
instance) we obtain more than 24000 obfuscated variants.
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Operational Implementation: Constraints

The previous scheme indeed enables code unreversibility provided that

The analyst has no access to the encryption algorithm code which
remains unknown to him.

He must not be able to use it as an oracle (otherwise it could
brute-force the code and submit Ki values repeatedly).

In order to fullfill all constraints we use k-ary codes (Filiol 2007;
Desnos 2009)

K-ary Malware (Filiol 2007)

The viral information is no longer contained in a single code as usual
malware do, but it is split into k different innocent-looking (not all
executables eventually) files whose combined action - serially or in parallel -
results in the actual malware behavior. Three possible classes A, B and C.
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Operational Implementation: k-ary Codes

V
2
: K

iV
1
 : dFSM

1. Send K
i

2. Return X
i
 = dFSM(K

i
)

Figure: 2-ary implementation of malicious PRNG

Different implementations considered (among many others possible).

Communication pipes Only parallel class A or C k-ary codes can be
implemented. Not the most optimal solution.

Named communication pipes K-ary parallel class B codes can be
efficiently implemented (the most powerful class: no
reference in any part to other any part).

System V IPC This is the most powerful method since everything is
located into shared memory.
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Operational Implementation: security

To prevent the analyst to use the V1 part as an oracle, this latter must be
able to detect that V2 is currently in a sandbox or any other virtual
environment.
We combine

Cryptographic tricks (combinatorial integrity, environmental keys,
zero-knowledge authentication protocols...)

τ -obfuscation techniques (Beaucamps - Filiol, 2008).

Any virtualization always induces time delay that are statistically
detectable (hence the use of zero-knowledge challenges between V1 and
V2.

Virtual environment detection (Filiol, 2007; Desnos - Filiol -
IvanleF0u, 2009).

Whenever V1 suspects V2 to be executed in a virtual environment, fake
data are sent to fool the analyst.
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Operational Implementation: applications

Aside malware, this scheme is currently implemented for software
protection, software watermarking anf fingerprinting.

Part V1 can be external and accessible only through a network
application.

Part V1 can be buried deep inside in kernel-land while V2 remains in
user-land.

Part V1 can be installed in a smart card.

Industry support and development for this technology provided by DFT
Inc. (http://www.dft.com)
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Conclusion and Future Works

This scheme, under the implementation constraints we have defined
ensures actual unreversability of protected binaries.

Many applications are possible for program protection purposes.

Current research and experiments consider

Variable (polymorphic) dFSM: a given sequence of bytecode can be
protected by a lot of different dFSM which are computed by V1

Non determinism: the dFSM behaves differently according to its input
(from V2).

The power of malicious cryptography is unlimited.

To be continued...
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Many thanks for your attention.

Questions and answers!
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