MANAGEMENT DECISION MAKING

Spreadsheet modeling, analysis, and application

Management Decision Making is a spreadsheet-based introduction to the tools and techniques of modern managerial decision making. The author shows how to formulate models in Microsoft Excel that can be used to analyze complex problems taken from all the functional areas of management, including finance, marketing, operations, and human resources. Throughout the book, the goal is to understand how business decisions are reached, what trade-offs are made, and how outcomes depend on the underlying data.

A broad range of analytical methods is discussed, including linear programming (with an emphasis on post-optimality analysis), integer linear programming, decision analysis, decision trees, queues (including optimization of queues), and Monte Carlo simulation. Included is a CD-ROM that contains Excel files for all examples in the book plus the widely-used decision analysis software applications, TreePlan and Crystal Ball.

The book is aimed at undergraduate and graduate students of business, economics and engineering, including those taking MBA courses. It will also be of great interest to business managers who want to learn more about practical spreadsheet modeling.

George E. Monahan received his PhD from the Kellogg Graduate School of Management at Northwestern University and is Professor of Business Administration at the University of Illinois, Urbana-Champaign. He has been a visiting scholar at the London School of Economics and is an Area Editor for the journal *Production and Operations Management*.

MANAGEMENT | DECISION MAKING

Spreadsheet modeling, analysis, and application

George E. Monahan University of Illinois at Urbana-Champaign

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521781183

© Cambridge University Press 2000

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000 5th printing 2015

Printed in the United Kingdom by Clays, St Ives plc.

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Monahan, George E. (George Edward), 1945, –
Management decision making: spreadsheet modeling, analysis, and application /
George E. Monahan
p. cm.
Includes index
ISBN 0 521 78118 3
1. Industrial management – Decision making. 2. Industrial management – Data processing.
3. Electronic spreadsheets. I. Title.

HD30.23 .M635 2000 658.4′032 - dc21 99-057330

ISBN 978-0-521-78118-3 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the people who are the center of my universemy wife Susan and my children Aili and David

	Contents	
	List of tables	xix
	List of figures	XXV
	Preface	xxxiii
1 The scie	ence of managerial decision making	1
1.1	Introduction	1
	1.1.1 Part I: decision making using deterministic	
	models	2
	1.1.2 Part II: decision making under uncertainty	5
1.2	Models	6
1.2	1.2.1 Stages of model development	8
1.3 1.4	Spreadsheet models A lease/buy problem	9 11
1.4	1.4.1 Problem statement	11
	1.4.2 Influence diagrams	11
	1.4.3 A spreadsheet model of the lease/buy problem	13
	1.4.4 Sensitivity analysis	19
1.5	What's next?	23
1.0	Problems	23
1.6		2.4
1.6	Solution to the hands-on exercise	24

2 Introduction to linear programming models		29
2.1	Formulating a decision model 2.1.1 General structure of decision models	30 31

vii

viii	Contents	
	2.1.2 MicroWorks, Inc.: a product mix problem	32
	2.1.3 Model formulation	33
	2.1.4 Linear programs	40
2.2	Building a linear programming model in an EXCEL	
	worksheet	41
	2.2.1 Benefits of LP Standard Form	45
2.3	Computing an optimal solution using Solver	46
	2.3.1 Installing Solver	46
	2.3.2 Using Solver	46
2.4		54
2.5		56
	2.5.1 Formulating the CTR model	57
	2.5.2 Pictures and simple numerical examples:	
	some problem formulation aids	59
2.6	The CTR spreadsheet model	60
2.7	Computing an optimal solution to the CTR problem	62
2.8	The StdFormTemplate.xls workbook	67
2.9	Trouble-shooting	68
	2.9.1 Nonlinearities	68
	2.9.2 No solution found	69
	2.9.3 Unbounded solution	69
	2.9.4 An unexpected "optimal" solution	70
2.10	The BGT Candy Company problem	70
	2.10.1 The optimal solution	74
2.11	Summary	77
2.12	Problems	77
2.13	Solutions to some hands-on exercises	91
3 Develop	ing model formulation skills	93
3.1	An overview of problem types	94
	3.1.1 Static and dynamic models	96
3.2	A portfolio selection problem (how?)	97
	3.2.1 Solving the portfolio selection problem	97
3.3	A cutting stock problem (how, what?)	100
	3.3.1 Solving the cutting-stock problem	100
3.4	Network flow problems (what, where?)	102
	3.4.1 Integer solutions	106
3.5	Captain Wise's packing problem (what, where?)	106

ix	Contents	
	3.5.1 Solving Captain Wise's problem	107
3.6		111
	3.6.1 Solving the staffing problem	112
3.7	Capital budgeting (when, what?)	113
	3.7.1 Maximizing terminal net worth	114
	3.7.2 Maximizing the sum of discounted cash flows	119
	3.7.3 Optimality of consuming versus saving	122
3.8	A "transportation" problem (what, where?)	124
	3.8.1 The LP formulation	124
	3.8.2 Spreadsheet models	125
3.9	-	127
	3.9.1 Precision Products' production planning problem	128
	3.9.2 A spreadsheet model of the Precision Products	
	problem	129
3.10	A multiple supplier problem (where, how?)	131
	3.10.1 Solving Farm Implement's supply problem	132
3.11	Disentangling the bankruptcies in the al-Manakh	
	stock market crash	135
3.12	Problems	139
3.13	Solution to the hands-on exercise	168
4 More a	dvanced linear decision problems	169
4.1	High Margins, Inc.	170
	4.1.1 A production planning problem with	
	backlogging	174
4.2	Solving a max-min problem as a linear program	176
	4.2.1 Problem statement	176
	4.2.2 An LP model	177
	4.2.3 The min{ } function	178
	4.2.4 Finessing the problem	178
	4.2.5 The solution to the gambler's problem	179
4.3	A dynamic transportation problem with inventory	180
	4.3.1 Problem statement	180
	4.3.2 The single-site purchasing problem	182
	4.3.3 Two sites: a transshipment problem	185
	4.3.4 The general problem: two sites and five	
	processing plants	188
4.4	Problems	189

x		Contents	
5	Qutput	analysis I: small changes	195
	Output	anarysis 1. sman changes	195
	5.1	Introduction to sensitivity analysis	195
		5.1.1 Methods of analysis	197
	5.2	The Lotsa Pasta problem	198
	5.3	Graphical representation of linear programs	200
		5.3.1 Graphing the feasible region	201
		5.3.2 Production plans that satisfy more than one	
		constraint simultaneously	203
		5.3.3 Finding an optimal solution	204
		5.3.4 Optimality of "corner" solutions	207
	5.4	Optimal plans	207
	5.5	Small changes in the objective function	208
		5.5.1 Changing more than one objective function	
		coefficient	215
	5.6		216
		5.6.1 A proposal you might be able to refuse	216
		5.6.2 Shadow prices	219
		5.6.3 Small changes in several right-hand-side values	223
	5.7		226
		5.7.1 Activity	229
		5.7.2 Pricing out the activities	230
		5.7.3 Reduced cost as a shadow price	231
	5.8	6	232
	5.9	1 1	233
	5.10		234
	5.11		240
	5.12		244
	5.13		245
	5.14	Solutions to some hands-on exercises	270
		Supplement: Duality: the story behind shadow prices	273
	5.15	The primal problem	273
	5.16	An offer you can't refuse	274
	5.17	The pricing problem	275
		5.17.1 Products as bundles of resources	275
		5.17.2 Optimal resource prices	277
	5.18		278
		5.18.1 The dual of the dual	278
	5.19	Interesting properties of primal-dual pairs	281

xi	Contents	
5.20	Dual variables and shadow prices	283
5.21	Some concluding remarks	284
5.22	A challenging capstone problem	285
	5.22.1 The solution	286
5.23	Problems	288
6 Output	analysis II: large changes	291
6.1	The optimal value function for RHS values	291
	6.1.1 Revisiting the Lotsa Pasta problem	291
	6.1.2 Measuring the benefit of labor hours	292
	6.1.3 Generating an optimal value function	294
	6.1.4 Properties of the optimal value function	295
	6.1.5 Using Solver to generate an optimal value	
	function	297
	6.1.6 General properties of optimal value functions	298
	6.1.7 Utilizing the optimal value function	298
6.2	Optimal value functions for objective function	
	coefficients	300
	6.2.1 The slope of the iso-profit line	301
	6.2.2 Generating an optimal value function	301
	6.2.3 Properties of the objective function coefficient	
	value functions	305
6.3	Belles and Baubles Trinket Company	306
	6.3.1 Determining the trinket demand function	308
	6.3.2 Impact of the marginal production cost on the	
	optimal selling price	309
6.4	Problems	310
6.5	Solutions to a hands-on exercise	312
7 Integer	linear programs	313
7.1	Fixed charge problems	313
7.2	Using Solver to solve integer linear programs	315
	7.2.1 Farm Implement revisited	316
7.3	Using binary-valued decision variables	318
	7.3.1 Mutually exclusive decision variables	318
	7.3.2 Contingent decision variables	319
		212

xii	Contents	
I	7.3.3 Either/or constraints	320
7.4	A bundle pricing problem	320
<i>,</i>	7.4.1 Decision variables	322
	7.4.2 The objective function	323
	7.4.3 Constraints	324
7.5	A production planning problem	328
	7.5.1 Cost and other information	328
	7.5.2 An integer LP formulation	331
7.6	A river crossing problem	338
	7.6.1 An LP formulation	340
7.7	Bond portfolios to satisfy damage judgments	344
7.8	Problems	350
7.9	Solutions to hands-on exercises	354
Part II	Decision making under uncertainty	357
8 Introdu	ation to probability models	250
8 Introduc	ction to probability models —	359
8.1	Elements of probability	359
	8.1.1 Random experiments	359
	8.1.2 Events	360
	8.1.3 Probability functions	362
8.2	Conditional probability	365
	8.2.1 Law of Total Probability	367
	8.2.2 An auditing example	368
8.3	Independent events	371
8.4	Random variables and their distributions	373
	8.4.1 The distribution of a random variable	376
8.5	Expectation	377
	8.5.1 Properties of expected values	378
	8.5.2 Law of the Unconscious Statistician	378
8.6	Variance and standard deviation	379
	8.6.1 A property of variance	380
8.7	Joint distributions	381
	8.7.1 Conditional expectation	385
8.8	Bayes' Rule	385
8.9	Common discrete probability distributions	389

8.9.1 Bernoulli random variables 389

xiii	Contents	
	8.9.2 Binomial random variables	389
	8.9.3 Geometric random variables	390
	8.9.4 Poisson random variables	391
	8.9.5 Summary of information for some discrete	
	random variables	392
8.10	Continuous random variables	393
	8.10.1 An example: uniform random variables	396
	8.10.2 Exponential random variables	399
	8.10.3 Gamma random variables	400
	8.10.4 Normal random variables	401
	8.10.5 Summary of some common continuous	
	probability distributions	407
8.11	Problems	407
8.12	Solutions to hands-on exercises	414
9 Decision	n making under uncertainty	420
		12.0
9.1	Classes of decision problems	420
9.2	5	421
9.3	Non-probabilistic methods	422
	9.3.1 Dominance	423
	9.3.2 Decision criteria	423
	9.3.3 Application: managing seasonal goods	10
o. /	inventory	426
9.4	Probabilistic methods	428
	9.4.1 The modal outcome criterion	429
	9.4.2 Expected value criterion	430
	9.4.3 Expected regret criterion	430
	9.4.4 The Christmas tree problem revisited	431
9.5	Value of information	432
9.6	Utility and preference	434
	9.6.1 Certainty equivalents	434
	9.6.2 Utility functions	435
	9.6.3 Attitudes towards risk	438
	9.6.4 Exponential utility functions	440
9.7	Problems	443

		Contents	
10	Decision	trees	4
	10.1	-	
	10.1	To enter or not to enter?	4
	10.2	A new product introduction problem	2
	10.3	Depicting the decision process	2
	10.4	10.3.1 Types of nodes in a decision tree	2
	10.4	GM's decision tree	2
	10.5	10.4.1 Placing data on the tree	4
	10.5	Assigning values to the nodes: folding back a	
		decision tree	2
		10.5.1 "Pay-as-you-go" node valuation	2
	10.5	10.5.2 "Settle-up-at-termination" node valuation	2
	10.6	Identifying an optimal strategy	2
	10.7	Building decision tree models in EXCEL: using TreePlan	2
		10.7.1 Building a new decision tree	2
		10.7.2 Modifying a decision tree	2
		10.7.3 Hints about printing the decision tree	2
	10.8	Evaluating new information	2
		10.8.1 Quality of information	2
		10.8.2 Updating prior beliefs	2
		10.8.3 The modified decision problem	2
	10.9	Optimal strategies as optimal contingency plans	2
	10.10	The value of information	2
		10.10.1 The value of perfect information	2
		10.10.2 Perfect information and no information	2
	10.11	Sensitivity analysis in decision trees	2
		10.11.1 Varying the likelihood probabilities	4
	10.12	Decision trees with exponential utility	2
		10.12.1 Game Magic revisited	4
	10.13	An oil exploration problem	2
		10.13.1 Availability of information	2
		10.13.2 Resolving an apparent paradox	2
		10.13.3 Expected value of perfect information	4
	10.14	Bidding for the SS Kuniang	4
	10.15	Problems	5
	10.16	Solutions to some hands-on exercises	5

xv		Contents	
11	Manage	ement of congested service systems	526
			020
	11.1	Components of a queueing model	528
		11.1.1 Kendall notation	530
		11.1.2 A simple deterministic example	530
		11.1.3 A general result: Little's Law	532
		11.1.4 Another example	534
		11.1.5 Steady state versus transient analysis	535
	11.2	A basic queueing model	535
		11.2.1 Memoryless property of random variables	536
		11.2.2 Exponential random variables	536
		11.2.3 Poisson arrivals	537
		11.2.4 Steady-state analysis	539
		11.2.5 Determining the steady-state probabilities	541
		11.2.6 Calculating L and W	544
		11.2.7 Computing L_q and W_q	545
	11.3		546
		11.3.1 The Queue.xls workbook	548
		11.3.2 The $M/M/s$ queue with capacity restrictions	549
		11.3.3 Erlang's loss formula	550
	11.4	1	552
	11.5		553
	11.6		554
	11.7		557
		11.7.1 Controlling the number of servers in an	
	11.0	M/M/s queue	558
	11.8	Approximate methods for finding the optimal number	5.50
		of servers	559
		11.8.1 The deterministic model	560
	11.0	11.8.2 Applicability	561
	11.9		562
	11 10	11.9.1 A note of caution	565
	11.10	The equilibrium model	565
	11.11	11.10.1 Non-exponential service times	566
	11.11	Controlling the rate of service	566
	11.12	Who waits longer: one super-server versus multiple slow servers?	570
		11.12.1 Average waiting times in $M/M/1$ queues	570 570
		11.12.1 Average waiting times in $M/M/1$ queues 11.12.2 Average waiting times in $M/M/2$ queues	570
		11.12.3 Comparing $W_q(1)$ and $W_q(2)$	572

xvi	Contents	
	11.12.4 Comparing $W(2)$ and $W(1)$	572
	11.12.5 The general case	573
	11.12.6 Conclusions	574
11.13	Scheduling police patrol cars in New York City	574
11.14	Problems	579
12 Monte	Carlo simulation	593
12.1	An overbooking problem: evaluating a restaurant's	
	reservation policy	594
	12.1.1 Constructing a simulation model	595
	12.1.2 An Excel simulation model	595
12.2	Another example	599
	12.2.1 Replicating random experiments using the	
	Data Table function	600
	12.2.2 Replicating the experiments	600
	12.2.3 Summarizing the data	603
12.3	Avoiding automatic recalculation of a worksheet	605
12.4	Using CRYSTAL BALL, an EXCEL add-in for	
	Monte Carlo simulation	606
	12.4.1 Solving Bistro 220's problem using	
	CRYSTAL BALL	606
	12.4.2 Assumption cells	607
	12.4.3 Forecast cells	609
	12.4.4 Decision cells	609
	12.4.5 Choosing preferences	609
	12.4.6 Running OptQuest	610
	12.4.7 CB's output	613
12.5	A lump-sum investment problem	613
	12.5.1 Some generalizations	616
	12.5.2 Summary	621
12.6	1	622
12.7	An overview of discrete-event simulation	623
	12.7.1 Designing a simulation experiment	623
12.8	6	625
	12.8.1 Generating values of empirical random variables	628
	12.8.2 The inverse transform method	632
	12.8.3 CB built-in random number generators	635
12.9	e	636
	12.9.1 Layout of the workbook	636

xvii	Contents	
12.10	Multi-period inventory with random demand	644
	12.10.1 Generating the random demands	645
	12.10.2 Some modeling details	647
	12.10.3 Finding a "good" ordering policy	650
12.11	Kanondell Cycle	652
	12.11.1 Problem statement	652
	12.11.2 Defining Assumptions in CB	656
	12.11.3 Analysis	658
12.12	Problems	659
12.13	Solution to a hands-on-exercise	672
Appendix	An Excel Primer	674
A.1	Cell addressing	674
	A.1.1 A1 cell addressing	674
	A.1.2 R1C1 cell addressing	675
	A.1.3 Managing cell names	675
	A.1.4 Invalid names	677
A.2	Formulas in Excel	677
A.3	Array (matrix) formulas in Excel	678
	A.3.1 Example: solving systems of linear equations	682
A.4	Logical functions in EXCEL	684
	A.4.1 Excel's AND, OR, and NOT functions	685
	A.4.2 EXCEL's IF function	686
A.5	Data tables	689
	A.5.1 A (column-type) one-way data table	689
	A.5.2 Two-way data tables	691
A.6	EXCEL's HLOOKUP and VLOOKUP functions	693
A.7	Excel's Histogram tool	695
A.8	Solutions to some hands-on exercises	700
	Index	703
	CD-ROM	714

Tables

0.1	Applications in management science.	xxxvii
1.1	Cell details in 'Model 1'.	17
1.2	Cell details in 'Usage Analysis'.	20
2.1	Production processing times for the MicroWorks problem.	32
2.2	Revenues and costs for the MicroWorks problem.	33
2.3	Linear program for the MicroWorks problem.	40
2.4	Data for the CTR Company problem.	57
2.5	Linear program for the Cash-for-Trash problem.	60
2.6	Mixing requirements of the two candy lines.	71
2.7	Supply availability and cost of the chocolate types.	71
2.8	BGT product mix problem.	73
2.9	The BGT product mix problem in LP Standard Form.	74
2.10	Optimal recipe for the BGT candies.	76
2.11	Data for Problem 2.1.	78
2.12	Data for Problem 2.2.	78
2.13	Data for Problem 2.3.	79
2.14	Data for Problem 2.7.	81
2.15	Data for Problem 2.8.	82
2.16	Data for Problem 2.12.	83
2.17	Revenue and material costs. (Problem 2.12).	84
2.18	Data for Problem 2.13.	85
2.19	Data for Problem 2.14.	85
2.20	Data for Problem 2.15.	86
2.21	Data for Problem 2.16.	86
2.22	Data for Problem 2.18.	88
2.23	Data for Problem 2.19.	88
2.24	Data for Problem 2.20.	89
2.25	Data for Problem 2.21.	90
2.26	Data for Problem 2.22.	90
2.27	Data for Problem 2.23.	91

xix

xx	Tables	
3.1	Investment opportunities.	98
3.2	Linear program for Western Trust's portfolio selection problem.	99
3.3	Data for the Wisconsin Paper Company problem.	101
3.4	Cost data for the Rent-a-Hauler Company problem.	103
3.5	Model for the Rent-a-Hauler Company problem.	105
3.6	Physical characteristics of the ship.	107
3.7	Potential cargo.	107
3.8	Linear program for Captain Wise's problem.	108
3.9	Staffing requirements for the University Computer Center.	111
3.10		113
3.11		115
3.12	-	
	Company.	118
3.13	Modified cash inflows and outflows.	123
3.14	Optimal solutions to three models.	123
3.15	Needs and costs.	124
3.16	Data for the Precision Products problem.	128
3.17	Unit prices for each component.	132
3.18	Indebtedness array for the disentangling problem.	138
3.19	Linear program for the disentanglement problem.	138
3.20	Amounts paid and received.	140
3.21	Data for Problem 3.1.	141
3.22	Data for Problem 3.5.	143
3.23	Data for Problem 3.6.	144
3.24	Data for Problem 3.7.	144
3.25	Data for Problem 3.9.	146
3.26	Data for Problem 3.10.	146
3.27	Data for Problem 3.12.	147
3.28	Data for Problem 3.13.	148
3.29		148
3.30		149
3.31		150
3.32		151
3.33		153
3.34		153
3.35		154
3.36		154
3.37		154
3.38	1 0	155
3.39		156
3.40	Data for Problem 3.27.	158

xxi	Tables	
3.41	Annual cash flows.	159
3.42	Data for Problem 3.28.	160
3.43	Projected rates of sales.	160
3.44	Data for Problem 3.29.	161
3.45	Data for the Pure Temper problem.	162
3.46	Time required for each operation.	163
3.47	Data for Problem 3.32.	164
3.48	Data for Problem 3.33.	165
3.49	Data for Problem 3.34.	166
3.50	Data for Problem 3.35.	167
3.51	Solid State's balance sheet.	167
4.1	Data for High Margins' products.	171
4.2	Linear program for High Margins, Inc.	173
4.3	Production planning LP for the Precision Products	
	problem with backlogging.	176
4.4	Payoff rates by choice and outcome.	178
4.5	An LP that maximizes a minimum payoff.	180
4.6	Linear program to determine Site 1's optimal	
	purchasing plan.	183
4.7	Decision variables and parameters in the BOM problem.	184
4.8	Linear program to determine Sites 1 and 2's optimal purchasing	
	and shipping plans.	185
4.9	Formula in the 'Sites 1 and 2' workbook.	186
4.10	Linear program to determine Site 1 and Site 2's optimal	
	purchasing and shipping plans with five processing plants.	189
4.11	Formulas in the Complete worksheet of BOM.xls.	190
4.12	Data for Problem 4.1.	192
4.13	Data for Problem 4.2.	194
5.1	Linear program for the Lotsa Pasta problem.	199
5.2	Sample sensitivity analysis questions in the	
	Lotsa Pasta problem.	200
5.3	Sign of the shadow price.	222
5.4	Decreasing the availability.	238
5.5	Increasing the objective function.	239
5.6	Data for Problem 5.7.	252
5.7	Data for Problem 5.8.	255
5.8	Linear program for the Weedwacker problem.	255
5.9	Data for Problem 5.9.	258
5.10	Model for the PowerTrain problem.	258

xxii	Tables	
5.11	Data for Problem 5.18.	268
5.12	2 Relationships between primal and dual programs.	278
5.13	3 Linear program for Problem 5.20.	288
5.14	Linear program for Problem 5.21.	289
6.1	The Lotsa Pasta linear program.	292
7.1	Data for the Mercury Machine Shop problem.	314
7.2	Integer LP for the Mercury Machine Shop problem.	314
7.3	Data for the Acme Manufacturing problem.	320
7.4	Data for Micro Wholesale's bundle pricing problem.	322
7.5	Linear program for the MW bundle pricing problem.	326
7.6	Demand for pale ale in barrels.	328
7.7	Costs and capacities by workforce level.	331
7.8	Changeover cost verification.	335
7.9	The dependence between Z_t and S_{t-1} and S_t .	335
7.10	5	336
7.1		337
7.12		340
7.13	e	341
7.14		345
7.15		347
7.16		349
7.17		350
7.18		351
7.19		353
7.20		355
7.21	The new optimal production plan for RTA.	356
8.1	Number of candies in three dishes.	361
8.2	Definitions for Example 8.2.	363
8.3	A joint probability table.	371
8.4	Joint probabilities of bags sold and competitor's price.	372
8.5	Partially filled table of joint probabilities.	373
8.6	Completed table of joint probabilities.	374
8.7	Total cost for two records.	374
8.8	The distribution of C	376
8.9	Distribution of weekly sales X.	381
8.10) Joint distribution of C and S.	382
8.11	Distribution of X.	383
8.12	2 Cumulative distribution of <i>X</i> .	383

xxiii	Tables	
8.13	1 2	394
8.14	1 2	406
8.15	Distribution of Y.	415
9.1	Total profit $\Pi(x, d)$.	428
9.2	Computing the optimal decision under the maximin and maximax criteria.	428
9.3	L(x, d), regret (opportunity loss) for the Christmas	120
	tree problem.	429
9.4	Distribution of D, the demand for Christmas trees.	432
9.5	Data for a problem with uncertainty.	436
9.6	Data for problem with uncertainty using utility values.	438
9.7	Data for Problem 9.1.	443
9.8	Data for Problem 9.6.	446
9.9	Data for Problem 9.7.	447
10.1	Payoff table for the Book Browser problem.	452
10.2	Computing the value of a node in the	
	"pay-as-you-go" setting.	463
10.3	Computing the value of a node in the "settle-up-at-	
	termination" setting.	465
10.4	Joint probability table for Game Magic.	475
10.5	Acquisition and restoration cost (in \$ millions).	506
10.6	Maximum expected net present values associated with	
	each bid value.	508
10.7	Data for Problem 10.2.	510
10.8	Data for Problem 10.5.	513
10.9	Data for Problem 10.6.	514
10.10		519
10.1		520
10.12		523
10.13	Applications under the proposed system.	523
11.1	Managerial problems characterized by congestion.	527
11.2	The total cost of providing service as a function of the number of ATMs.	559
11.3	Parameters and variables used to compute the profit	559
	per unit time.	560
11.4	The optimal number of servers with Poisson arrivals and	
	an infinite number of servers.	563
11.5	The optimal number of servers in an M/M/s queue.	566

xxiv	Tables	
11.6	Cost of providing various rates of service.	568
11.7	Model for the patrol car scheduling problem.	578
11.8	Some formulas in Figure 11.20.	579
11.9	Data for Problem 11.11.	589
12.1	Components of a simulation model.	624
12.2	Distribution of sales, S.	629
12.3	EXCEL statistical functions for distribution and inverse	
	distribution functions of several random variables.	633
12.4	Built-in CB probability functions.	635
12.5	Data for Problem 12.6.	665
12.6	Data for Problem 12.8.	666
12.7	Data for Problem 12.9.	667
12.8	Distribution of purchases by group and mean and standard	
	deviation of purchase amounts within each group.	668
12.9	Distribution of the number of customers who enter the	
	shop with and without the new advertising.	670
12.10	Parameters of the normal distribution of individual sales.	671
A.1	Logical operators in Excel.	685

Figures

1.1	Building and implementing decision models.	9
1.2	An influence diagram for the lease/buy problem.	12
1.3	The LeaseBuy.xls workbook.	14–15
1.4	An influence diagram for the modified lease/buy problem.	19
1.5	The Goal Seek function.	22
1.6	Leasing and purchasing costs as a function of the annual	
	usage rate.	23
1.7	Years worksheet added to LeaseBuy.	25
1.8	Years worksheet after using Goal Seek.	25
1.9	Leasing and purchasing costs as a function of the length of the	
	planning horizon.	26
2.1	An influence diagram for a generic optimization problem.	31
2.2	Spreadsheet model for the MicroWorks problem.	42
2.3	Solver menus.	47
2.4	Solver Options dialog box.	48
2.5	Entering constraints into Solver's Add Constraint box.	49
2.6	Completed Solver dialog box.	50
2.7	Solver Results box.	51
2.8	Answer Report for the MicroWorks problem.	52
2.9	The MicroWorks spreadsheet model evaluated at the optimal	
	solution.	52
2.10	Adding the restriction that the decision variables be	
	integer-valued.	55
2.11	One ton of trash.	60
2.12	The CTR spreadsheet model.	61
2.13	Entering constraints into Solver's Add Constraint box.	63
2.14	Completed Solver dialog box.	64
2.15	Solver Answer Report.	65
2.16	CTR model worksheet after running Solver.	65
2.17	Profit maximizing variation of the CTR problem.	66
2.18	The StdFormTemplate.xls workbook.	67

xxv

xxvi	Figures	
2.19	Spreadsheet model for the BGT problem.	75
2.20	Solver model for the BGT problem.	75
3.1	A geometrical representation of decision problem types.	94
3.2	Spreadsheet model for Western Trust's portfolio	
	selection problem.	100
3.3	Solving a cutting-stock problem.	102
3.4	Directed graph for the Rent-a-Hauler Company problem.	103
3.5	Spreadsheet model of the Rent-a-Hauler Company problem.	105
3.6	Spreadsheet model for Captain Wise's problem evaluated at the	110
2.7	optimal solution.	110
3.7	Spreadsheet model for the staff scheduling problem.	114
3.8	Terminal net worth model.	118
3.9	Discounted cash flow model.	121
3.10		126
3.11		126
3.12	1	131
3.13		134
3.14		136
3.15	Optimal solution to the disentanglement problem.	139
4.1	Total profit function for Product 3.	171
4.2	Spreadsheet model for the High Margins product mix problem.	173
4.3	Precision Product's spreadsheet model with backlogging.	177
4.4	Graph of the function $f(x) = \min\{x + 1, 2 - x\}$	179
4.5	Gambler's spreadsheet model.	180
4.6	The Data worksheet in BOM.xls.	182
4.7	Worksheet 'Site 1 Only'.	184
4.8	Worksheet 'Sites 1 and 2'.	188
4.9	Worksheet Complete.	192
5.1	Spreadsheet model for the Lotsa Pasta Company problem.	199
5.2	Answer Report for the Lotsa Pasta Company problem.	199
5.3	Production plans that use no more than 90 hours of labor.	202
5.4	The feasible production plans.	204
5.5	Iso-profit production plans.	205
5.6	Production plans that generate \$1,750 in total profits.	206
5.7	Increasing the profit margin of macaroni.	209
5.8	Multiple optimal solutions when $m_w = 700$.	210
5.9	Optimal production plan when $m_w = 250$.	211
5.10	Multiple optimal solutions when $m_w = 200$.	212

xxvii	Figures	
5.11	The Sensitivity Report for the Lotsa Pasta problem.	213
5.12	The Lotsa Pasta problem in AnimaLP.	214
5.13	The expanded feasible region with $b_1 = 100$.	218
5.14	Example wherein a binding constraint has a zero shadow	
	price.	223
5.15	Optimal solution when $m_z = 0$.	227
5.16	Optimal solution when $m_z = 0$ and $Z \ge 1$.	227
5.17	Sensitivity Report when $m_z = 0$.	228
5.18	Optimal solution when $m_z = 150$.	229
5.19	Lotsa Pasta model when $m_z = 0$.	230
5.20	Signal for multiple optimal solutions in the Lotsa Pasta model.	233
5.21	Answer Report for the BGT Candy Company problem.	234
5.22	Sensitivity Report for the BGT Candy Company problem.	235
5.23	Alternate form model for the Precision Products Company.	240
5.24	Sensitivity Report for alternate form problem.	241
5.25	Standard Form model for the Precision Products Company.	242
5.26	Sensitivity Report for the Standard Form problem.	242
5.27	Right-hand-side analysis.	243
5.28	Sensitivity Report for the CTR problem.	244
5.29	Spreadsheet model for the Putter Partners problem.	252
5.30	Answer Report for the Putter Partners problem.	253
5.31	Sensitivity Report for the Putter Partners problem.	253
5.32	The spreadsheet model for the Weedwacker problem.	256
5.33	Answer Report for the Weedwacker problem.	256
5.34	Sensitivity Report for the Weedwacker problem.	257
5.35	Spreadsheet model for the PowerTrain problem.	259
5.36	Answer Report for the PowerTrain problem.	259
5.37	Sensitivity Report for the PowerTrain problem.	260
5.38	The spreadsheet model for the Hippopotamus shipping problem.	261
5.39	Sensitivity Report for the Hippopotamus shipping problem.	262
5.40	Feasible region for the product mix problem.	274
5.41	An example of a primal-dual relationship.	279
5.42	The relation between objective function values in primal-	• • •
	dual pairs.	282
5.43	The relation between optimal solutions to primal-dual pairs	• • •
	of linear programs.	284
5.44	Feasible region for the dual problem.	287
6.1	Varying labor hours in the Lotsa Pasta problem.	293
6.2	Optimal profit as a function of the number of labor hours	
	available.	296

xxviii		Figures	
	6.3	Data from three Sensitivity Reports.	298
	6.4	General shapes of optimal value functions associated with	
		RHS values.	299
	6.5	Optimal net profit as a function of the number of labor hours	
		available.	300
	6.6	Optimal solution when $p_w = 0$.	301
	6.7	Optimal solution when $p_w = 200$	302
	6.8	Optimal solution when $p_w = 700$.	304
	6.9	Optimal solution when $p_w \to \infty$.	304
	6.10	Graph of $v_w(p_w)$.	305
	6.11	Optimal solution to Captain Wise's problem when $P = $ \$2, 500.	307
	6.12	Sensitivity Report for the variable T in the objective function.	308
	6.13	Computing B&B's profit maximizing price.	309
	7.1	The spreadsheet model for the Mercury Machine Shop	
		problem.	316
	7.2	Specifying binary variables in Solver.	316
	7.3	Integer LP model for Farm Implement evaluated at the optimal	217
	7 4	solution.	317
	7.4	Decision model for the Acme Manufacturing problem.	321
	7.5	The left half of the MW bundle pricing spreadsheet model.	329
	7.6	The right half of the MW bundle pricing spreadsheet model.	330
	7.7	The left half of the RTA spreadsheet model.	338
	7.8 7.9	The right half of the RTA spreadsheet model.	339 341
	7.9	The five required trips.	
		The spreadsheet model for the River Crossing problem.	344
	7.11	A bond portfolio selection model.	348
	8.1	Probability tree diagram for Example 8.2.	364
	8.2	Probability tree diagram for Example 8.3.	365
	8.3	Joint distribution of values from two selections with	
		replacement.	384
	8.4	Computing probabilities for a geometric random variable.	391
	8.5	The cdf and pdf of a uniform $(0, 1)$ random variable.	397
	8.6	Computing the mean and standard deviation of X.	414
	8.7	Joint probability table for selection without replacement.	415
	8.8	Workbook for hands-on exercise 8.1.	416
	9.1	U(x), utility of payoff x.	437
	9.2	A utility function $U(x)$ of a risk averse DM.	439
	9.3	Exponential utility functions.	441

10.1	Decision tree for the Book Browser problem.	453
10.2	The Data worksheet for the GM decision tree.	455
10.3	Terminal node with payoff of $+50$.	456
10.4	Event node with three possible outcomes.	457
10.5	Decision node with two alternatives.	457
10.6	Basic structure of the decision tree for the GM problem.	458
10.7	GM decision tree with data.	460
10.8	GM decision tree with "pay-as-you-go" node valuation.	464
10.9	GM decision tree with "settle-up-at-termination"	
	node valuation.	465
10.10	TreePlan's initial decision tree.	467
10.11	Modifying a decision tree in TreePlan.	468
10.12	TreePlan's modified decision tree.	469
10.13	A partially completed decision tree.	470
10.14	TreePlan's Copy subtree option.	471
10.15	TreePlan's Paste subtree option.	471
10.16	The decision tree immediately after the Paste subtree command.	472
10.17	Modified Data worksheet.	476
10.18	TreePlan's modified decision tree.	478
10.19	Summary of the solution to the GM problem in the	
	Results worksheet.	480
10.20	Computing EPPI.	485
10.21	Varying the likelihood probabilities.	486
10.22	Modifying TreePlan's node evaluation option.	491
10.23	Specifying expected utility maximization in TreePlan.	492
10.24	Game Magic decision tree with expected utility criterion.	493
10.25	GM's utility function when $A = B = 10$ and $RT = 50$.	494
10.26	GM's decision tree with expected utility payoffs.	495
10.27	Optimal first actions for various levels of risk aversion.	496
10.28	The Essex Oil Company decision problem.	498
10.29	The modified Essex Oil Company decision problem.	500
10.30	The revised Essex Oil Company decision problem.	502
10.31	Beginning of NEES's decision tree.	506
10.32	Continuation of NEES's decision tree for a \$6 million bid.	507
10.33	Partial decision tree for Problem 10.4.	512
11.1	A typical queueing system.	526
11.2	Number of customers in a deterministic queueing system.	530
11.3	Number of customers in another queueing system.	534
11.4	Transition diagram for an $M/M/1$ queue.	541
11.5	Worksheet M-M-s in the workbook Queue.xls when $s = 1$.	547

ххх	Figures	
11.6	Worksheet M-M-s in the workbook Queue.xls when $s = 2$.	548
11.7	Worksheet M-M-s-K in the workbook Queue.xls.	549
11.8	Analyzing an $M/G/s/s$ queueing model.	551
11.9	Analyzing an $M/G/\infty$ queueing model.	552
11.10	Analyzing an $M/M/s$ queueing model with a finite source.	554
11.11	Modeling a drive-through facility as an M/M/1 queueing	
	model.	555
11.12	Modeling a drive-through facility with automation as an $M/G/1$	
	queueing model.	556
11.13	The modified $M/G/1$ queueing model.	557
11.14	Service and waiting costs as a function of the service rate.	558
11.15	A spreadsheet model for the infinite server approximation with	
	Poisson arrivals.	564
11.16	The Calc sheet in Copier Cost.	568
11.17	Number of patrol cars demanded by hour.	574
11.18	Calculating the number of patrol cars required by hour.	576
11.19	Patrol car demand and requirements by hour.	577
11.20	Determining an optimal patrol car schedule.	580
11.21	The assignment of patrol cars by hour.	580
12.1	Bistro 220 spreadsheet model.	596
12.2	Data table to determine the optimal number of	
	reservations to accept.	598
12.3	Setting up a data table for replicating a simulation	
	experiment.	601
12.4	Completed data table showing 1,000 replications of two	
	experiments.	602
12.5	Output of the Descriptive Statistics function.	603
12.6	Histograms of values generated in Experiments 1 and 2.	604
12.7	Defining an assumption cell in CB.	608
12.8	Defining another assumption cell in CB.	608
12.9	Gallery of some of the distributions available in CB.	609
12.10	6	610
12.11	Defining a decision cell in CB.	610
12.12	Setting preferences in CB.	611
12.13	Selecting a decision variable in OptQuest.	612
12.14	·	612
12.15		612
12.16	•	613
12.17	•	614
12.18	Forecast statistics generated by CB.	614

хххі	Figures	
12.19	The principal saved/owed when a loan is made at time T .	615
12.20	Determining T with daily compounding.	617
12.21	Determining T with random interest rates.	619
12.22	The distribution of total net annual interest when $T = 214$.	621
12.23	The State Driver's License Examination Center.	623
12.24	The distribution function of a triangular (a, b, c) random	
	variable.	627
12.25	Transforming a symmetric triangular (0,2) pdf into a	
	symmetric triangular (a, b) pdf.	628
12.26	The cumulative distribution of <i>S</i> .	629
12.27	Evaluating the cumulative distribution of S.	630
12.28	Using =VLOOKUP	631
12.29	Illustration of the inverse transform method for generating	
	values of random variables.	632
12.30	Generating values of triangular (1, 5, 2) random variables.	634
12.31	Parameters sheet of the License Examination Center	
	simulation model.	637
12.32	Model sheet of the License Examination Center simulation	
	model.	637
12.33	Repetitions sheet of the License Examination Center	
	simulation model.	638
12.34	Distribution of the average time spent in the Center over	
	all customers.	642
12.35	Statistics for the average time spent in the Center over all	
	customers.	643
12.36	Mean and standard deviation of daily demand (Demand	
	worksheet).	645
12.37	Parameter values and costs (Parameter worksheet).	646
12.38	Simulating an (s, S) inventory policy (Model worksheet).	646
12.39	Input to OptQuest (Parameter worksheet).	650
12.40	Specifying constraints in OptQuest.	651
12.41	OptQuest's optimal solution.	652
12.42	OptQuest's Sensitivity Report.	652
12.43	CB's report when $S = 282$ and $s = 181$.	653
12.44	Data and model for the road bike proposal (Road worksheet).	655
12.45	Data and model for the mountain bike proposal (Mountain	
	worksheet).	655
12.46	Entering a custom sales distribution.	657
12.47	Distribution of ROI values.	658
12.48	The difference in frequencies between mountain and road	
	bike ROI distributions.	659

xxxii		Figures	
	A.1	Main worksheet in EqSolver.xls.	676
	A.2	Computation worksheet in EqSolver.xls.	678
	A.3	Data for hands-on exercise A.4.	682
	A.4	The Main worksheet in EqSolver.xls.	683
	A.5	Resulting worksheet using EqSolver.xls.	684
	A.6	Computing total cost based on conditions.	688
	A.7	A simple profit model.	690
	A.8	Setting up a (column-type) one-way data table.	690
	A.9	Specifying the Column Input Cell for a (column-type) one-way	
		data table.	691
	A.10	A completed (column-type) one-way data table.	692
	A.11	A completed multi-column one-way data table.	692
	A.12	Setting up a two-way data table.	693
	A.13	Generating a two-way data table.	694
	A.14	A completed two-way data table.	694
	A.15	Using the VLOOKUP function.	695
	A.16	Selecting the Histogram tool in the Data Analysis menu.	697
	A.17	The main Histogram tool menu.	697
	A.18	Histogram generated with EXCEL's bin values.	698
	A.19	Using Excel's Fill-Series function.	699
	A.20	Specifying a range of bin values in the Histogram tool.	699
	A.21	Histogram generated with user-specified bin values.	700
	A.22	Solution to hands-on exercise A.4.	701

Preface

Management Decision Making: Spreadsheet Modeling, Analysis, and Application is an introduction to the tools, techniques, language, and methods of analysis of modern managerial decision making for students in business, economics, and engineering. The focus is on *translation, construction,* and *interpretation*:

- Complex problems in all of the functional areas of management, including finance, marketing, operations, and human resources, are *translated* into decision models. Emphasis is on the art of analytical model building.
- *Construction* is the process of building *spreadsheet models* in Microsoft[®] EXCEL from the decision models. Skills developed here center on the effective use of the many powerful features of EXCEL. Built-in functions in EXCEL, as well as add-in software that comes bundled with this book, are used to generate "solutions" to spreadsheet models.
- *Interpretation* is the conversion of solutions generated in EXCEL into managerially-relevant terms that are understandable to those familiar with neither analytical tools nor spreadsheet models.

Little attention in this book is devoted to underlying details regarding the computational procedures used by EXCEL. At times, however, some computational details are needed to motivate managerial insight.

Key emphases and features

1. A management orientation

Each of the decision problems presented in the book is motivated from a managerial perspective. The purpose is to glean significant insights into complex managerial problems found in all of the functional areas of the firm.

2. Development of decision modeling skills

Detailed, step-by-step approaches are provided for converting complex problem statements into effective decision models, which enhance the

xxxiii

xxxiv	Preface
xxxiv	 student's ability to fully appreciate the nuances of the analysis of the decision problem. <i>Model analysis</i> A key emphasis of this book is the analysis of the output generated by the computer and, more specifically, by EXCEL. Students learn to translate the computer output back into managerially-relevant terms. Questions such as "Wh?" and "What if?" are prevalent. <i>Sensitivity analysis</i>, which examines how a solution depends on specifications of the model, is emphasized. Indeed, one of the benefits of confining the analysis to spreadsheets is the ease with which sensitivity analysis can be done. <i>Development of spreadsheet skills</i> Students using this book will, as a natural byproduct, polish their spread-sheet modeling skills. Advanced features of EXCEL are routinely used in examples and end-of-chapter problems. Detailed descriptions and illustrative examples are used to describe many of these advanced functions of EXCEL, such as data tables, VLOOKUP, and GOAL SEEK. In addition, many of the statistical and financial functions of EXCEL are used. An extensive appendix to the book is an EXCEL primer that reviews much of the functionality of EXCEL. <i>EXCEL 2000</i> Extensive use of screen captures and printouts of EXCEL 2000 worksheets are used to illustrate at a detailed level the development and analysis of spreadsheet models.
	 6. <i>Builded Software</i> Several ExcEL add-in programs come on a CD-ROM disk that accompanies the book: (a) CRYSTAL BALL: a student version of this new powerful commercial software package simplifies Monte Carlo simulation in spreadsheets and combines optimization with Monte Carlo simulation. (b) TreePlan: a shareware add-in for constructing and analyzing decision trees. (c) Queue.xls: an ExCEL workbook, written by the author, that contains templates for computing steady-state quantities for several common types of queues. 7. <i>Hands-on exercises</i> The reader is frequently asked to do tasks throughout each chapter. These exercises are marked with the computer icon shown here in the margin. The objective is to have the reader do something on the computer that illustrates and/or expands the concept currently being discussed. 8. <i>Decision Models in Practice</i> These are detailed descriptions of real-world applications of techniques

xxxv	Preface
	 discussed in the book. The novelty is that in addition to a description of the application, a detailed prototype of the model is developed, the analysis of that model is discussed, and the recommendations resulting from that analysis are made. The following applications are discussed: Disentangling bankruptcies resulting from the crash of the al-Manakh stock market in Kuwait. (This is a linear programming application.) Bidding for the salvage rights to the SS <i>Kuniang</i>, a ship that sunk off the coast of Florida. (This is a decision tree example.) Determining a portfolio of treasury bonds that generate cash flows mandated by a judgment in a law suit. (This is an application in integer linear programming.) Scheduling police patrol cars in New York City in an environment characterized by high levels of uncertainty. (This is an application in both queueing and integer linear programming.) <i>Auxiliary applications on the CD-ROM</i>
O	 There are a number of small HTML files that can be uploaded to a web server which illustrate real applications of the tools that are discussed in the book. Many of these files contain links to the home pages of the companies and organizations that are using the tools. The current list of applications is given in Table 0.1. 10. EXCEL workbooks on the CD-ROM
xxx.xls	All of the ExcEL workbooks discussed in the text are on the accompanying CD-ROM. A CD icon, like the one in the margin, highlights the name of the relevant ExcEL workbook.

Prerequisites

This book is designed for the following:

- undergraduate business and economics students;
- MBA students;
- Executive MBA students;
- undergraduate engineering students who seek a business and/or economics orientation to mathematical model building.

The analytical prerequisites are the minimal requirements of most AACSB Schools of Business: high school algebra and at least one semester of a combined probability and statistics course.

In my experience, undergraduate students who have had only one course in probability and statistics take very little away from such a course. Chapter 8 of this book is an extensive "review" of the elements of probability, especially

xxxvi

Preface

Table 0.1: Applications in management science.

United Airlines	Forecasting personnel requirements using LP	
GE Capital	Using LP's to improve collections	
Ministry of Finance, Kuwait	Disentangling bankruptcies using LP	
Hanshin Expressway, Osaka, Japan	Managing a major toll road in Japan using LP	
Citco	Managing refinery costs using LP	
Wellborn Cabinet, Inc.	Determining best use of raw materials using LP	
US Department of Energy	Phasing out operations at a high-tech company using LP	
Canadian National Railway	Capacity expansion using simulation	
US Postal Service	Evaluating mail processing strategies using simulation	
National Forest Service	Controlled burns at national forests	
American Airlines	Yield management: managing discount fares using decision trees	
L.L. Bean	Managing telecommunication functions using queueing theory	
New Haven, CT Fire Department	Closing fire stations using queueing theory	

conditional probability, as a prelude to decision analysis, the study of queues, and Monte Carlo simulation. This chapter also contains a discussion of the common discrete and continuous probability distributions. Elementary ideas from statistics are used in the analysis of simulation output.

One of my primary objectives is to make the material in this book accessible to students who are not "quant jocks" but to do this in a way that does not treat every analytical idea as a "black box". Care is taken in the presentation of analytical concepts. Fundamental notions in mathematics (many of which are now routinely taught in high school), such as functions, variables, slopes of functions, graphs of functions, and the like are utilized. The underlying goal, however, is to develop a deeper understanding of managerial decision problems.

I thoroughly enjoy teaching quantitative material to management students and have tried to convey that enthusiasm in the pages that follow. The "oneon-one" style of the exposition is somewhat informal. As I wrote this material, I imagined that I was tutoring a bright student in my office. I hope that not too many readers are disturbed by the casual tone.

xxxvii

Preface

Acknowledgements

It is a pleasure to thank my many colleagues and friends for their advice, criticism, and explicit contributions to this book. Two people deserve special mention. Professor Richard Engelbrecht-Wiggans, my colleague at the University of Illinois, has had a profound influence on virtually all aspects of this book. The structure of much of the material in Part I is my distillation of hours of discussions Richard and I have had over an extended period of time regarding the teaching of linear programming to business students. He offered exceptional advice concerning the structure of the simulation chapter, not all of which I have had time to incorporate. He provided many of the end-of-chapter problems. Significant applications in integer linear programming (the Bunch O'Munchies problem) and sensitivity analysis (the Belles & Baubles problem) had their origins in Richard's class notes. This is not an exhaustive list. I wish to express my immense gratitude to Richard for both his numerous contributions and his thoughtful opinions that have helped to shape this book. I am proud that he is my colleague and my friend.

The second person who deserves special thanks is also a colleague at the University of Illinois. Professor Susan Cohen and I met on our first day of graduate school and were married a year later. As a soul mate on so many dimensions—both professional and personal—it is difficult to articulate the influence Susan has had on this book. She was a continual sounding board for every idea and concept. Much of what is here is a reflection of her voice. It is a lucky person indeed who has a live-in critic whose opinion is so important.

Professor Shailendra Jha, Wilfrid Laurier University, and Professor Ching-Chung Kuo, Pennsylvania State University at Harrisburg provided detailed comments, corrections, and editorial suggestions on earlier drafts, for which I am deeply grateful.

I would like to thank Professor Christopher Jones, School of Business, University of Washington, for generously allowing his excellent Java applet, AnimaLP, to be included with this book.

I have also benefited from the advice and comments of Professor Kofi Nti, Pennsylvania State University.

I am grateful to all of my students—undergraduate and master's alike—for their invaluable help in polishing and shaping this manuscript.

I would like to thank the many professionals at Cambridge University Press (CUP) and Keyword Publishing Services for their editorial counsel and support during the final preparation of this book. Dr Philip Meyler, Senior Commissioning Editor for Engineering and Management at CUP, has provided effective leadership on this project from its inception. Ms Lucille Murby, Production Controller at CUP, was the primary liaison between CUP and

xxxviii	Preface
	Keyword. Ms Susan Worrall did a masterful job as copy editor, strengthening weak points in the exposition and introducing uniformity in the presentation. Her wit, sense of humor, and sunny disposition made the arduous task of editing the final manuscript as pleasant as possible. Ms Maureen Allen, Senior Production Editor, and her colleagues at Keyword, did an excellent job deal-
	ing with the technical complexities of this project.
	Not all of the advice I received from knowledgeable and thoughtful people
	was incorporated. I take full responsibility for any remaining deficiencies or
	obfuscations.

George E. Monahan Champaign, IL September, 1999