
MALWARE ANALYSIS PROFESSIONAL
VERSION 1

INTRODUCTION

Malware Analysis Professional (MAP) is an online, self-paced training course that teaches
students the knowledge and skills necessary to dissect malicious software in order to
understand its mechanics and purpose.

In this course, you will be able to:
• Work with realistic malware samples created to prepare you for real-world samples
• Analyze real-world samples: ransomware, botnets, rats, etc.
• Explore an entire module dedicated to x64 bit assembly
• Dive into the TLS method
• Understand how malware uses Windows APIs to achieve their malicious activity
• Debug samples using different debuggers

MAP provides a holistic approach to dissecting malware. You will also learn more about
Reverse Engineering and add an additional skill to your arsenal, allowing you to dissect a
product to understand its blueprint, how it was made, and:

• Understand and bypass Anti-Reversing techniques
• Learn about IA-32 CPU Architecture
• Perform full manual unpacking on packed executables
• Learn different methods to locate the important algorithms

MAP is a self-paced course that comes with 36 labs so you can develop your knowledge
and test your skills through hands-on dissection and analysis of malicious software.
In the Reverse Engineering portion of MAP, there are 10 downloadable, offline labs
(executables) that provide practical reverse engineering experience. Additionally, this
content comes with videos that provide step-by-step guidelines, providing an in-depth
explanation of every technique.

Course home page: www.elearnsecurity.com/map

p. 2

COURSE DESCRIPTION

http://www.elearnsecurity.com/map

INTRODUCTION
PREREQUISITES

Basic Knowledge and understanding of:

• Networking and Network Protocols: TCP, UDP, ARP, ICMP, etc
• Operating Systems and Computer Architecture Concepts
• Programming Languages: x86 Assembly, C, C++, and Python
• Information Security: Cyber Attacks, Malicious Content, Exploitation, Shellcodes and

Digital Forensic Investigations

WHO SHOULD TAKE THIS COURSE?

The target audience of this course are:
• Incident Responders
• Digital Forensic Examiners
• Malware Analysts
• Penetration Testers who want to adapt Malware methods for their PT
• Reverse Engineers with 0 - 2 yrs of experience
• Cybersecurity Researchers and Students

WILL I GET A CERTIFICATE?

eLearnSecurity’s eCMAP (Certified Malware Analysis
Professional) certification is the most practical and
professionally oriented certification you can obtain in
malware analysis. Instead of putting you through a series of
multiple-choice questions, you are expected to perform a
full analysis on a given malware sample, show proof of what
the malware does, and finally write a signature that could
be used to detect the malware sample on other systems or
networks. This will be done by applying all or part of the
skills acquired from the course and research.

Course home page: www.elearnsecurity.com/map

p. 3

http://www.elearnsecurity.com/map

INTRODUCTION

The student is provided with a suggested learning path to ensure the maximum success
rate and its minimum effect.

SECTION 1: MALWARE ANALYSIS

• Module 1: Introduction to Malware Analysis
• Module 2: Static Analysis Techniques
• Module 3: Assembly Crash Course
• Module 4: Behavior Analysis
• Module 5: Debugging and Disassembly Techniques
• Module 6: Obfuscation Techniques

SECTION 2: REVERSE ENGINEERING

• Module 1: The Necessary Theory: Part 1
• Module 2: The Necessary Theory: Part 2
• Module 3: The Necessary Theory: Part 3
• Module 4: VA/RVA/OFFSET & PE File Format
• Module 5: String References & Basic Patching
• Module 6: Exploring the Stack
• Module 7: Algorithm Reversing
• Module 8: Windows Registry Manipulation
• Module 9: File Manipulation
• Module 10: Anti-Reversing: Part 1
• Module 11: Anti-Reversing: Part 2
• Module 12: Anti-Reversing: Part 3
• Module 13: Code Obfuscation
• Module 14: Analyzing Packers & Manual Unpacking
• Module 15: Debugging Multi-Thread Applications

Course home page: www.elearnsecurity.com/map

p. 4

ORGANIZATION OF CONTENTS

http://www.elearnsecurity.com/map

SECTION 1 - MALWARE ANALYSIS

MODULE 1: INTRODUCTION TO MALWARE ANALYSIS

Module 1 serves as a basic introduction to Malware, the different types of Malware, what
they are and how to analyze them. This module also covers malware analysis techniques
that are used in order to analyze malware and why we need different methods and
techniques. Finally, the module also covers many of the tools that could be used to acquire
evidence, including malware.

1.1 Welcome and Prerequisites
1.2 Malware
1.3 Malware Analysis and Goals
1.4 Types of Malware
1.5 Analysis Techniques
1.6 Malware Samples
1.7 Acquisition Tools
 1.7.1 Disk Imaging Tools
 1.7.2 Memory Tools
 1.7.3 Other Tools

Course home page: www.elearnsecurity.com/map

p. 5

http://www.elearnsecurity.com/map

SECTION 1 - MALWARE ANALYSIS

MODULE 2: STATIC ANALYSIS TECHNIQUES

This module introduces the basic static methods used to identify malware and run an
initial assessment. The module covers the different file types, generating different types
of hashes and how they can be helpful, how to extract strings and use them as starting
points in your analysis, and when and why you might consider using an online scanner or
a sandbox. The module also goes in-depth on the Portable Executable (PE) file format and
how to analyze its structure and understand all the main values in it. Finally, this module
explains how to use all of this information to build an indicator of compromise (IOC) and
use it to find malware samples on other systems using YARA.

2.1 Introduction
2.2	 File	Identification
 2.2.1 ASCII Files
 2.2.2 Structured Files
2.3 Hashes
2.4 Strings
 2.4.1 ASCII Strings
 2.4.2 Unicode Strings
2.5 Scanners and Sandboxes
 2.5.1 Using a Sandbox
2.6 Analyzing File Format(s)
2.7 Identifying Obfuscation
2.8 Indicators of Compromise (IOCs)
2.9 Advanced Topics

Course home page: www.elearnsecurity.com/map

p. 6

http://www.elearnsecurity.com/map

MODULE 3: ASSEMBLY CRASH COURSE

Since most systems used today are 64-bit, this module is considered a crash course to x64
assembly language. How x64 is different from x86, why malware analysts should be skilled
at analyzing 64-bit code and even how to write some x64 assembly code, will all be covered
in this module.

3.1 Introduction
 3.1.1 Assembly Language - What is it?
 3.1.2 Assembly Language - Why is it needed?
3.2 CPU Architecture
 3.2.1 Overview
 3.2.2 Registers
 3.2.3 General Purpose Registers
 3.2.4 Segment Registers
 3.2.5 RFLAGS Register
 3.2.6 Instruction Pointer Flag
 3.2.7 Instruction Set
3.3 ASM - The Basics
 3.3.1 Instructions
 3.3.2 Fundamental Data Types
 3.3.3 Signed Numeric Data
 3.3.4 Floating-Point Data Type
 3.3.5 Using Registers
 3.3.6 Mathematical Operations
 3.3.7 Logical Operations
 3.3.8 Bitwise Operations
 3.3.9 Control-Transfer Instructions
 3.3.10 Accessing Memory
 3.3.11 The Stack
 3.3.12 x64 Calling Conventions

Course home page: www.elearnsecurity.com/map

p. 7

SECTION 1 - MALWARE ANALYSIS

http://www.elearnsecurity.com/map

MODULE 4: BEHAVIOR ANALYSIS

Module 4 begins by explaining Windows processes, threads and the different objects
available to a process. This is where malware is run to understand its behavior and how it
affects a victim’s system. The module goes through the different injection methods used
by malware and how they achieve persistence on systems, so they can come back or have
a foothold on the victim’s system or network. The module also covers the different tools to
use and how to use them effectively to analyze malware, whether they were EXEs or DLLs.
Finally, the module also explains how to use a sandbox to automate your dynamic analysis
and get faster results that could aid your further investigations.

4.1 Introduction
4.2 Dynamic Analysis
4.3 Windows Processes
4.4 Sysinternals Tools
4.5 System Processes and Services
4.6 Injection Techniques
4.7 Persistent Methods
4.8 Tools and Automation
4.9 Windows APIs

MODULE 5: DEBUGGING AND DISASSEMBLY TECHNIQUES

This module covers two of the most advanced malware analysis methods: debugging and
disassembling. Why are these methods needed and when to use them, their pros and cons,
and what tools are available, are all core concepts covered in this module. The different
debugging methods, breakpoints and controls will be covered and how use them to run and
analyze a malware sample. Finally, this module covers disassembly and reverse engineering
in greater detail with the focus on recognizing common malware characteristics at the
Windows API level.

5.1 Introduction
5.2 Debugging and Debuggers
5.3 Disassembly and IDA Pro
5.4 Other Tools

Course home page: www.elearnsecurity.com/map

p. 8

SECTION 1 - MALWARE ANALYSIS

http://www.elearnsecurity.com/map

MODULE 6: OBFUSCATION TECHNIQUES

One of the goals malware developers try to achieve is to hinder analyzing their malware
code. Therefore, to achieve that, they would use many different methods and techniques.
This module covers the most common obfuscation techniques used by malware developers
ranging from decoding (Base64, XOR, etc), using anti-debugging and anti-reverse
engineering techniques. This module goes over what packing is in detail and how to apply
different unpacking techniques to unpack different malware samples. Finally, the module
covers shellcode (mainly 64-bit shellcode) and how to locate, extract and analyze it.

6.1 Introduction
6.2 Decoding Base64, XOR, etc.
6.3 Unpacking Packed Malware
6.4 Anti-Analysis Techniques
 Debugger and Analysis Toolkit Detection
 Misdirection Techniques
 SEH and TLS Callbacks
6.5 Process Hollowing

Course home page: www.elearnsecurity.com/map

p. 9

SECTION 1 - MALWARE ANALYSIS

http://www.elearnsecurity.com/map

MODULE 1: THE NECESSARY THEORY PART 1

The first three modules aim to cover all the necessary theory as well as the concepts on
which the practical part of this course is based. We will start with a short description about
what Reverse Engineering is and the reasons why someone might need it, and then proceed
with more technical concepts. During the first three chapters we will discuss the basics
behind the Intel IA-32 CPU architecture (x86), the stack, the heaps, as well as exceptions,
Windows APIs with some Windows Internals, and the most common types of reversing
tools used these days.

1.1 Introduction
1.2 What is Reverse Engineering
1.3 Do We Need Reverse Engineering?
1.4 The Basics Behind The Intel IA-32 CPU Architecture
 1.4.1 General Purpose Registers
 1.4.2 EFLAGS Register
 1.4.3 Segment Registers
 1.4.4 Instruction Pointer Register
 1.4.5 Debug Registers
 1.4.6 Machine Specific Registers (MSRs)
1.5 Conclusion

Course home page: www.elearnsecurity.com/map

p. 10

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 2: THE NECESSARY THEORY PART 2

So here we are in the second module, which is also dedicated to the theoretical knowledge
necessary for this course. One thing to keep in mind is that ‘theoretical’ doesn’t actually
mean that you might need it…or not. In fact, the theory discussed during these first three
modules covers all the fundamental knowledge and the concepts that you will need, not
just for this course and its technical assignments, but for the rest of your time as a reverser.

2.1 Introduction
2.2 Functions
2.3 Process vs. Thread
2.4 Function Calling
2.5 Stack Frames
 2.5.1 Setting Up The Stack Frame - A Graphical Example
2.6 Calling Conventions
2.7 Reading EIP - A Simple Trick
2.8 Conclusion

MODULE 3: THE NECESSARY THEORY PART 3

The third module of this course aims to offer some extra theoretical knowledge necessary
for the rest of the course. During this module we will briefly touch on the concept of heaps,
we will discuss handles, exceptions, some basic Windows Ring3 Internal structures, and
Windows APIs. Finally, we’ll go through the most common types of reversing tools used
today for software reverse engineering.

3.1 Introduction
3.2 Heaps
3.3 Handles
3.4 Exceptions
3.5 Basic Windows Ring3 Internal Structures
3.6 Windows APIs
3.7 Types of Reversing Tools
3.8 Conclusion

Course home page: www.elearnsecurity.com/map

p. 11

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 4: VA/RVA/OFFSET AND PE FILE FORMAT

In this module we will discuss virtual addresses, relative virtual addresses, offsets, as well
as some basic information regarding the Portable Executable File Format which describes
the basic structure of all Windows executable files.

4.1 Introduction
4.2 VA/RVA/OFFSET
 4.2.1 Why Do We Need All This Information?
4.3 Overview of the Portable Executable File Format (PE)
 4.3.1 MS-DOS Header
 4.3.2 IMAGE_NT_HEADERS Structure (PE Header)
 4.3.2.1 IMAGE_FILE_HEADER Structure
 4.3.2.2 IMAGE_OPTIONAL_HEADER Structure
 4.3.3 IMAGE_DATA_DIRECTORY Structure
 4.3.4 The Section Table
4.4 Memory and File Alignment
4.5 Conclusion

Course home page: www.elearnsecurity.com/map

p. 12

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 5: STRING REFERENCES AND BASIC PATCHING

This module is dedicated to ‘String References’ as well as Basic Memory and File Patching.
We demonstrate the use of data strings in order to locate the algorithm we are interested
in and then we reverse its logic. Finally, we explain how we can manually calculate the
offset of a byte inside the physical file by knowing its virtual address in memory.

5.1 Introduction
5.2 String References
5.3 A Few Words Before Starting
5.4 Let’s Start . . .
 5.4.1 Run the Target Executable and Observe its Functionality
 5.4.2 Load the Executable in the Olly Debugger
 5.4.3 Search for String References
 5.4.4 Reversing the Logic
 5.4.5 Basic Memory Patching
 5.4.6 Executable Patching Through Olly
 5.4.7 VA -> OFFSET Manual Calculation
 5.4.8 Manual Byte Patching

5.5 Conclusion

Course home page: www.elearnsecurity.com/map

p. 13

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 6: EXPLORING THE STACK

This module focuses on exploring the data that we can retrieve from the stack in order to
trace back an algorithm. A very important technique when we have to deal with on-the-fly
encryption and decryption of data.

6.1 Introduction
6.2 A Few Words Before Starting
6.3 Let’s Start . . .
 6.3.1 Run and Observe
 6.3.2 Load to Olly and Search for Strings
 6.3.3 How is this Possible?!
 6.3.4 Exploring the Stack
 6.3.5 Evaluating the MessageBox API Parameters
 6.3.6 Reversing the Logic
 6.3.7 Patching the Code
6.4 Conclusion

MODULE 7: ALGORITHM REVERSING

During this module, we dig deep into Reverse Engineering by analyzing in detail all the
important algorithms of the executable which include the data encryption/decryption
algorithm as well as the input data validation algorithm.

7.1 Introduction
7.2 A Few Words Before Starting
7.3 Let’s Start . . .
 7.3.1 Two Important Algorithms
7.4 Conclusion

Course home page: www.elearnsecurity.com/map

p. 14

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 8: WINDOWS REGISTRY MANIPULATION

This module is dedicated to Windows Registry. We start with an overview of this important
Windows component and then we proceed with the detailed analysis of an executable that
attempts to read data from the registry and validate it according to a custom algorithm
which we finally Reverse Engineer. During this module we also make use of Hardware
Breakpoints and we demonstrate their importance.

8.1 Introduction
8.2 Windows Registry
8.3 A Few Words Before Starting
8.4 Let’s Start . . .
 8.4.1 Retrieving Data From Windows Registry
 8.4.2 Using Hardware Breakpoints
 8.4.3 Algorithm Analysis
 8.4.4 Reversing the Logic
8.5 Conclusion

MODULE 9: FILE MANIPULATION

During this module we Reverse Engineer an executable that attempts to locate a specific file
in the system and read data from it. In addition, we once more analyze in detail the custom
algorithm used to validate that data in order to extend our skills in Reverse Engineering
custom algorithms.

9.1 Introduction
9.2 A Few Words Before Starting
9.3 Let’s Start . . .
 9.3.1 Getting a Handle
 9.3.2 What Do We Know By Now?
 9.3.3 Reading the File Contents
 9.3.4 Algorithm Analysis
9.4 Conclusion

Course home page: www.elearnsecurity.com/map

p. 15

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 10: ANTI-REVERSING TRICKS PART 1

This is the first module dedicated to Anti-Reversing tricks which includes some basic direct
and indirect ways to detect a Ring3 debugger.

10.1 Introduction
10.2 Categories of Anti-Reversing Tricks
10.3 A Few Words Before Starting
10.4 Direct Debugger Detection
10.5 Indirect Debugger Detection
10.6 Window Debugger Detection
10.7 Conclusion

MODULE 11: ANTI-REVERSING TRICKS PART 2

In this module we continue talking about Anti-Reversing tricks regarding debuggers and
reversing tools detection methods.

11.1 Introduction
11.2 Process Debugger Detection
11.3 Parent Process Detection
11.4 Module Debugger Detection
11.5 Code Execution Time Detection
 11.5.1 RDTSC: Read Time-Stamp Counter
 11.5.2 GetTickCount API
11.6 Conclusion

Course home page: www.elearnsecurity.com/map

p. 16

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 12: ANTI-REVERSING TRICKS PART 3

This module is again focused on Anti-Reversing tricks. In this case we discuss differences
between SW and HW breakpoints and how they can be detected. We also talk about more
advanced tricks that involve the use of exceptions, and finally we talk about some well-
known methods for detecting a few popular VM environments.

12.1 Introduction
12.2 Software vs. Hardware Breakpoints
12.3 Software Breakpoint Detection
12.4 Hardware Breakpoint Detection
12.5 Ring0 Debuggers & System Monitoring Tools Detection
12.6 Structured Exception Handling (SEH)
12.7 Unhandled Exception Filter
12.8 VM Detection
12.9 Conclusion

MODULE 13: CODE OBFUSCATION

In this module we discuss different types of native code obfuscation methods. We explain
how these are implemented, the obstacles that can be created and how we can analyze
and cleanup obfuscated code.

13.1 Introduction
13.2 Logic Flow Obfuscation
13.3 ‘NOP’ Obfuscation
13.4 Anti-Disassembler Code Obfuscation
13.5 Trampolines
13.6 Instruction Permutations
13.7 Conclusion

Course home page: www.elearnsecurity.com/map

p. 17

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

MODULE 14: ANALYZING PACKERS AND MANUAL UNPACKING

This module focuses on executables packers and more specifically on different generic
methods that we can use in order to successfully find the Original Entry Point of applications
packed with common packers. We give practical examples and we unpack them together
for fun and knowledge.

14.1 Introduction
14.2 Well-known Entry Points
14.3 Methods to Reach the OEP
14.4 Packers and Tools Used
14.5 Conclusion

MODULE 15: DEBUGGING MULTI-THREAD APPLICATIONS

In this module we discuss debugging and the analysis of multi-thread applications, or
applications that are able to execute various blocks of code via different threads. Reverse
Engineering multi-thread applications can sometimes be quite frustrating, especially for
beginners.

15.1 Introduction
15.2 Multi-Threading in Practice
15.3 Creating a New Thread
15.4 Threads Synchronization
15.5 Threads Manipulation
15.6 Debugging Multi-Thread Applications
15.7 Conclusion

Course home page: www.elearnsecurity.com/map

p. 18

SECTION 2 - REVERSE ENGINEERING

http://www.elearnsecurity.com/map

HERA LABS
The MAP course is a practice-based curriculum. Being integrated with Hera Lab, the
most sophisticated virtual lab in IT Security, it offers an unmatched practical learning
experience. Hera is the only virtual lab that provides fully isolated per-student access to
each of the real-world scenarios available on the platform. Students can access Hera Lab
from anywhere through VPN.

Modules will be accompanied by 26 hands-on malware analysis labs, with an additional 10
Win32 applications to reverse engineer.

SECTION 1 MALWARE ANALYSIS LABS

MODULE 1
• Lab 1: Evidence Acquisition using KAPE

MODULE 2
• Lab 2: File Identification
• Lab 3: Analyzing PE File Structures
• Lab 4: Packed Malware Identification And Basic Analysis
• Lab 5: From IOCs to YARA Rules

MODULE 3 LABS
• Lab 6: Writing and Debugging Assembly x64 Code

MODULE 4 LABS
• Lab 7: Working with Windows Processes
• Lab 8: Analyzing a Custom Downloader
• Lab 9: Working with DLLs and DLL Injection
• Lab 10: Dynamically Analyzing a Custom Backdoor
• Lab 11: Dynamically Analyzing a KeyLogger

MODULE 5 LABS
• Lab 12: Reverse Engineering a 64-bit Downloader Using x64dbg
• Lab 13: Debugging a 64-bit Downloader Using x64dbg
• Lab 14: Debugging a 64-bit Dropper
• Lab 15: Reverse Engineering a Keylogger using IDA Pro
• Lab 16: Reverse Engineering a Bot Using IDA Pro
• Lab 17: Analyzing the WannaCry Ransomware
• Lab 18: Reverse Engineering a Custom Backdoor using IDA Pro (64-bit)

Course home page: www.elearnsecurity.com/map

p. 19

http://www.elearnsecurity.com/map

HERA LABS
MODULE 6 LABS
• Lab 19: Manually Unpacking a Malware Using x64dbg
• Lab 20: Manually Unpacking UPX using x64dbg
• Lab 21: Manually Unpacking Real-Life Sample (Redaman)
• Lab 22: Manual Unpacking Real-Life Sample (Locky
• Lab 23: Binary Patching KillemAll Malware
• Lab 24: Debugging Obfuscated Downloader
• Lab 25: Debugging Process Hollowing (RunPE)
• Lab 26: Debugging Process Hollowing with TLS Callbacks

SECTION 2 REVERSE ENGINEERING LABS

MODULES 5 - 15 LABS
• Lab 27: String References & Basic Patching
• Lab 28: Exploring the Stack
• Lab 29: Algorithm Reversing
• Lab 30: Windows Registry Manipulation
• Lab 31: File Manipulation
• Lab 32: Anti Reversing Tricks I
• Lab 33: Anti Reversing Tricks II
• Lab 34: Anti Reversing Tricks III
• Lab 35: Code Obfuscation
• Lab 36: Analyzing Packers & Manual Unpacking

Course home page: www.elearnsecurity.com/map

p. 20

http://www.elearnsecurity.com/map

We are eLearnSecurity.

eLearnSecurity was founded with the simple mission of revolutionizing the way IT
professionals develop their information security skills. Now based in Cary, North Carolina
with	offices	and	employees	around	the	United	States	and	Europe,	eLearnSecurity	 is	a	
worldwide leader in cyber security training.

Through a blend of in-depth content and real-world simulations, our detailed courses,
training	paths,	and	certifications	equip	businesses	and	individuals	with	the	skills	needed	
to take on the cyber security challenges of today and tomorrow.

Whether	 you	 are	 interested	 in	 brushing	 up	 on	 specific	 ethical	 hacking	 techniques	 or	
following a comprehensive training path, eLearnSecurity provides a unique opportunity
for security professionals to enhance their knowledge of the industry. We train red,
blue, and purple teams in the latest cyber security techniques with classes ranging from
beginner to expert levels.

eLearnSecurity’s Hera Labs is an industry-leading virtual lab that offers our clients
practical penetration testing and ethical hacking experience, changing the way students
and businesses take on the future of cyber security.

Contact details:

www.elearnsecurity.com
contactus@elearnsecurity.com

http://www.elearnsecurity.com
mailto:contactus%40elearnsecurity.com?subject=

