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Summary. We develop model averaging estimation in the linear regression model where some
covariates are subject to measurement error. The absence of the true covariates in this frame-
work makes the calculation of the standard residual-based loss function impossible. We take
advantage of the explicit form of the parameter estimators and construct a weight choice cri-
terion. It is asymptotically equivalent to the unknown model average estimator minimizing the
loss function. When the true model is not included in the set of candidate models, the method
achieves optimality in terms of minimizing the relative loss, whereas, when the true model is
included, the method estimates the model parameter with root n rate. Simulation results in com-
parison with existing Bayesian information criterion and Akaike information criterion model se-
lection and model averaging methods strongly favour our model averaging method.The method
is applied to a study on health.
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1. Introduction

Many data sets in real life contain measurement error. For example, in nutrition studies, food
intake measurements rely on self-reported consumption through food questionnaires, recalls or
diaries. In biomedical studies, biomarkers are measured from assays and can contain substantial
error due to human effect or laboratory conditions. Descriptions of various measurement error
problems and their treatments are available for both linear models (Fuller, 1987) and non-linear
models (Buonaccorsi, 2010; Carroll et al., 2006; Gustafson, 2004) in the statistics literature.
Similarly to the case when covariates are precisely measured, when studying a data set with
covariates measured with errors, practitioners often have many candidate models and model
selection methods are generally utilized to select the most suitable model.

Model averaging is an alternative to model selection. When model selection is used, the implicit
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assumption is that one model is ‘correct’ or is at least ‘more correct’ than all others. In reality,
however, it can happen that all the models under consideration are wrong, but several competitive
models are equally or similarly suitable for the data at hand. For example, when we use a model
selection criterion to choose a model, several models may yield very close criterion values. This
indicates that no single model obviously dominates all other models. In this case, using a single
model may impose some risk in the subsequent analysis, as we are ‘putting all our inferential eggs
in one unevenly woven basket’ (Longford, 2005). Even when there is a single model which obvi-
ously dominates all other models, the probability of choosing this model via a criterion is gener-
ally smaller than 1, because sample size is finite in practice. In this case, when a wrong model is
selected, the subsequent analysis will be invalid. Because of these considerations, compared with
model selection, model averaging has its advantage. It combines models instead of choosing a sin-
gle one of them and can be considered as a more prudent way of proceeding with data modelling.

Model averaging has long been a popular approach within the Bayesian paradigm; see, for
example, Hoeting et al. (1999) for a comprehensive review. In recent years, frequentist model
averaging has also been actively developed. Buckland et al. (1997) suggested a general approach
of assigning model weights based on the scores of information criteria such as the Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC). This weighting strategy
was also used by Hjort and Claeskens (2003), Zhang and Liang (2011) and Zhang et al. (2012).
Hansen (2007), a seminal work on asymptotically optimal model averaging, selected the weights
through minimizing the Mallows criterion, because of its unbiasedness (up to a constant) in es-
timating expected squared error. Other frequentist model averaging strategies include adaptive
regression through mixing (Yang, 2001), jackknife model averaging (Hansen and Racine, 2012),
heteroscedasticity robust model averaging (Liu and Okui, 2013), model averaging marginal re-
gression (Chen et al., 2018; Li et al., 2015) and the plug-in method (Liu, 2015). Model averaging
has also been extended to other contexts such as structural break models (Hansen, 2009), mixed
effects models (Zhang et al., 2014), factor-augmented regression models (Cheng and Hansen,
2015), quantile regression models (Lu and Su, 2015), generalized linear models (Zhang et al.,
2016) and missing data models (Fang et al., 2019; Zhang, 2013).

When covariates are measured with error, we face the same problems about model selection.
Thus it is natural to opt for model averaging and to study how to choose model averaging
weights. However, studies regarding weight choice for model averaging when covariates are
measured with errors are essentially non-existent. In fact, the only work that is related to model
averaging in measurement error models is Wang et al. (2012), where inference after model
averaging was studied, but no weight choice method was proposed. One fundamental difficulty in
performing model averaging for measurement error problems is that residuals cannot be formed
when the true covariates are unavailable, regardless of how well the parameters are estimated
in any given model. In addition, likelihoods or even the observed data distribution functions
are also unavailable or not computable in measurement error problems. As a consequence,
none of the existing asymptotically optimal model averaging methods such as weight choices
based on Mallows and jackknife criteria applies. Although the criterion-based model average
methods such as the smoothed AIC (SAIC) or smoothed BIC (SBIC) (Buckland et al., 1997)
could be applied, these are ad hoc approaches in the measurement error context and their
properties are not known. This motivates us to fill this literature gap and to initiate researches
in model averaging under covariate measurement error. We study how best to average different
linear measurement error models through choosing model weights in a data-driven fashion via
fully exploiting the inherent properties of the model. The resulting model averaging estimator
is asymptotically optimal in the sense that it is asymptotically equivalent to the optimal but
infeasible model average estimator that minimizes the loss function. This result is useful in
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prediction when future observation becomes available which no longer involves measurement
error (Carroll et al., 2009), as is the case in the data example that is illustrated in Section 4, where a
validation data set without measurement error is available. We also numerically illustrate that the
proposed model averaging method is superior to commonly used model averaging and selection
methods. We emphasize that, in the simpler case where the same measurement error structure is
retained in the available data as well as in any future data where prediction is to be conducted,
there is no real need to take into account the measurement error issues (Buonaccorsi, 2010;
Carroll et al., 2006).

The paper is organized as follows. In Section 2, we describe the model framework, propose a
weight choice criterion and show the asymptotic properties of the resulting model averaging esti-
mator. We conduct simulation studies in Section 3 to illustrate the numerical performance of our
method and apply our method to a study of health in Section 4. We finish with some discussion
in Section 5. All the proofs and technical details are in the on-line supplementary material.

2. Estimation by model averaging

2.1. Model and estimators
Consider the data-generating process

Yi =μ0i + εi, .1/

where Yi is a univariate response, μ0i is the mean of Yi and the error εi has mean 0 and variance
σ2. Let Xi be a p-dimensional covariate vector that is used to predict μ0i. We approximate
the relationship between μ0i and Xi by using a linear model, i.e. μi = XT

i β where β is a p-
dimensional vector. There is a distinction between μ0i and μi, where μ0i denotes the true mean
of Yi and μi denotes the mean under the assumed model. Further, some or all components of Xi

are measured with errors. Thus, instead of observing Xi, we observe a p-dimensional random
variable Zi, where Zi =Xi +Ui, and Ui is independent of Xi and has a normal distribution with
mean 0 and variance–covariance matrix Σ. To increase flexibility, we allow some components
of Ui to be identically 0; therefore these components of Xi are precisely measured. This also
allows us to include a constant 1 in Xi. Without loss of generality, we shall assume that the last
pÅ components of Xi are subject to error, whereas the remaining p−pÅ components are error
free. Thus, the upper p−pÅ subvector of Ui is zero, and Σ is zero except for its lower right-hand
pÅ ×pÅ block. We also assume that the measurement error vector Ui is independent of εi, and
.Ui, εi/ are identically distributed for i=1, : : : , n.

When taking μi =XT
i β, we are in the framework of the well-studied linear measurement error

models; see Fuller (1987), Carroll et al. (2006) and references therein for a comprehensive review
of this literature. Specifically, we can obtain an estimator of β through solving n−1Σn

i=1Zi.Yi −
ZT

i β/+Σβ=0. This leads to a closed form estimator β̂= .Σn
i=1ZiZT

i −nΣ/−1Σn
i=1ZiYi. How-

ever, in practice, the relationship μ0i = XT
i β almost never holds for any β, i.e. XT

i β is only an
approximation of the true regression relationship between Xi and μ0i. Thus, to alleviate the
damage due to the potential model misspecification, we adopt a model averaging approach.
The basic idea of model averaging is to use the average of the estimates of a common target
quantity from several models, instead of focusing on just one selected specific model. The art
of it is in selecting the weights that are associated with the different potential models. In our
context, the common target quantity is the mean μ0i.

To explain the central idea of the model averaging estimator better we first treat Σ and σ2 as
known. We shall later replace them with their respective estimators Σ̂ and σ̂2 in constructing
the weights of our model averaging method, showing that this does not affect model averaging



4 X. Zhang, Y. Ma and R. J. Carroll

optimality. We shall also prove the asymptotic optimality of our estimator based on Σ̂ and
σ̂2. Define Y = .Y1, : : : , Yn/T ∈ Rn, X = .X1, : : : , Xn/T ∈ Rn×p, Z = .Z1, : : : , Zn/T ∈ Rn×p, μ0 =
.μ01, : : : , μ0n/T ∈Rn, μ= .μ1, : : : , μn/T ∈Rn and ε= .ε1, : : : , εn/T ∈Rn.

Assume that we have a total of S candidate models. In the sth model, we use the candidate
model μ= X.s/β.s/ where X.s/ is the n × ps regression matrix and β.s/ is the corresponding
coefficient vector; Z.s/, U.s/ andΣ.s/ are defined similarly. Under this model, the estimator ofβ.s/

is β̂.s/ = .ZT
.s/Z.s/ −nΣ.s//

−1ZT
.s/Y. Let XT

i and XT
.s/,i be the ith rows of X and X.s/ respectively.

Let Π.s/ be the projection matrix mapping Xi to its subvector X.s/,i =Π.s/Xi. Obviously, we
also have XΠT

.s/ = X.s/. To shorten the notation, let G.s/ = ΠT
.s/.Z

T
.s/Z.s/ − nΣ.s//

−1ZT
.s/ and

P.s/ = XG.s/. Then, if we could observe X, the estimator of μ0 by the sth model based on the
measurement error estimator would be

μ̂.s/ =XΠT
.s/β̂.s/ =XG.s/Y =P.s/Y:

Let the weight vector be w, where w = .w1, : : : , wS/T and it belongs to the set

W ={w ∈ [0, 1]S :
S∑

s=1
ws =1}:

The model average estimator of μ0 would then be

μ̂.w/=
S∑

s=1
wsμ̂.s/ =

S∑

s=1
wsP.s/Y =XG.w/Y =P.w/Y,

where G.w/ ≡ ΣS
s=1wsG.s/ and P.w/ ≡ ΣS

s=1wsP.s/. We define the squared loss of μ̂.w/ to be
L.w/ ≡ ‖μ̂.w/ −μ0‖2, and the risk to be R.w/ ≡ E{L.w/}. To select the optimal weights,
we could minimize an approximated version of R.w/ with respect to w, if X had been
observed.

Of course X is not observed. Next, we explain how to construct a criterion C.w/ that bypasses
X, and at the same time estimates R.w/ without bias up to a shift that is unrelated to w. We then
minimize C.w/ with respect to w, following general model averaging practice (Hansen, 2007;
Liang et al., 2011).

2.2. Weight choice criterion
To write out the criterion C.w/ explicitly, we first need to introduce some auxiliary quanti-
ties. Let hj be the jth column of the p × p identity matrix Ip and let bi be the ith column
of In. We define ε̂.w/ ≡ Y − ZG.w/Y and Ũi ≡ Σ−1=2Ui, where Σ−1=2 is the matrix whose
lower right-hand block is the square root of the inverse of the same block of the matrix Σ,
and the rest of the entries are 0s. Let Ũi,j denote the jth entry of Ũi and ε̂i.w/ denote the
ith entry of ε̂.w/. We further define Ġ.s/,i,j ≡ @G.s/=@Ũi,j, G̈.s/,i,j1j2 ≡ @2G.s/=.@Ũi,j1@Ũi,j2/,
Ġi,j.w/≡ΣS

s=1wsĠ.s/,i,j and G̈i,j1j2.w/≡ΣS
s=1wsG̈.s/,i,j1j2 . Straightforward but tedious calcula-

tion yields

Ġ.s/,i,j =−ΠT
.s/Λ.s/Υ.s/,i,jΛ.s/ZT

.s/ +ΠT
.s/Λ.s/Π.s/Σ1=2hjbT

i .2/

and
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G̈.s/,i,j1j2 =ΠT
.s/Λ.s/Υ.s/,i,j1Λ.s/Υ.s/,i,j2Λ.s/ZT

.s/ +ΠT
.s/Λ.s/Υ.s/,i,j2Λ.s/Υ.s/,i,j1Λ.s/ZT

.s/

−ΠT
.s/Λ.s/Π.s/Σ1=2.hj1 hT

j2
+hj2 hT

j1
/Σ1=2ΠT

.s/Λ.s/ZT
.s/

−ΠT
.s/Λ.s/Υ.s/,i,j2Λ.s/Π.s/Σ1=2hj1 bT

i , .3/

where Λ.s/ = .ZT
.s/Z.s/ −nΣ.s//

−1 and Υ.s/,i,j =ZT
.s/bihT

j Σ1=2ΠT
.s/ +Π.s/Σ1=2hjbT

i Z.s/. Now we
can define

C.w/≡‖ε̂.w/‖2 +2σ2 tr{ZG.w/}−nYTGT.w/ΣG.w/Y +
5∑

l=1
Al.w/, .4/

where

A1.w/=2
n∑

i=1

∑

j1,j2

{YTG̈T
i,j1j2

.w/Σ1=2hj1 YTGT.w/Σ1=2hj2},

A2.w/=
n∑

i=1

∑

j1,j2

{YTĠT
i,j2

.w/Σ1=2hj1Y
TĠT

i, j1
.w/Σ1=2hj2 +YTĠT

i,j1
.w/Σ1=2hj1YTĠT

i,j2
.w/Σ1=2hj2},

A3.w/=−2
n∑

i=1

p∑

j=1
{ε̂i.w/YTĠi,j.w/TΣ1=2hj},

A4.w/=−2
n∑

i=1

p∑

j=1
{YTĠT

i,j.w/ZTbiYTGT.w/Σ1=2hj},

A5.w/=−2σ2
n∑

i=1

p∑

j=1
{bT

i ĠT
i,j.w/Σ1=2hj}:

Although the definition of C.w/ appears complex, the idea behind it is actually quite simple.
For selecting good weights, we need to compute the risk R.w/ as a function of w. Intuitively,
because R.w/ involves only the moments of various random variables, it should be able to be
expressed explicitly in terms of the observations for a linear measurement error model. Thus,
the focal point is in re-expressing R.w/, as is illustrated in the proof of theorem 1 given in
section S.1.1 of the on-line supplementary material.

Theorem 1. For any weight w, the criterion C.w/ is an unbiased estimator of the risk R.w/

up to nσ2. Specifically

R.w/=E{C.w/}−nσ2: .5/

Theorem 1 indicates that, for selection of w, we can ignore the offset nσ2, which does not
involve w, and use C.w/ as if it were R.w/. For this, we shall minimize C.w/ with respect to w to
select the optimal weights. Of course, C.w/ still involves the measurement error variance matrix
Σ and the regression error variance σ2. Thus, to implement the procedure in practice, we first
need to obtain the estimates Σ̂ and σ̂2.

When σ2 and Σ are both unknown, model (1) is not identifiable (Carroll et al., 2006). Thus,
to identify the model, additional information is always needed. In the measurement error lit-
erature, two main strategies are used to achieve identifiability: one is through using duplicate
measurements corresponding to each Xi, and the other is through introducing instrumental
variables. Regardless of which strategy is implemented and what subsequent estimation proce-
dure is used, the end product is a consistent estimator for Σ, which is denoted as Σ̂. Thus, we
base our following derivation on a variance–covariance estimator Σ̂, while omitting its detailed
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construction. We can extract the elements of Σ̂ to obtain estimates of Σ.s/ for s ∈ {1, : : : , S},
denoted as Σ̂.s/. Following Hansen (2007) and Wan et al. (2010), we estimate σ2 on the basis of
the model containing the largest number of covariates among the S candidate models. Assume
that the index of the largest model is sÅ and it contains psÆ covariates. Then we estimate σ2 by
using σ̂2 = {‖Y − Zβ̂.sÆ/‖2 − nβ̂

T
.sÆ/Σ̂.sÆ/β̂.sÆ/}=.n − psÆ/ (see page 155 of Carroll et al. (2006)).

Plugging Σ̂ and σ̂2 into C.w/, a feasible weight choice criterion is

Ĉ.w/=C.w/|σ2=σ̂2,Σ=Σ̂: .6/

We set the weights by minimizing Ĉ.w/ with respect to w subject to ΣS
s=1ws = 1 and ws � 0 for

i=1, : : : , S, i.e.

ŵ =arg minw∈W Ĉ.w/:

Remark 1. In our development of the weight choice criterion, we first assume that Σ is known
and we introduce C.w/, and then we plug Σ̂ into C.w/ to form Ĉ.w/. An alternative approach
is to plug Σ̂ into β̂ first and then to form a new R.w/. One could then develop an unbiased
estimator of the new R.w/ by using similar techniques to those in the proof of theorem 1, since
Σ̂ generally depends on Z. However, this alternative unbiased estimator will still depend on the
unknown Σ, while being more complicated than C.w/. In comparison, our current method of
constructing the weight choice criterion bypasses this difficulty and is much simpler. In addition,
as we shall show in theorem 2, our approach will yield optimal weight choice.

Remark 2. The unbiasedness result that is shown in theorem 1 relies heavily on the normality
assumption of the measurement error Ui. However, the optimality that is shown in theorem 2
and the consistency that is shown in theorem 3 do not need the normality assumption. In the
simulation examples in Section 3, we find that, for non-normal measure error situations, our
method also outperforms its competitors.

Remark 3. If we ignore the measurement errors, then Z.s/ = X.s/ and U.s/ = 0, by which we
can take Σ.s/ =0 for s∈{1, : : : , S}. Hence, by the definition of C.w/ in equation (6), we have

Ĉ.w/=
∥
∥
∥
∥

S∑

s=1
wsZT

.s/.Z
T
.s/Z.s//

−1ZT
.s/Y −Y

∥
∥
∥
∥

2

+2σ̂2.p1, : : : , pS/w,

which is the Mallows criterion that was proposed by Hansen (2007).

It is easily seen that the criterion Ĉ.w/ can be rewritten as Ĉ.w/= wTΨw + wTψ where Ψ is
an S × S matrix and ψ is an S-dimensional vector. To minimize the quadratic function Ĉ.w/

with respect to w, there are many computational routines from various software packages. For
example, in the R language it is solved by using the quadprog package, in MATLAB by
the quadprog command and in SAS by the qp command. In our experience, they generally
work effectively and efficiently even when S is very large. The computer code for our method is
available from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-b-
datasets

2.3. Asymptotic optimality
In the linear regression framework without measurement error, it is known that minimizing the
risk R.w/ leads to asymptotically optimal weights (Hansen, 2007). Considering the relationship
between C.w/ and R.w/ in theorem 1, it is not surprising that minimizing C.w/ will lead to the
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same optimality property of the weights. Of course, because of the additional complexity that is
caused by the measurement error as well as the need to approximate σ2 and Σ, it is much more
difficult to establish such results. It also requires different conditions from the error-free case,
as we now state.

Similarly to the definitions of P.s/, P.w/, L.w/ and R.w/ defined before, we define these
quantities in the error-free case. Specifically, let P̃.s/ =X.s/.XT

.s/X.s//
−1XT

.s/, P̃.w/=ΣS
s=1wsP̃.s/,

L̃.w/=‖P̃.w/Y −μ0‖2 and R̃.w/=E{L̃.w/}. In P.s/, P.w/ and L.w/, we have replaced Σ by Σ̂,
but for simplicity we still use this notation. Let λmax.A/ denote the maximum singular value for
a matrix A. We list the regularity conditions that are required for the asymptotic optimality of
the weights chosen as stated above, where all the limiting properties here and throughout the
text hold under n→∞.

Condition 1. XTX =O.n/, ‖μ0‖2 =O.n/, λmax.Σ/<∞ and E.ε4
i /<∞.

Condition 2. infw∈W R̃.w/→∞.

Condition 3. n1=2supw∈W [‖{P.w/− P̃.w/}Y‖R̃
−1

.w/]=op.1/.

Condition 4. supw∈W [‖UT{P.w/− In}Y‖2R̃
−2

.w/]=op.1/.

Condition 5. supw∈W{λmax.UTU −nΣ̂/R̃
−1

.w/}=op.1/.

Condition 1 is a standard condition for linear measurement error models, in which the re-
striction on the moments of ε requires the regression error distribution to have sufficiently thin
tails. For example, it excludes the Cauchy distribution or Student t-distribution with degrees
of freedom less than or equal to 4. Condition 2 is a general requirement that is necessary
for the error-free linear regression model (Hansen, 2007; Liang et al., 2011); hence it is also
naturally imposed here. This condition is generally satisfied when none of the candidate mod-
els captures the true data generation procedure. Condition 3 requires the difference of P.w/

and P̃.w/ (both approximate a common quantity) to go to 0 uniformly relative to the risk in all
different choices of weights. Similar conditions to condition 3 are used in other model averaging
references, such as condition (A5) of Zhang et al. (2014). Condition 4 requires the covariance
between the estimation residual and the measurement error to approach 0 relative to the risk
in all different choices of weights. Finally, condition 5 requires the measurement error variance
approximation to converge to the sample variance sufficiently fast in comparison with the risk.
Conditions 4 and 5 are imposed so that the perturbations from the measurement error, once
properly handled, do not overwhelm the signal in the risk calculation, which drives the model
averaging process. It can be verified that, if Σ̂−Σ=Op.n−1=2/, the fourth moment of Ui exists
and n1=2= infw∈W R̃.w/ = o.1/, then conditions 3–5 are implied by condition 1; the proof is in
section S.1.3 of the on-line supplementary material.

Theorem 2 (asymptotic optimality). Under conditions 1–5,

L.ŵ/

infw∈W L.w/
→1

in probability as n→∞.

Theorem 2 shows that the prescribed model averaging procedure is asymptotically optimal in
the sense that its squared loss is asymptotically identical to that of the infeasible best possible
model averaging estimator. The proof of theorem 2 is in section S.1.2 of the on-line supplemen-
tary material.
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2.4. Consistency
Condition 2 generally excludes the situation that the true model is indeed linear. When none
of the models being considered actually describes the data perfectly, it is natural that one seeks
to average the imperfect candidate models to have performance that is superior to any single
candidate model. However, there is also a possibility that the true model is indeed linear. In this
case, it will be of interest to know what results from the model averaging procedure.

Assume that μ0i = XT
i β0, i.e. the true mean function μ0 is indeed a linear function of the

covariates with true parameter β0. Here some or all elements of the true vector β0 can be 0.
The model averaging estimator of the regression parameter that is obtained from the method
in Section 2.2 is naturally

β̂.ŵ/=
S∑

s=1
ŵsΠT

.s/β̂.s/:

We now impose an additional condition concerning the measurement error structure. It is readily
seen that it is a very mild condition and is easily satisfied except when the errors have very heavy
tails.

Condition 6. Σ̂−Σ=Op.n−1=2/ and the fourth moment of Ui exists.

Theorem 3 (root n consistency). Under conditions 1 and 6, when n→∞,

β̂.ŵ/−β0 =Op.n−1=2/:

Theorem 3 complements the optimality property that was established in theorem 2. The two
theorems reveal that the weight average modelling approach that we proposed here is optimal
in terms of minimizing the relative loss when there does not exist a true regression parameter
β0, and it achieves root n convergence when there does exist a true parameter β0. We, however,
cannot establish the asymptotic distribution property of β̂.ŵ/ or derive its asymptotic variance
in the latter case because of the randomness of ŵ. Much more research is needed in this area.
The proof of theorem 3 is in section S.1.4 of the on-line supplementary material.

3. Simulation examples

3.1. Alternative methods
In this section, we conduct simulation experiments to demonstrate the finite sample performance
of our model averaging method in linear measurement error models, MALMEM. We compare
it with several other existing model averaging methods as well as several popular model selection
methods. Two model selection methods in this context exist: AIC and BIC, which are widely
used in the literature; see for example Liang and Li (2009) and Wang et al. (2012). Both methods
select the model with the smallest criterion, defined as

CAIC =‖Y −Z.s/β̂.s/‖2 −nβ̂
T
.s/Σ̂.s/β̂.s/ +2σ̂2ps

and

CBIC =‖Y −Z.s/β̂.s/‖2 −nβ̂
T
.s/Σ̂.s/β̂.s/ + log.n/σ̂2ps:

The two existing model averaging methods were proposed in Buckland et al. (1997), where two
weight choices were given, based respectively on the AIC and BIC mentioned above, and named
the SAIC and SBIC. Specifically, the SAIC model average method assigns weights wAIC,s =
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exp.−CAIC=2/=ΣS
s=1 exp.−CAIC=2/ to model s and the SBIC model average method assigns

weights wBIC,s = exp.−CBIC=2/=ΣS
s=1exp.−CBIC=2/ to model s.

3.2. Simulation designs
We consider two simulation settings. In the first, the true data generation procedure is captured
by the candidate models, whereas, in the second, it is not. Hence, in the second setting, all
candidate models are only approximations to the true data generation procedure.

3.2.1. Setting I
We generated data from model (1) with μ0i =XT

i β0 and normal additive errors. Specifically, we
set n= 100, 200, 400 and p= 7, and generated Xi = .xi,1, : : : , xi,7/T from a normal distribution
with mean 0 and covariance 0:5|j1−j2| between xi,j1 and xi,j2 . We set Σ=ρIp, ρ∈{0:05, 0:2}, and
β0 = .1, 1, 0:5, 0, 0:3, −0:7, 0/T to generate Ui, Zi and Yi. The parameter σ varies such that the
theoretical R2 = var.μ0i/=var.Yi/ varies in the set {0:1, 0:2, : : : , 0:9}. We include two variables
xi,1 and xi,2 in all candidate models. The five variables xi,3, : : : , xi,7 are set to be auxiliary (i.e. they
are possibly used in candidate models). This set-up is to mimic the situation that, in practice,
some covariates are always set in candidate models based on theoretical or other grounds.
Thus we have 25 =32 candidate models. To evaluate all five methods, we used 1000 replications
and, in each replication, we computed model averaging estimators of μ0 by μ̂.ŵ/ and β by
β̂.ŵ/=ΣS

s=1ŵsΠT
.s/β̂.s/. Then, we computed risks as

Lμ =1000−1
1000∑

r=1
‖μ̂.ŵ/.r/ −μ0‖2,

Lβ =1000−1
1000∑

r=1
‖β̂.ŵ/.r/ −β0‖2,

.7/

where μ̂.ŵ/.r/ and β̂.ŵ/.r/ denote the estimator in the rth replication. To facilitate comparisons,
all risks are normalized by the risk of the infeasible optimal estimator based on a single model.
To check the performance of our method when measurement error is non-normal, we further
set the distribution of Ui be uniform or χ2; other setting are the same.

3.2.2. Setting II
This design is based on the setting of Hansen (2007), except that covariates are subject to
measurement error. Specifically, we generated data from model (1) with μ0i = Σ∞

j=1xijβj and
normal additive errors. We set xi1 =1 and observations of all other xijs are generated from the
N.0, 1/ distribution and are independent. The coefficients βj = c

√
2αj−α−1=2, with c > 0 and

α= 0:5. The sample size varies as 100, 200 and 400. The number of approximating models is
S =18. The sth candidate model contains the first s observed covariates. We used Σ=ρIS−1 and
ρ∈ {0:05, 0:2} to generate Ui and Zi. For the intercept xi1, there is no measurement error. In
this setting, following Hansen (2007), we compare the five methods based on their Lμ-values
in expression (7). To address the comments of the referees that one may ignore measurement
errors if the focus is on prediction, we also compare our method with Mallows model averaging,
which was introduced in remark 3.

3.3. Simulation results
The results of the simulations are given in Figs 1 and 2 for setting I and in Fig. 3 for setting II.
A summary of these results is very simple. In almost all cases, and generally, our method
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Fig. 1. Risk Lβ in the simulation study of setting I with normal measurement error in Section 3.2 (the methods
compared are AIC- ( ) and BIC- ( ) based model selection, SAIC- ( ) and SBIC- ( ) based model
averaging and our asymptotically optimal model averaging method MALMEM ( ): (a) nD100, ρD0.05;
(b) nD100, ρD0.2; (c) nD200, ρD0.05; (d) nD200, ρD0.2; (e) nD400, ρD0.05; (f) nD400, ρD0.2
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Fig. 2. Risk Lμ in the simulation study of setting I with normal measurement error in Section 3.2 (the methods
compared are AIC- ( ) and BIC- ( ) based model selection, SAIC- ( ) and SBIC- ( ) based model
averaging and our asymptotically optimal model averaging method MALMEM ( ): (a) nD100, ρD0.05;
(b) nD100, ρD0.2; (c) nD200, ρD0.05; (d) nD200, ρD0.2; (e) nD400, ρD0.05; (f) nD400, ρD0.2



12 X. Zhang, Y. Ma and R. J. Carroll

0.1 0.3 0.5 0.7 0.9

1

1.5

R2

R
is

k

0.1 0.3 0.5 0.7 0.9
0.5

1

1.5

2

2.5

3

R2

R
is

k

0.1 0.3 0.5 0.7 0.9

1

1.5

R2

R
is

k

0.1 0.3 0.5 0.7 0.9

1

1.5

2

R2

R
is

k

0.1 0.3 0.5 0.7 0.9

1

1.5

R2

R
is

k

0.1 0.3 0.5 0.7 0.9

1

1.5

R2

R
is

k

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Risk Lμ in the simulation study of setting II in Section 3.2 (the methods compared are AIC- ( )
and BIC- ( ) based model selection, SAIC- ( ) and SBIC- ( ) based model averaging and our
asymptotically optimal model averaging method MALMEM ( ): (a) nD100, ρD0.05; (b) nD100, ρD0.2;
(c) nD200, ρD0.05; (d) nD200, ρD0.2; (e) nD400, ρD0.05; (f) nD400, ρD0.2
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MALMEM greatly dominates the other methods. When R2 is very high, the selection methods
by AIC and BIC can be better than model averaging methods. The possible reason is that the
small noise in the data enables the selection criteria to choose the best model with very high
frequencies. These numerical results are not unexpected given our theoretical results, although
the magnitude of the improvement in risk was somewhat unexpected.

The numerical results with non-normal measurement errors under setting I are shown in Figs
S.1–S.4 of the on-line supplementary material, from which we find that MALMEM still greatly
dominates the other methods in most cases. Hence, the performance of our method is not sen-
sitive to the distribution of measurement errors. The comparison results between MALMEM
with the Mallows model averaging method are shown in Fig. S.5 of the supplementary material,
which shows that MALMEM outperforms Mallows model averaging in most cases especially
when R2 is large. To check whether this performance is sensitive to the distribution of measure-
ment error, we further set the distribution of Ui to be uniform or χ2, n=200, and keep the other
settings. Fig. S.6 of the supplementary material shows that the non-normal measurement errors
change their performance very slightly.

4. Application to health study

4.1. The data
The theory in Section 2 and the simulations in Section 3 suggest that, when we apply our
procedure MALMEM to actual data, we should see large gains in predictive accuracy: something
which will be confirmed in Section 4.4.

We analyse data from the Women’s Interview Study of Health (WISH) (Potischman et al.,
1999). The data that we use here consist of 1209 healthy women who did not develop breast
cancer. Each woman completed a food frequency questionnaire, from which we collected the
measurements of daily intakes of protein, Z4, fat, Z5, and carbohydrates, Z6. In addition to
the main study, a subset of these women participated in a validation study where, for 12 days,
their dietary intakes were measured by a combination of 24-h recalls and dietary records: first
six randomly selected days with 24-h recalls, and then two randomly selected 3-day periods of
dietary records. We therefore use these 12 additional measurements to form the true protein,
fat and carbohydrate intakes. We used the cube root of the dietary data, which in all cases is far
more normally distributed than in the original scale.

We then standardized the variables to the first day of dietary records so that each day had the
same mean and standard deviation. This was done as in equation (3) of Nusser et al. (1996), so
that, if aj and bj are the sample mean and sample standard deviation on day j, and the individual
measurements are Vij, then VÅ

ij =a7 + .b7=bj/.Vij −aj/, where day 7 is the first dietary record.
Then the resulting 12-day average Σp

j=1VÅ
ij =12 is taken as the true intake Xi for each individual.

Similar methodology has been used for obtaining such true intakes, e.g. Spiegelman et al. (2001)
and Yi et al. (2015).

There are a total of 178 subjects in the validation study. From the true intakes in the validation
study and the intakes with measurement error in the main study, we can obtain the measurement
error variance–covariance matrix that is associated with .Z4, Z5, Z6/T. We also included age,
Z1, and a discrete variable with three levels, from which we develop two dummy variables, Z2
meaning smoking status 1 (past smoker) and Z3 meaning smoking status 2 (current smoker).
Except for the two dummy variables Z2 and Z3, we performed a transformation on all other
variables by taking a cube root. The response variable that we consider here is the cube root of
the body mass index BMI, the transformation making the response far less skewed. Thus, we
have a total of six covariates, and we consider 26 −1=63 candidate models.
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4.2. Comparison of models
Table 1 contains the AIC and BIC values and the model averaging weights of various candidate
models. We list only the candidate models whose largest weights for all model averaging and
selection methods are at least 0.01. Here, we used the indices of the covariates to indicate which
variables are included in a candidate model. For example, (4, 5) indicates that the model includes
protein Z4 and fat Z5. The methods AIC, BIC, SAIC and SBIC are the same as those defined
in Section 3. We can see that the BIC selects model (2, 5, 6) and the BIC value of model (2, 3,
5, 6) is close to that of model (2, 5, 6). The AIC also supports models (2, 5, 6) and (2, 3, 5, 6),
with their AIC values identical to the two digits provided. This indicates that the AIC and BIC
cannot clearly identify a best model for the data. Similarly, the SAIC and SBIC both assign
very similar weights to model (2, 5, 6) and model (2, 3, 5, 6). In contrast, MALMEM clearly
favours model (2, 5). It assigns a large weight of 0.76 to model (2, 5), whereas it assigns a weight
of 0.06 to model (4, 5, 6), 0.09 to model (2, 4, 5, 6) and 0.09 to model (3, 4, 5, 6).

We shall show later in Section 4.4 that the MALMEM solution leads to vastly better predictive
accuracy in the validation data.

Table 1. Analysis of the WISH data of Section 4†

Model Model selection criterion values Weights

AIC BIC SAIC SBIC MALMEM

(2, 5) −35:76 −34:94 0.00 0.00 0.76
(2, 5, 6) −79.20 −77.97 0.32 0.38 0.00
(4, 5, 6) −47:12 −45:89 0.00 0.00 0.06
(2, 3, 5, 6) −79.20 −77.56 0.32 0.31 0.00
(2, 4, 5, 6) −77:98 −76:34 0.18 0.17 0.09
(3, 4, 5, 6) −50:14 −48:50 0.00 0.00 0.09
(2, 3, 4, 5, 6) −78:01 −75:96 0.18 0.14 0.00

†AIC and BIC values and weights by SAIC- and SBIC-based model averaging and our method
(MALMEM). The variables in order were age Z1, past smoker Z2, current smoker Z3, protein Z4,
fat Z5 and carbohydrates Z6. Models such as (2, 5) mean that Z2 and Z5 were in the model.

Table 2. Analysis of the WISH data of Section 4†

Model (2, 5), weight = 0.76 Covariates 2 5
Estimate −0:16 0.76
Standard deviation 0.02 < 0:005

Model (4, 5, 6), weight = 0.06 Covariates 4 5 6
Estimate −0:05 1.82 −0:75
Standard deviation 0.14 0.30 0.17

Model (2, 4, 5, 6), weight = 0.09 Covariates 2 4 5 6
Estimate −0:44 −0:19 2.80 −1:35
Standard deviation 0.06 0.15 0.43 0.25

Model (3, 4, 5, 6), weight = 0.09 Covariates 3 4 5 6
Estimate 0.13 −0:05 1.90 −0:81
Standard deviation 0.03 0.14 0.31 0.18

†Displayed are the parameter estimates and their standard deviations for the four models with
weights larger than 0.01: the model weights are also displayed. The variables in order were age
Z1, past smoker Z2, current smoker Z3, protein Z4, fat Z5 and carbohydrates Z6. Models such as
(2, 5), the model assigned a weight of 0.76, mean that Z2 and Z5 were in the model.
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4.3. The MALMEM averaged model and interpretation
To interpret the average model more clearly, we computed the effect sizes of each of the contin-
uous variables, namely the model average fit when the true dietary variables were standardized
each to have variance 1.0. This involves division of the observed data for protein, fat and car-
bohydrates by 0:3485, 0:4467 and 0:578 respectively. Call the standardized variables stProtein,
stFat and stCarbohydrates. The final averaged model fit is

−0:16 I(past smoker)+0:01 I(current smoker)−0:01 stProtein

+0:50 stFat−0:14 stCarbohydrates: .8/

We see from expression (8) and Table 1 that the effect size of fat intake is far larger than any of
the other variables, and the positive sign of the coefficient is expected. For carbohydrates and
BMI, Gaesser (2007) stated that their relationship is controversial, but that a

‘review of relevant literature indicates that most epidemiologic studies show an inverse relationship
between carbohydrate intake and BMI, even when controlling for potential confounders’.

Thus the negative sign for carbohydrates in expression (8) is supported by relevant literature.

4.4. Comparison of predictive performance
Finally, and importantly, we use the validation data to check the prediction performance of
the model selection and averaging methods. The boxplots of squared prediction errors based
on the five methods are displayed in Fig. 4, where we can see that the boxplot corresponding to
MALMEM has by far the best performance: for example, the median and the 75th percentiles
of the other methods are nearly eight times larger than that of MALMEM.
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Fig. 4. Analysis of the WISH data: boxplots of 178 squared prediction errors (the methods compared are
AIC- and BIC-based model selection, SAIC- and SBIC-based model averaging and our method MALMEM
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5. Discussion

We have proposed a model averaging method, called MALMEM, for linear measurement error
models. When the true model is not included in the set of candidate models, the method was
shown to be asymptotical optimal in the sense of achieving the lowest squared loss in large
sample sizes, whereas, when the true model is included, the parameter estimates by the model
averaging method are root n consistent. Numerical analysis in comparison with existing model
selection methods strongly favours MALMEM. MALMEM was applied to the WISH.

We have assumed that the dimension of candidate model ps and the number of candidate
models S are fixed when the sample size n increases. When ps and S increase with n, the unbi-
asedness property in theorem 1 still holds. However, more restrictive conditions will be needed
for asymptotic optimality: the problem certainly needs more careful further investigation.

As for all model averaging methods, if the number of covariates is large, possible candidate
models are numerous; hence the computation of the procedure will be cumbersome. In this case,
a model screening step before model averaging is desirable. The AIC and BIC have been used
in screening steps of Yuan and Yang (2005) and Zhang et al. (2013), and Claeskens et al. (2006)
and Zhang et al. (2012) suggested the use of stepwise screening.

We use additivity of the measurement error in developing the weight choice criterion. When
the measurement error is multiplicative, one choice is transforming it to be additive by taking
logarithms. Another choice is directly developing a model averaging method for the situation
with multiplicative measurement errors, or even more general error structures. This will be
very different from the method that is developed in the current paper because the coefficient
estimators will be very different (see Hwang (1986)) and warrants further investigation.
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