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Managing

Smile Risk

Patrick S. Hagan', Deep Kumar', Andrew S. Lesniewski?,

and Diana E. Woodward?

Abstract

Market smiles and skews are usually managed by using local volatility
models a la Dupire. We discover that the dynamics of the market smile pre-
dicted by local vol models is opposite of observed market behavior: when
the price of the underlying decreases, local vol models predict that the
smile shifts to higher prices; when the price increases, these models pre-
dict that the smile shifts to lower prices. Due to this contradiction between
model and market, delta and vega hedges derived from the model can be
unstable and may perform worse than naive Black-Scholes’ hedges.

To eliminate this problem, we derive the SABR model, a stochastic
volatility model in which the forward value satisfies

dF = GF* aw,
di =vadw,

and the forward #and volatility 4 are correlated: dW,dW, = pdt. We use
singular perturbation techniques to obtain the prices of European
options under the SABR model, and from these prices we obtain explicit,
closed-form algebraic formulas for the implied volatility as functions of
today’s forward price f= £(0) and the strike K. These formulas immedi-
ately yield the market price, the market risks, including vanna and volga
risks, and show that the SABR model captures the correct dynamics of
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the smile. We apply the SABR model to USD interest rate options, and
find good agreement between the theoretical and observed smiles.

Key words. smiles, skew, dynamic hedging, stochastic vols, volga,
vanna

1 Introduction

European options are often priced and hedged using Black’s model, or,
equivalently, the Black-Scholes model. In Black’s model there is a one-to-
one relation between the price of a European option and the volatility
parameter op. Consequently, option prices are often quoted by stating
the implied volatility o, the unique value of the volatility which yields the
option’s dollar price when used in Black’s model. In theory, the volatility
op in Black’s model is a constant. In practice, options with different
strikes Krequire different volatilities o5 to match their market prices. See
figure 1. Handling these market skews and smiles correctly is critical to
fixed income and foreign exchange desks, since these desks usually have
large exposures across a wide range of strikes. Yet the inherent contra-
diction of using different volatilities for different options makes it diffi-
cult to successfully manage these risks using Black’s model.
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The development of local volatility models by Dupire [2], [3] and Derman-
Kani [4], [5] was a major advance in handling smiles and skews. Local
volatility models are self-consistent, arbitrage-free, and can be calibrated to
precisely match observed market smiles and skews. Currently these mod-
els are the most popular way of managing smile and skew risk. However, as
we shall discover in section 2, the dynamic behavior of smiles and skews
predicted by local vol models is exactly opposite the behavior observed in
the marketplace: when the price of the underlying asset decreases, local vol
models predict that the smile shifts to higher prices; when the price increas-
es, these models predict that the smile shifts to lower prices. In reality, asset
prices and market smiles move in the same direction. This contradiction
between the model and the marketplace tends to de-stabilize the delta and
vega hedges derived from local volatility models, and often these hedges
perform worse than the naive Black-Scholes’ hedges.

To resolve this problem, we derive the SABR model, a stochastic
volatility model in which the asset price and volatility are correlated.
Singular perturbation techniques are used to obtain the prices of
European options under the SABR model, and from these prices we
obtain a closed-form algebraic formula for the implied volatility as a
function of today’s forward price fand the strike K. This closed-form for-
mula for the implied volatility allows the market price and the market
risks, including vanna and volga risks, to be obtained immediately from
Black’s formula. It also provides good, and sometimes spectacular, fits to
the implied volatility curves observed in the marketplace. See Figure 1.1.
More importantly, the formula shows that the SABR model captures the
correct dynamics of the smile, and thus yields stable hedges.

2 Reprise

Consider a European call option on an asset .4 with exercise date £, settle-
ment date t,, and strike K. If the holder exercises the option on £, then on
the settlement date Z, he receives the underlying asset A and pays the
strike K. To derive the value of the option, define ﬁ(t) to be the forward
price of the asset for a forward contract that matures on the settlement
date #;, and define f= 1:“(0) to be today’s forward price. Also let D(¢) be
the discount factor for date ¢ that is, let D(¢) be the value today of $1 to be
delivered on date 7 Martingale pricing theory [6-9] asserts that under the
“usual conditions,” there is a measure, known as the forward measure,
under which the value of a European option can be written as the expect-
ed value of the payoff. The value of a call options is

Viar = Dit) E {[F0) =K1 [0 } (2.1a)
and the value of the corresponding European put is
_ _ 7 +
Vour = Dlt) 1K = £t )] 150} o1

= Vean +D(tsel)[[(_f]~
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Fig. 1.1 Implied volatility for the June 99 Eurodollar options. Shown are

close-of-day values along with the volatilities predicted by the SABR model.
Data taken from Bloomberg information services on March 23, 1999

Here the expectation £'is over the forward measure, and “|§,” can be inter-
pretted as “given all information available at # = 0.” Martingale pricing the-
ory [6-9] also shows that the forward price #(¢) is a Martingale under this
measure, so the Martingale representation theorem shows that F() obeys

df = C(t, %) dw, FO)=f (2.1¢)
for some coefficient C(¢, x ), where dIWis Brownian motion in this meas-
ure. The coefficient C(¢, *) may be deterministic or random, and may
depend on any information that can be resolved by time # This is as far as
the fundamental theory of arbitrage free pricing goes. In particular, one
cannot determine the coefficient C(¢ %) on purely theoretical grounds.
Instead one must postulate a mathematical model for C (%, *).

European swaptions fit within an indentical framework. Consider a
European swaption with exercise date 7, and fixed rate (strike) Ry,. Let
Ri(¢) be the swaption’s forward swap rate as seen at date ¢ and let
Ry = R,(0) be the forward swap rate as seen today. In [9] Jamshidean shows
that one can choose a measure in which the value of a payer swaption is

Vpay = [OE[[és(tex) _R/”1'x1+|]:0} s (2-23)
and the value of a receiver swaption is
Vi = LoB{ [Rex = Rot) ] 170 2

= Vpﬂy + ZO[Rfix - RO]

Here the level L, is today’s value of the annuity, which is a known quanti-
ty, and Z is the expectation over the level measure of Jamshidean [9]. In
Appendix A it is also shown that the PVO01 of the forward swap; like the

o
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discount factor rate Iiv(r) is a Martingale in this measure, so once again

dR; = C(t, %) dW, R(0) = R,, (2.2¢)
where 4 is Brownian motion. As before, the coefficient C(¢, * ) may be
deterministic or random, and cannot be determined from fundamental
theory. Apart from notation, this is identical to the framework provided
by equations (2.1a-2.1c) for European calls and puts. Caplets and floor-
lets can also be included in this picture, since they are just one period
payer and receiver swaptions. For the remainder of the paper, we adopt
the notation of (2.1a-2.1c) for general European options.

2.1 Black’s model and implied volatilities. To go any further
requires postulating a model for the coefficient (¢ x). In [10], Black pos-
tulated that the coefficient C(¢, %) is agﬁ (¢), where the volatilty op is a
constant. The forward price F (¢) is then geometric Brownian motion:

df = ozF () aw, FO)=f (2.3)
Evaluating the expected values in (2.1a, 2.1b) under this model then
yields Black’s formula,

Ve = D (e YN (dy ) —KN ()}, (2.4a)
Vput = Ve + D(t.s‘et )[[(_f]v (2-4b)
where
1 K+ 1o2t,
_ log//K£ 5051, (2.4¢)

1,2 - =
O~/ Lex '

for the price of European calls and puts, as is well-known [10], [11], [12].

All parameters in Black’s formula are easily observed, except for the
volatility 0. An option’s implied volatility is the value of o that needs to
be used in Black’s formula so that this formula matches the market price
of the option. Since the call (and put) prices in (2.4a — 2.4¢) are increasing
functions of oy, the volatility o implied by the market price of an option
is unique. Indeed, in many markets it is standard practice to quote prices
in terms of the implied volatility op; the option’s dollar price is then
recovered by substituting the agreed upon o, into Black’s formula.

The derivation of Black’s formula presumes that the volatility oy is a
constant for each underlying asset .A. However, the implied volatility
needed to match market prices nearly always varies with both the strike
K and the time-to-exercise #,. See Figure 2.1. Changing the volatility op
means that a different model is being used for the underlying asset for
each K and ¢,. This causes several problems managing large books of
options.

The first problem is pricing exotics. Suppose one needs to price a call
option with strike X; which has, say, a down-and-out knock-out at
K, < K;. Should we use the implied volatility at the call’s strike Xj, the

o

0.28

0.26

Im

0.24
3m

S

12m

Vol

0.22

0.20

0.18 T T T T T .
80 90 100 110 120
Strike

Fig.2.1 Implied volatility o3(K ) as a function of the strike K for 1 month, 3 month,
6 month, and 12 month European options on an asset with forward price 100.

implied volatility at the barrier X,, or some combination of the two to
price this option? Clearly, this option cannot be priced without a single,
self-consistent, model that works for all strikes without “adjustments.”

The second problem is hedging. Since different models are being used
for different strikes, it is not clear that the delta and vega risks calculated at
one strike are consistent with the same risks calculated at other strikes.
For example, suppose that our 1 month option book is long high strike
options with a total A risk of +$14/M, and is long low strike options with a
A of —$1MM. Is our is our option book really A-neutral, or do we have
residual delta risk that needs to be hedged? Since different models are
used at each strike, it is not clear that the risks offset each other.
Consolidating vega risk raises similar concerns. Should we assume parallel
or proportional shifts in volatility to calculate the total vega risk of our
book? More explicitly, suppose that oy is 20% at K= 100 and 24% at
K= 90, as shown for the 1m options in Figure 2.1 Should we calculate vega
by bumping o by, say, 0.2% for both options? Or by bumping o by 0.2% for
the first option and by 0.24% for the second option? These questions are
critical to effective book management, since this requires consolidating
the delta and vega risks of all options on a given asset before hedging, so
that only the net exposure of the book is hedged. Clearly one cannot
answer these questions without a model that works for all strikes X.

The third problem concerns evolution of the implied volatility curve
op(K). Since the implied volatility oy depends on the strike X it is likely to
also depend on the current value fof the forward price: o3 = o3(f, K). In
this case there would be systematic changes in o as the forward price fof
the underlying changes See Figure 2.1. Some of the vega risks of Black’s
model would actually be due to changes in the price of the underlying
asset, and should be hedged more properly (and cheaply) as delta risks.
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2.2 Local volatility models. An apparent solution to these problems
is provided by the local volatility model of Dupire [2], which is also attrib-
uted to Derman [4], [5]. In an insightful work, Dupire essentially argued
that Black was to bold in setting the coefficient C'(z, x) to aBﬁ. Instead one
should only assume that C'is Markovian: ¢ = C(t, F ). Re-writing C(¢, F ) as
(L, ﬁ)ﬁ then yields the “local volatility model,” where the forward
price of the asset is

df = o, (8, F) Faw, FO)=f (2.5a)
in the forward measure. Dupire argued that instead of theorizing about
the unknown local volatility function oy,.(, ﬁ), one should obtain
(L, 7 ) directly from the marketplace by “calibrating” the local volatili-
ty model to market prices of liquid European options.

In calibration, one starts with a given local volatility function
(L, 7 ), and evaluates

Vaar = Dita) E{ 1P (1) —K1*1£0) = 1.} (2.5b)

= Vput + Dt ) (f = K) (2.5¢)
to obtain the theoretical prices of the options; one then varies the local
volatility function o,.(¢, F ) until these theoretical prices match the actu-
al market prices of the option for each strike X and exercise date . In
practice liquid markets usually exist only for options with specific exer-
cise dates £, 2, £3,, . . .; for example, for 1m, 2m, 3m, 6m, and 12m from
today. Commonly the local vols oy,.(, F ) are taken to be piecewise con-
stant in time:

for t < !

ez’

oue(t, By = o \V(F)

ot By=0(F)  fort ' <t<t, j=2,3,..7 (26

Ot ﬁ) =0 (/)(ﬁ)

loc

for ¢t > tgfz

One first calibrates o;}[)(ﬁ ) to reproduce the option prices at z}, for all
strikes X, then calibrates al(ﬂi)(ﬁ ) to reproduce the option prices at z2, for
all X, and so forth. This calibration process can be greatly simplified by
using the results in [13] and [14]. There we solve to obtain the prices of
European options under the local volatility model (2.5a-2.5¢), and from
these prices we obtain explicit algebraic formulas for the implied volatil-
ity of the local vol models.

Once oy,.(t, F ) has been obtained by calibration, the local volatility
model is a single, self-consistent model which correctly reproduces the
market prices of calls (and puts) for all strikes X and exercise dates #,
without “adjustment.” Prices of exotic options can now be calculated
from this model without ambiguity. This model yields consistent delta
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and vega risks for all options, so these risks can be consolidated across
strikes. Finally, perturbing fand re-calculating the option prices enables
one to determine how the implied volatilites change with changes in the
underlying asset price. Thus, the local volatility model thus provides a
method of pricing and hedging options in the presence of market smiles
and skews. It is perhaps the most popular method of managing exotic
equity and foreign exchange options. Unfortunately, the local volatility
model predicts the wrong dynamics of the implied volatility curve, which
leads to inaccruate and often unstable hedges.

To illustrate the problem, consider the special case in which the local
vol is a function of 7 only:

df = o (FYFaW,  F(0)=f (2.7)

In [13] and [14] singular perturbation methods were used to analyze this
model. There it was found that European call and put prices are given by
Black’s formula (2.4a-2.4c) with the implied volatility

1 0, G+ KD

—K)* 4. (2.8
Honilrr kL 28)

os(Kof) = o (%m fq) { 1+

On the right hand side, the first term dominates the solution and the
second term provides a much smaller correction The omitted terms are
very small, usually less than 1% of the first term.

The behavior of local volatility models can be largely understood by
examining the first term in (2.8). The implied volatility depends on both
the strike K and the current forward price /. So supppose that today the
forward price is f; and the implied volatility curve seen in the market-
place is o (K). Calibrating the model to the market clearly requires
choosing the local volatility to be

oue(F) = 0 RF— fi){1+ -}, (2.9)
Now that the model is calibrated, let us examine its predictions. Suppose
that the forward value changes from f; to some new value /. From (2.8),
(2.9) we see that the model predicts that the new implied volatility curve
is

op(K,f) =g (K+ f—fo){1+ -} (2.10)

for an option with strike X, given that the current value of the forward
price is /. In particular, if the forward price f; increases to f; the implied
volatility curve moves to the left; if f; decreases to f, the implied volatility
curve moves to the right. Local volatility models predict that the market
smile/skew moves in the opposite direction as the price of the underlying asset.
This is opposite to typical market behavior, in which smiles and skews
move in the same direction as the underlying.

o

TECHNICAL ARTICLE 1

87



wilm003.gxd

7/26/02

7:05 PM Page 88

88

To demonstrate the problem concretely, suppose that today’s implied
volatility is a perfect smile
o) (K) = a + BIK— L) (2.11a)
around today’s forward price f. Then equation (2.8) implies that the
local volatility is
N ~ 2
oucB) =a+3B(F—fi)+---. (2.11b)
As the forward price fevolves away from f; due to normal market fluctu-
ations, equation (2.8) predicts that the implied volatility is
onK ) =a+B[K=(Ch— )] +2BU—f) +--. (2110
The implied volatility curve not only moves in the opposite direction as
the underlying, but the curve also shifts upward regardless of whether f
increases or decreases. Exact results are illustrated in Figures 2.2 — 2.4.
There we assumed that the local volatility o (F) was given by (2.11b),
and used finite difference methods to obtain essentially exact values for
the option prices, and thus implied volatilites.

Hedges calculated from the local volatility model are wrong. To see
this, let BS(f; K, o3, t.,) be Black’s formula (2.4a-2.4c) for, say, a call
option. Under the local volatility model, the value of a call option is
given by Black’s formula

Vean = BS(J, K, 0p(K, [), tex ) (2.12a)

with the volatility o3(X; /) given by (2.8). Differentiating with respect to f
yields the A risk

Vs  3BS  9BSdop(K
Az Wan _ 985 0BS3os(K]) (2.12b)
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Fig.2.2 Exact implied Yolatﬂity o(K, fy ) (solid line) obtained from
the local volatility oy, () (dashed line):
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Fig. 2.3 Implied volatility o4(X; /) if the forward price decreases from
o to f(solid line).

predicted by the local volatility model. The first term is clearly the A risk
one would calculate from Black’s model using the implied volatility from
the market. The second term is the local volatility model’s correction to
the A risk, which consists of the Black vega risk multiplied by the predict-
ed change in o, due to changes in the underlying forward price /. In real
markets the implied volatily moves in the opposite direction as the direc-
tion predicted by the model. Therefore, the correction term needed for
real markets should have the opposite sign as the correction predicted by
the local volatility model. The original Black model yields more accurate hedges
than the local volatility model, even though the local vol model is self-consistent
across strikes and Black’s model is inconsistent.

Local volatility models are also peculiar theoretically. Using any func-
tion for the local volatility oy, (¢, F ) except for a power law,

Ct, %) = a(t) P, (2.13)
owe(t, Y =a(t)EFJE=a(t) JF7, (2.14)
0.28 /
0.26
) N -
> 4 s
o 024 1N / =
< ~ Pl
S 022 N s
E v ,—-"
0.20 R\ SIS
0. 1 8 T T T
fy ——>f K
Fig. 2.4 Implied volatility o (X, /') if the forward prices increases from
o to f(solid line).
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introduces an intrinsic “length scale” for the forward price 7 into the
model. That is, the model becomes inhomogeneous in the forward price
E Although intrinsic length scales are theoretically possible, it is diffi-
cult to understand the financial origin and meaning of these scales [15],
and one naturally wonders whether such scales should be introduced
into a model without specific theoretical justification.

2.3 The SABR model. The failure of the local volatility model means
that we cannot use a Markovian model based on a single Brownian
motion to manage our smile risk. Instead of making the model non-
Markovian, or basing it on non-Brownian motion, we choose to develop a
two factor model. To select the second factor, we note that most markets
experience both relatively quiescent and relatively chaotic periods. This
suggests that volatility is not constant, but is itself a random function of
time. Respecting the preceding discusion, we choose the unknown coef-
ficient C(#, %) to be &F#, where the “volatility” & is itself a stochastic
process. Choosing the simplest reasonable process for @ now yields the
“stochastic-efp model,” which has become known as the SABR model. In
this model, the forward price and volatility are
Fo)y=f

df = aF* aw, (2.15a)

da = vadW,, — a(0)=a (2.15b)

under the forward measure, where the two processes are correlated by:

aw, dw, = pdt. (2.15¢)
Many other stochastic volatility models have been proposed, for example
[16], [17], [18], [19]. However, the SABR model has the virtue of being the
simplest stochastic volatility model which is homogenous in Fand &. We
shall find that the SABR model can be used to accurately fit the implied
volatility curves observed in the marketplace for any single exercise date
t,,. More importantly, it predicts the correct dynamics of the implied
volatility curves. This makes the SABR model an effective means to man-
age the smile risk in markets where each asset only has a single exercise
date; these markets include the swaption and caplet/floorlet markets.

As written, the SABR model may or may not fit the observed volatility
surface of an asset which has European options at several different exer-
cise dates; such markets include foreign exchange options and most
equity options. Fitting volatility surfaces requires the dynamic SABR model
which is discussed in an Appendix.

It has been claimed by many authors that stochastic volatility mod-
els are models of incomplete markets, because the stochastic volatility
risk cannot be hedged. This is not true. It is true that the risk to
changes in « (the vega risk) cannot be hedged by buying or selling the
underlying asset. However, vega risk can be hedged by buying or selling
options on the asset in exactly the same way that A-hedging is used to
neutralize the risks to changes in the price £ In practice, vega risks are
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hedged by buying and selling options as a matter of routine, so
whether the market would be complete if these risks were not hedged
is a moot question.

The SABR model (2.15a-2.15¢) is analyzed in Appendix B. There sin-
gular perturbation techniques are used to obtain the prices of European
options. From these prices, the options’ implied volatility o(X, /) is then
obtained. The upshot of this analysis is that under the SABR model, the
price of European options is given by Black’s formula,

Vean = DL ){ SN (dy ) —KN ()}, (2.16a)
pr = Vm// + D(tsc’l )[[(_ -f]7 (2.163)
with
log 1K+ Lo2t,,
_ Loa//k= 303t (2.16¢)

QH.Z - - = >
: O/ Lex

where the implied volatility o5(/, X) is given by

op(K.f)

1920

o z
Rt {1+ 5228 10g? i+ S8 tog* 1K+ -} (x(z))

1-8)" o 1 2-3p?
.{1+|:( B) ai L1 pBva pvz]tex+"'-
24 (fFK)'P 4 (frH)IP) 2 24
(2.17a)
Here
2= 2 (0 P log K, (2.17b)
o
and x(z) is defined by
1-2 24 z—
x(z) = log { plz+ ctrz-e } . (2.17¢)
-p

For the special case of at-the-money options, options struck at K = f, this
formula reduces to

o (1-8)" o

oam = op(f f) = Fam {1 + [ 24 f22% )18
1 ppav 2-3p% , 218)
40P g Vet
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These formulas are the main result of this paper. Although it appears
formidable, the formula is explicit and only involves elementary trigno-
metric functions. Implementing the SABR model for vanilla options is very
easy, since once this formula is programmed, we just need to send the
options to a Black pricer. In the next section we examine the qualitative
behavior of this formula, and how it can be used to managing smile risk.

The complexity of the formula is needed for accurate pricing.
Omitting the last line of (2.17a), for example, can result in a relative error
that exceeds three per cent in extreme cases. Although this error term
seems small, it is large enough to be required for accurate pricing. The
omitted terms “+ ---” are much, much smaller. Indeed, even though we
have derived more accurate expressions by continuing the perturbation
expansion to higher order, (2.17a — 2.17¢) is the formula we use to value
and hedge our vanilla swaptions, caps, and floors. We have not imple-
mented the higher order results, believing that the increased precision
of the higher order results is superfluous.

There are two special cases of note: § = 1, representing a stochastic
log normal model), and 8 = 0, representing a stochastic normal model.
The implied volatility for these special cases is obtained in the last sec-
tion of Appendix B.

3 Managing Smile Risk

The complexity of the above formula for o5(X; /) obscures the qualita-
tive behavior of the SABR model. To make the model’s phenomenology
and dynamics more transparent, note that formula (2.17a - 2.17¢) can
be approximated as

1
op(K.f) = i,s {1 - 5(1 — B —pr)log K/f
/ (3.1a)
! 2 2592 2
+ 5 [ =B + 2= 30") 2] log? Kif 4 -

provided that the strike K'is not too far from the current forward /. Here
the ratio

= Lpiep (3.1b)
o

measures the strength v of the volatility of volatility (the “volvol”) com-
pared to the local volatility «/f*~# at the current forward. Although equa-
tions (3.1a-3.1b) should not be used to price real deals, they are accurate
enough to depict the qualitative behavior of the SABR model faithfully.

As f varies during normal trading, the curve that the ATM volatility
op(f, f) traces is known as the backbone, while the smile and skew refer to
the implied volatility o(X; f) as a function of strike X for a fixed /. That
is, the market smile/skew gives a snapshot of the market prices for dif-
ferent strikes K at a given instance, when the forward fhas a specific
price. Figures 3.1 and 3.2. show the dynamics of the smile/skew predicted
by the SABR model.

o

B=0

Implied vol

12% S~

4% 6% 8% 10% 12%
Fig. 3.1 Backbone and smiles for g = 0. As the forward fvaries, the implied
volatiliity o (f; /) of ATM options traverses the backbone (dashed curve). Shown are
the smiles o (X; /) for three different values of the forward. Volatility data from 1

into 1 swaption on 4/28/00, courtesy of Cantor-Fitzgerald.
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Fig.3.2 Backbone and smiles as above, but for g = 1.

Let us now consider the implied volatility oz(X; /) in detail. The first
factor a/f*~# in (3.1a( is the implied volatility for at-the-money (ATM)
options, options whose strike X' equals the current forward /. So the back-
bone traversed by ATM options is essentially oz(f, /) = a/f'~# for the
SABR model. The backbone is almost entirely determined by the expo-
nent g, with the exponent 8 = 0 (a stochastic Gaussian model) giving a
steeply downward sloping backbone, and the exponent g =1 giving a
nearly flat backbone.

The second term —%(1 — B — pi)log K/f represents the skew, the
slope of the implied volatility with respect to the strike X. The
—%(1 — B)log K/f part is the beta skew, which is downward sloping since
0 < B < 1. It arises because the “local volatility” &/#/F' = &/F'~F is a
decreasing function of the forward price. The second part % phrlog K/fis
the vanna skew, the skew caused by the correlation between the volatility
and the asset price. Typically the volatility and asset price are negatively
correlated, so on average, the volatility « would decrease (increase) when
the forward fincreases (decreases). It thus seems unsurprising that a
negative correlation p causes a downward sloping vanna skew.

It is interesting to compare the skew to the slope of the backbone. As /
changes to f” the ATM vol changes to
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so the slope of the backbone o,(/; /) is twice as steep as the slope of rthe
smile o5(K, /) due to the f-component of the skew.

The last term in (3.1a) also contains two parts. The first part
%(1 — B)?log® K/fappears to be a smile (quadratic) term, but it is domi-
nated by the downward sloping beta skew, and, at reasonable strikes £; it
just modifies this skew somewhat. The second part 11—2(2 —3p2)
12 log” K/fis the smile induced by the volga (vol-gamma) effect. Physically
this smile arises because of “adverse selection”: unusually large move-
ments of the forward #happen more often when the volatility o increas-
es, and less often when « decreases, so strikes X far from the money rep-
resent, on average, high volatility environments.

3.1 Fitting market data. The exponent 8 and correlation p affect
the volatility smile in similar ways. They both cause a downward slop-
ing skew in o(X, f) as the strike K varies. From a single market snap-
shot of 03(K, f) as a function of K at a given f; it is difficult to distin-
guish between the two parameters. This is demonstrated by figure 3.3.
There we fit the SABR parameters «, p, v with 8 = 0 and then re-fit the
parameters «, p, v with § = 1. Note that there is no substantial differ-
ence in the quality of the fits, despite the presence of market noise. This
matches our general experience: market smiles can be fit equally well
with any specific value of 8. In particular, 8 cannot be determined by
fitting a market smile since this would clearly amount to “fitting the
noise.”

Figure 3.3 also exhibits a common data quality issue. Options with
strikes K away from the current forward ftrade less frequently than at-
the-money and near-the-money options. Consequently, as X moves away
from /, the volatility quotes become more suspect because they are more
likely to be out-of-date and not represent bona fide offers to buy or sell
options.

Suppose for the moment that the exponent 8 is known or has been
selected. Taking a snapshot of the market yields the implied volatility
op(K, f) as a function of the strike K at the current forward price /. With
B given, fitting the SABR model is a straightforward procedure. The
three parameters «, p, and v have different effects on the curve: the
parameter « mainly controls the overall height of the curve, changing
the correlation p controls the curve’s skew, and changing the vol of vol v
controls how much smile the curve exhibits. Because of the widely seper-
ated roles these parameters play, the fitted parameter values tend to be
very stable, even in the presence of large amounts of market noise.
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4% 6% 8% 10% 12%
Fig. 3.3 Implied volatilities as a function of strike. Shown are the curves
obtained by fitting the SABR model with exponent # = 0 and with g =1
to the 1y into 1y swaption vol observed on 4/28/00. As usual, both fits are

equally good. Data courtesy of Cantor-Fitzgerald.

The exponent g can be determined from historical observations of the
“backbone” or selected from “aesthetic considerations.” Equation (2.18)
shows that the implied volatility of ATM options is

— 2 2
logoy(f./) =loga — (1 - B)logf+ 10g{1 + [M o
24 f22 a3
1 pBav 2 —3p? .
Zfﬂ—ﬁ) + TUZ] Lex + }

The exponent B can be extracted from a log log plot of historical observa-
tions of f; o4p, pairs. Since both fand « are stochastic variables, this fit-
ting procedure can be quite noisy, and as the |- - -, term is typically less
than one or two per cent, it is usually ignored in fitting 8.

Selecting B from “aesthetic” or other a priori considerations usually
results in 8 = 1 (stochastic lognormal), 8§ = 0 (stochastic normal), or
B = % (stochastic CIR) models. Proponents of § = 1 cite log normal mod-
els as being “more natural.” or believe that the horizontal backbone best
represents their market. These proponents often include desks trading
foreign exchange options. Proponents of g = 0 usually believe that a nor-
mal model, with its symmetric break-even points, is a more effective tool
for managing risks, and would claim that g = 0 is essential for trading
markets like Yen interest rates, where the forwards fcan be negative or
near zero. Proponents of g = ; are usually US interest rate desks that
have developed trust in CIR models.

It is usually more convenient to use the at-the-money volatility
o, B, p, and v as the SABR parameters instead of the original parame-
ters «,B, p, v. The parameter « is then found whenever needed by invert-
ing (2.18) on the fly; this inversion is numerically easy since the [ - -]z,
term is small. With this parameterization, fitting the SABR model
requires fitting p and v to the implied volatility curve, with o4z, and 8
given. In many markets, the ATM volatilities need to be updated fre-
quently, say once or twice a day, while the smiles and skews need to be

o
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Fig.3.4 Volatility of the Sep 99 EDF options

updated infrequently, say once or twice a month. With the new parame-
terization, o4z, can be updated as often as needed, with p, v (and B)
updated only as needed.

Let us apply SABR to options on US dollar interest rates. There are
three key groups of European options on US rates: Eurodollar future
options, caps/floors, and European swaptions. Eurodollar future options
are exchange-traded options on the 3 month Libor rate; like interest rate
futures, EDF options are quoted on 100(1 — 7;,5,,). Figure 1.1 fits the
SABR model (with g8 = 1) to the implied volatility for the June 99 con-
tracts, and figures 3.4-3.7 fit the model (also with g = 1) to the implied
volatility for the September 99, December 99, and March 00 contracts.
All prices were obtained from Bloomberg Information Services on March
23, 1999. Two points are shown for the same strike where there are
quotes for both puts and calls. Note that market liquidity dries up for the
later contracts, and for strikes that are too far from the money.
Consequently, more market noise is seen for these options.

Caps and floors are sums of caplets and floorlets; each caplet and
floorlet is a European option on the 3 month Libor rate. We do not con-
sider the cap/floor market here because the broker-quoted cap prices
must be “stripped” to obtain the caplet volatilities before SABR can be
applied.

A m year into n year swaption is a European option with m years to the
exercise date (the maturity); if it is exercised, then one receives an n year
swap (the tenor, or underlying) on the 3 month Libor rate. See Appendix
A. For almost all maturities and tenors, the US swaption market is liquid
for at-the-money swaptions, but is ill-liquid for swaptions struck away
from the money. Hence, market data is somewhat suspect for swaptions
that are not struck near the money. Figures 3.8—-3.11 fits the SABR model
(with B = 1) to the prices of 7 into5Y swaptions observed on April 28,
2000. Data supplied courtesy of Cantor-Fitzgerald.

We observe that the smile and skew depend heavily on the time-to-
exercise for Eurodollar future options and swaptions. The smile is pro-
nounced for short-dated options and flattens for longer dated options;

o
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Fig.3.5 Volatility of the Dec 99 EDF options
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Fig.3.6 Volatility of the Mar 00 EDF options

the skew is overwhelmed by the smile for short-dated options, but is
important for long-dated options. This picture is confirmed tables 3.1
and 3.2. These tables show the values of the vol of vol v and correlation p
obtained by fitting the smile and skew of each “m into n” swaption,
again using the data from April 28, 2000. Note that the vol of vol v is very
high for short dated options, and decreases as the time-to-exercise
increases, while the correlations starts near zero and becomes substan-
tially negative. Also note that there is little dependence of the market
skew/smile on the length of the underlying swap; both v and p are fairly
constant across each row. This matches our general experience: in most
markets there is a strong smile for short-dated options which relaxes as
the time-to-expiry increases; consequently the volatility of volatility v is
large for short dated options and smaller for long-dated options, regard-
less of the particular underlying. Our experience with correlations is less
clear: in some markets a nearly flat skew for short maturity options
develops into a strongly downward sloping skew for longer maturities. In
other markets there is a strong downward skew for all option maturities,
and in still other markets the skew is close to zero for all maturities.
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Fig.3.8 Volatilities of 3 month into 5 year swaption

3.2. Managing smile risk. After choosing 8 and fitting p, v, and
either « or oz, the SABR model

df = aF® aw,,  Ko0)=f (3.4a)
da = vadW,,  a(0) =« (3.4b)

with
aw, dW, = pdt (3.4¢)

fits the smiles and skews observed in the market quite well, especially
considering the quality of price quotes away from the money . Let us take
for granted that it fits well enough. Then we have a single, self‘consistent
model that fits the option prices for all strikes X without “adjustment,”
so we can use this model to price exotic options without ambiguity. The
SABR model also predicts that whenever the forward price fchanges, the
the implied volatility curve shifts in the same direction and by the same
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Fig.3.10 Volatilities of 5 year into 5 year swaptions

amount as the price f This predicted dynamics of the smile matches
market experience. If 8 < 1, the “backbone” is downward sloping, so the
shift in the implied volatility curve is not purely horizontal. Instead, this
curve shifts up and down as the at-the-money point traverses the back-
bone. Our experience suggests that the parameters p and v are very sta-
ble (B is assumed to be a given constant), and need to be re-fit only every
few weeks. This stability may be because the SABR model reproduces the
usual dynamics of smiles and skews. In contrast, the at-the-money
volatility o4z, or, equivalently, « may need to be updated every few
hours in fast-paced markets.

Since the SABR model is a single self-consistent model for all strikes X,
the risks calculated at one strike are consistent with the risks calculated at
other strikes. Therefore the risks of all the options on the same asset can be
added together, and only the residual risk needs to be hedged.

Let us set aside the A risk for the moment, and calculate the other
risks. Let BS(f, K, o3, t,,) be Black’s formula (2.4a-2.4c) for, say, a call
option. According to the SABR model, the value of a call is

Vean = BS([, K, o3(K, [), L) (3.5)
where the volatility o3(X, f) = os(X, f; «, B, p, v) is given by equations
(2.17a-2.17¢). Differentiating @ footnote:{In practice risks are calculated
by finite differences: valuing the option at «, re-valuing the option after
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10Y into 5Y bumping the forward to « 4+ §, and then subtracting to determine the
13% A risk This saves differentiating complex formulas such as (2.17a-2.17c).
12% \ with respect to « yields the vega risk, the risk to overall changes in
volatility:
11%
10% . Wean _ 9B dop(K fi . B, p, v) (3.6)
A= da  dop dar
9% T T T
4% 6% 8% 10% 12%
This risk is the change in value when « changes by a unit amount. It is
Fig.3.11 Volatilities of 10 year into 5 year options traditional to scale vega so that it represents the change in value when
the ATM volatility changes by a unit amount. Since oy,
= (doams /0 ) S, the vega risk is
doy(Kfa,B.p.v

TABLE 3.1 vega = e _ 055 TR 67

VOLATILITY OF VOLATILITY v FOR EUROPEAN fo Doy SemlEbes)

SWAPTIONS. ROWS ARE TIME-TO-EXERCISE;

COLUMNS ARE TENOR OF THE UNDERLYING SWAP. where o47,(f) = op(f,f) is given by (2.18). Note that to leading order,
dop/da ~ op/a and do,ps/da ~ oqn/a, so the vega risk is roughly given
by

0 1Y 2Y 3Y aY 5Y 7Y 10Y
M | 762% | 754% | 74.6% 741% | 752% | 73.7% | 741%
3M | 65.1% | 62.0% | 60.7% | 60.1% | 62.9% | 59.7% | 59.5% vega ~ 2B5 &) _ 35BS onKS) (3.7b)
6M | 57.1% | 52.6% | 51.4% | 50.8% | 49.4% | 50.4% | 50.0% doz oam(/) 9oy os(ff)
1Y 59.8% | 493% | 47.1% 46.7% | 46.0% | 45.6% | 44.7%
3Y 21% | 39.1% 38.4% 384% | 369% | 38.0% | 37.6% Qualitatively, then, vega risks at different strikes are calculated by bump-
5Y 334% | 332% | 33.1% 326% | 313% | 323% | 32.2% ing the implied volatility at each strike X by an amount that is propor-
7Y 302% | 29.2% 29.0% 282% | 262% | 27.2% | 27.0% tional to the implied volatiity op(X, /) at that strike. That is, in using
10Y | 26.7% | 263% | 26.0% 256% | 248% | 24.7% | 24.5% equation (3.7a), we are essentially using proportional, and not parallel,
shifts of the volatility curve to calculate the total vega risk of a book of
options.
Since p and v are determined by fitting the implied volatility curve
observed in the marketplace, the SABR model has risks to p and v
changing. Borrowing terminology from foreign exchange desks,
TABLE 3.2 vanna is the risk to p changing and volga (vol gamma) is the risk
MATRIX OF CORRELATIONS p BETWEEN THE UNDERLY-  tov changing:
ING AND THE VOLATILITY FOR EUROPEAN SWAPTONS. Wy 9BS dop(K fia, B p,v)
vanna = 0 E - » , (3.8a)
0 1Y 2Y 3Y aY 5Y 7Y 10Y .
™ 42% | 02% | 07% | -10% | -2.5% | -18% | —2.3% volga = 8;/""” - 2&9 ok ’;" bp.v) (3.8b)
3M 25% | -49% | 59% | 65% | 69% | -76% | -85% Y 7 Y
6M 5.0% -3.6% -4.9% -56% | -7.1% -7.0% | -8.0%
1Y -4.4% -8.1% -8.8% -93% | -9.8% |-102% |-10.9% Vanna basically expresses the risk to the skew increasing, and
3Y -73% |-143% |-17.1% |-17.1% |-166% |-17.9% |-18.9% volga expresses the risk to the smile becoming more pronounced.
5Y -11.1% |[-173% |-185% |-18.8% |[-19.0% |-20.0% |-21.6% These risks are easily calculated by using finite differences on the
7Y -13.7% |-22.0% |-23.6% |-24.0% |-25.0% |-26.1% |-28.7% formula for oy in equations (2.17a-2.17¢). If desired, these risks
10Y -148% |-255% |-27.7% |-292% |-31.7% |-323% |-33.7% can be hedged by buying or selling away-from-the-money options.
94 WILMOTT magazine
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The delta risk expressed by the SABR model depends on whether one
uses the parameterization «, 8, p, v Or o4z, B, p, v. Suppose first we use
the parameterization «, B, p, v, so that ox(K,f) = 03(K, f;, B, p, V).
Differentiating respect to f'yields the A risk

OVear _ 0BS  0BS0op(K. fia, B, p,v)

A= T e of

(3.9)

The first term is the ordinary A risk one would calculate from Black’s
model. The second term is the SABR model’s correction to the A risk. It
consists of the Black vega times the predicted change in the implied volatil-
ity op caused by the change in the forward /. As discussed above, the pre-
dicted change consists of a sideways movement of the volatility curve in
the same direction (and by the same amount) as the change in the for-
ward price / In addition, if 8 < 1 the volatility curve rises and falls as the
at-the-money point traverses up and down the backbone. There may also
be minor changes to the shape of the skew/smile due to changes in f.

Now suppose we use the parameterization o4z, B, p, v. Then « is a
function of o4z, and fdefined implicitly by (2.18). Differentiating (3.5)
now yields the A risk

A= 9BS  0BS { dop(K. fia, B, p,v) + dop(K. [y, B, p,v) aa(UATva)}
T df  doy af do af

(3.10)

The delta risk is now the risk to changes in f with oz, held fixed. The
last term is just the change in « needed to keep o4z, constant while f
changes. Clearly this last term must just cancel out the vertical compo-
nent of the backbone, leaving only the sideways movement of the
implied volatilty curve. Note that this term is zero for g = 1.

Theoretically one should use the A from equation (3.9) to risk man-
age option books. In many markets, however, it may take several days for
volatilities o to change following significant changes in the forward
price f In these markets, using A from (3.10) is a much more effective
hedge. For suppose one used A from equation (3.9). Then, when the
volatility o4z, did not immediately change following a change in f, one
would be forced to re-mark « to compensate, and this re-marking would
change the A hedges. As o4, equilibrated over the next few days, one
would mark « back to its original value, which would change the A
hedges back to their original value. This “hedging chatter” caused by
market delays can prove to be costly.

Appendix A. Analysis of the SABR Model

Here we use singular perturbation techniques to price European options
under the SABR model. Our analysis is based on a small volatility expan-
sion, where we take both the volatility & and the “volvol” v to be small. To
carry out this analysis in a systematic fashion, we re-write @ — e&, and
v —> ¢v, and analyze
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dF = e C(F) dw, (A.1a)
da = evadWs, (A.1b)

with
AW, dW, = pdt, (A.1c)

in the limit ¢ « 1. This is the distinguished limit [21], [22] in the language
of singular perturbation theory. After obtaining the results we replace
ed@ — &, and v —> v to get the answer in terms of the original vari-
ables. We first analyze the model with a general C(F), and then specialize
the results to the power law ##. This is notationally simpler than working
with the power law throughout, and the more general result may prove
valuable in some future application.

We first use the forward Kolmogorov equation to simplify the option
pricing problem. Suppose the economy is in state 7(t) = f a(¢) = « at
date z Define the probability density p (¢, f, o; T, F, A) by

P f o5 T,E A) dFdA = prob [F < AT) < F+ dF, A < &(T)
) (A2)
<A+dA)F(t) — [ &) =a}.

As a function of the forward variables 7, F, A, the density p satisfies the for-
ward Kolmogorov equation (the Fékker-Planck equation)

br= %EZAZ[CZ(F)P]FF

(A.3a)
+ &2 pv|A*C(F) ples + %EZUZ[AZP]AA

for 7'> ¢,

with

p=8F—f)s(A—a) atT=t (A.3b)

as is well-known [24], [25], [26]. Here, and throughout, we use subscripts
to denote partial derivatives.

Let V (¢, f; ) be the value of a European call option at date ¢, when the
economy is in state ﬁ(t) =f, @(t) = a.let ., be the option’s exercise date,
and let K'be its strike. Omitting the discount factor D (%, ), which factors
out exactly, the value of the option is

W) = B\ (to) —KT" 1E) = £ a(t) = o
e (A4)
= [ [ e-mpsa o naaran
—o00 VK

o
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See (2.1a). Since

L,

DSt FLA) = 8(F— f) 5(A — a)+/ U ot fa TLEA) AT, (AS)

2

we can re-write (¢, f, «) as

Loy o] o]
V(l‘7ﬁ0t)=[f—f(]++/ f f F=K)pr(t, fra; T, F,A) dAdFdT.
t K —00
(A.6)
We substitute (A.3a) for py into (A.6). Integrating the A derivatives

e’ pv[A*C(F) plm and Je?v?[A*pls, over all A yields zero. Therefore our
option price reduces to

Loy [e] o]
Vit fa)=|f—KI"+ 1 f f / A* (F— K) [C*(F) plw dF dA dT,
2 t —o0 YK (A7)

where we have switched the order of integration. Integrating by parts
twice with respect to Fnow yields

Loy %)
Vt.fa)=[f-K"+ %3262([()/ f Ap(t, fia; T.K,A) dAdT. (A.8)
t —00

The problem can be simplified further by defining

P(t.f o: T.K) =/ Ap(tfa; T.K A) dA. (A.9)
Then Psatisfies the backward’s Kolmogorov equation [24], [25], [26]
1 1
P+ =2 C*(f) By+ €2 pva® C(f) By + =€ v* 0’ Ly = 0, forr<T
2 ’ ’ 2
(A.10a)
P=a*8(f—K), fort=T (A.10D)

Since ¢ does not appear explicitly in this equation, Zdepends only on the
combination 7 — ¢ and not on #and 7'separately. So define

T=7T—1 Toy = Ly — L. (A.11)
Then our pricing formula becomes
1 T
V(t fra) =/~ K" + Eezcz(f()f P(, f,o; K) dr (A12)
0

where P(z, f; &; K) 1is the solution of the problem

o

1 1
P o= EezozZCz(f) Pr+ &2 pva® C(f) By + Eszvzasz, fort >0, (A.13a)

P=a*8(f—K), for T = 0. (A.13D)

In this appendix we solve (A.13a), (A.13b) to obtain P(z, f, «; K), and
then substitute this solution into (A.12) to obtain the option value
V (¢, f, ). This yields the option price under the SABR model, but the
resulting formulas are awkward and not very useful. To cast the results
in a more usable form, we re-compute the option price under the normal

model

dF = oydW, (A.14a)

and then equate the two prices to determine which normal volatility oy
needs to be used to reproduce the option’s price under the SABR model.
That is, we find the “implied normal volatility” of the option under the
SABR model. By doing a second comparison between option prices under
the log normal model
dF = oz Fdw (A.14D)

and the normal model, we then convert the implied normal volatility to
the usual implied log-normal (Black-Scholes) volatility. That is, we quote
the option price predicted by the SABR model in terms of the option’s
implied volatility.

A.1 Singular perturbation expansion. Using a straightforward per-
turbation expansion would yield a Gaussian density to leading order,

o K
P= ———p¢ 2220 {1 4 ...},

V2metCr(K) T

(A.15a)

Since the “+--.” involves powers of (f— K) /eaC(K), this expansion
would become inaccurate as soon as (f— K) C'(K) /C(K) becomes a sig-
nificant fraction of 1; i.e., as soon as C(f) and C(X) are significantly dif-
ferent. Stated differently, small changes in the exponent cause much
greater changes in the probability density. A better approach is to re-cast
the series as

o __=R?
P= —70— ¢ zﬂﬂczumr(l+ )

V2rmelC?(K) T

(A.15b)

and expand the exponent, since one expects that only small changes to
the exponent will be needed to effect the much larger changes in the
density. This expansion also describes the basic physics better — P is
essentially a Gaussian probability density which tails off faster or slower
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depending on whether the “diffusion coefficient” C(f) decreases or
increases.

We can refine this approach by noting that the exponent is the
integral

. 2
(f- K’ 1 (1 /f ar
2 7 Q4= [= 14 ..., A1
2820{262(1()1{ +oed 2t \ea Jgy C(f") - (A-16)
Suppose we define the new variable
1/ odar
z=— . A.17
ea Jp C(S") ( )

so that the solution Pis essentially ¢='/2. To leading order, the density is
Gaussian in the variable z, which is determined by how “easy” or “hard”
it is to diffuse from K to f; which closely matches the underlying physics.
The fact that the Gaussian changes by orders of magnitude as
22 increases should be largely irrelevent to the quality of the expansion.
This approach is directly related to the geometric optics technique that
is so successful in wave propagation and quantum electronics [27], [22].
To be more specific, we shall use the near identity transform method to
carry out the geometric optics expansion. This method, pioneered in
[28], transforms the problem order-by-order into a simple canonical
problem, which can then be solved trivially. Here we obtain the solution
only through 0(e?), truncating all higher order terms.
Let us change variables from fto

1 ar
= — L/ (A.18a)
ea Jg C(f")
and to avoid confusion, we define
B(saz) = C(f). (A.18D)
Then
0 1 d 1 d d 0
- — — = —, —— — = —— (A.19a)
af eal(f) 9z eaBleaz) dz o daa o0z
and
92 1 9?2 B’ ad
. S {— e (S‘”)—}, (A.19b)
a/? g2a’B?(eaz) | 022 Blsaz) 0z
92 1 92 z 92 10
— —_————— (A.19¢)
afda caB(eaz) | 0z0a « 072 «adz

WILMOTT magazine
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Also,
S(f—K) = 8(eazC(K)) = w2l 5(2). (A.19¢)
Therefore, (A.12) through (A.13b) become
Wt fa)=[f— K]t + %eZCz([() fo P(t,z,a) dr, (A.20)

where Az, z, ) is the solution of

1 1 B’
P o= > (1—2epvz+&*v?2) P — EMEPZ + (epv — e2V22) (@l — P.)
1
+ Eszvzasz fort >0
(A.21a)
o
P=——38(2) att = 0. (A.21Db)
eC(K)
Accordingly, let us define Atz a) by
N &
P=Zcax)p (A.22)
o
In terms of 7, we obtain
1 T
V(t,fa)=|f—K|" + EeozC([()/ Pz, z ) dr, (A.23)
0
where ﬁ(t, z,a) is the solution of
A 1 2 2.0\ A 1 B, 2.2 b
Po= = (1-2epvz+e>v?2*) P — —ea—P. + (spv — e2v*2) alsy
2 ) 2 5 (A.24a)
+ Eszvz(azﬁw + 20:13,1) for r > 0,
P=65(2) att = 0. (A.24b)

To leading order Pis the solution of the standard diffusion problem
ZST = %1322 with P= 8(z) at T = 0. So it is a Gaussian to leading order. The
next stage is to transform the problem to the standard diffusion prob-
lem through O(e), and then through O(g?), ... .This is the near identi-
fy transform method which has proven so powerful in near-
Hamiltonian systems [28].

o
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Note that the variable @ does not enter the problem for P until 0(¢), so

P(t,z,a) = By(r, 2) +P(r, 2,0 ) + - - - (A.25)
Consequently, the derivatives ﬁm, ﬁw, and 1%, are all O(e). Recall that we
are only solving for P through 0(s?). So, through this order, we can re-
write our problem as

A 1 A 1 B . ~
P = 5 (1—2epvz+e*v?2) P, — EwEPZ + gpvaly, fort >0
(A.26a)
Pr="8(2) att =0. (A.26D)

Let us now eliminate the %sa(B’/B) ]32 term. Define H(z, z, ¢ ) by

P=/C(f)|]OK)H= \/Bleaz) /B0 )H. (A.27)
Then

P. = /B(saz) /BO) {HZ + %sa%}[} , (A.28a)
P, =B z)/B(O){H + 5H+ 2 Z[B—”— B,Z}H} (A.28b)
= ea s sozB L+ e 2B i s .

. 1 B 1 B 1B 5
P,y =/ Bleaz) /B(0) { H, + Eez—HZ + Esa —H, + —e—H+ 0(")

B B 2 B
(A.28¢)
The option price now becomes
1 o
Vit fa)=|f—K|" + Esa\/B(O)B(saz)f H(z, z, &) dr, (A.29)
0
where
1 2 1, B
H, = > (1 — 2epvz+ ey 22) H, — 58 ,OVOCE(ZHZ— H)
4 g2 2<1B” SB’Z)H+ & +1 B/H) for o
et | - — — —— epva(Hy + —ea—H, 7>
2
4 B 8 B 2 B (A.30a)
H=358(2) att = 0. (A.30D)

Equations (A.30a), (A.30Db) are independent of « to leading order, and at
O(¢ ) they depend on « only through the last term epvo (H,, + %aa %; Hy,).
As above, since A.30a is independent of « to leading order, we can con-
clude that the « derivatives A, and #., are no larger than O(¢ ), and so
the last term is actually no larger than O(s? ). Therefore / is independent

o

of o until O(¢?) and the « derivatives are actually no larger than O(¢?).
Thus, the last term is actually only O(¢® ), and can be neglected since we
are only working through 0(¢?). So,

1 1 B
H, = — (1 — 2epvz+ SZVZZZ)HZZ— —&?pva— (zH, — H)
2 2 5 (A.31a)
9 1B// BB/Z .
+ea | -————— | H fort >0
4 B 8 B2
H=145(2) att = 0. (A.31b)

There are no longer any « derivatives, so we can now treat « as a parame-
ter instead of as an independent variable. That is, we have succeeded in
effectively reducing the problem to one dimension.

Let us now remove the A, term through O(¢?). To leading order,
B'(eaz) /B(eaz) and B”(saz) /B(eaz) are constant. We can replace these
ratios by

b1 = B’(EO[Z() ) /B(SUZO ), bz = B”(SO(ZQ ) /B(SO[ZO ), (A32)
commiting only an O(e ) error, where the constant z, will be chosen later.
We now define # by

H=¢t'rrehs/ig (A.33)

Then our option price becomes

V(tfa)=f- K"+ %ewﬁ(o ) Blzaz)et P ehs/4 f “ fe, 2
0
(A.34)

where # is the solution of

N 1 A 1 3 A
H, :E (1 — 2epvz+ SZVZZZ)HZZ-i- ela? (sz — ghf> H
3 (A.35a)
+ Zszpvablf[ fort >0
H=68(z) att=0. (A.35b)

We’ve almost beaten the equation into shape. We now define

1 /‘SUZ d{
x=— —_—
eviJo  1-2pg+2¢?
V1 —2epvz+e2122 — p + vz
1—0p

= —log
ev

) (A.36a)

which can be written implicitly as

evz=sinh evx — p(coshevy—1). (A.36b)
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In terms of x, our problem is

V(tfa)=f- K"+ %eaw(o)B(eaz)efzwﬂ”‘* / A, %) de. (A37)
0

with
A 14 1 A , o1 3 A
H, =§Hm — Esv[ (sv2) Hy + &% sz - gzﬁ H
3 (A.38a)
+ Zsz,ovablﬁ fort >0
H=68(x) att=0. (A.38b)
Here
o) =+/1=2pc + 2. (A.39)
The final step is to define Q by
H=1"(evz(x)) Q= (1—2epvz+e*v*2%)"* @ (A.40)
Then
. 1
H =1"%*@evz) [@ + Eev[’(evz) Q] , (A41a)
3 1/2 7 2.2 1 11 1 7 71
Hey = I (e02) | Quy + vI'Qy + €2v 51 I+ Z]] Q|, (A.41b)
and so

Wt fa)=[f—KI" + %sa\/y(o ) Beaz)V?(sv2) E%SZ"”“Z"ZZ/MQ(I, x) dr,
0
(A.42)

where Qis the solution of

1 1 1 1 3 3
QI = EQXX + 82\12 (Z]”[— g[,],> Q+ 820[2 <Zb2 - g%) Q+ 182;0\)Otb1Q
(A.43a)
for T > 0, with
Q=68(x) att=0. (A.43D)

As above, we can replace /(evz),['(evz),["(evz) by the constants
I(evzy), I'(evz ), I"(evzy ), and commit only O(e ) errors. Define the con-
stant « by

=2 (%1”(8% ) [evz) —% [7'(evz )]2>

(A.44)
3 3
fbf) + vaabl,

+ az <1b2 —
4 8

WILMOTT magazine

where z, will be chosen later. Then through 0(s? ), we can simplify our
equation to

1
Q. = EQM +e’kQ fort >0, (A.45a)
Q=48(x) att=0. (A.45b)
The solution of A.45a, A.45b is clearly
1 > 2 1 1
Q: K /Zres KT _ é,—xz/Zr — (A46)
27T 27T (1 - 2ke2r +--°) /
through 0(s?).
This solution yields the option price
1 1.2 2
Wt fia) =[f— K" + Esou/B(O)B@ozz)ﬁ“(gvz) it pvabiz
(A.47)

2 2
e X/ngs KT g

Tex 1
-/o V2rt
Observe that this can be written as

1/-K

> e 0 T g (A.48a)
¥

oo
Wt fa) =[f— K] f —

where

7'/? 1
€20 = log %«B(O)B(eaz)) + log <x7(svz)> + Zezpvahzz
— z

(A.48b)

Moreover, quite amazingly,

2 1 _ 1
(1- %K&‘ZT)B/Z (1- 2821:1)3/2

X2

+ 0(e*),

(A.48¢)

through O(e?). This can be shown by expanding 26 through 0(¢?), and
noting that £20/x*> matches « /3. Therefore our option price is

1f_ K Tex 1 2 2 d‘[
Wt fa)=1f— K"+ - f —— e (A49
faor ==K+ == [ o e 4
and changing integration variables to
XZ
q= —_> (A.50)
2T
reduces this to
— K| [ et
Wefa) = - & + LK d. (ASY)

4ﬁ % (4—829)3/2

o
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That is, the value of a European call option is given by

Wt fa)=f— Kt + y qw (A.52a)
with
1/2
£20 = log( \/B(O)B(sozz)> +log (M) + —&2pvab, 22,
J= ‘ (A.52b)
through 0(¢?).

A.2. Equivalent normal volatility. Equations (A.52a) and (A.52a) are a
formula for the dollar price of the call option under the SABR model.
The utility and beauty of this formula is not overwhelmingly apparent.
To obtain a useful formula, we convert this dollar price into the equiva-
lent implied volatilities. We first obtain the implied normal volatility, and
then the standard log normal (Black) volatility.

Suppose we repeated the above analysis for the ordinary normal model

dF =oydW,  K0)=f (A.53a)
where the normal volatily oy is constant, not stochastic. (This model is
also called the absolute or Gaussian model). We would find that the option
value for the normal model is exactly

|f— K| [* €1
4\/— 3/Zq

Wt f)=[f— K"+ (A.53b)

02 A)Z

202 tex

This can be seen by setting C(f) to 1, setting s« to oy and setting v to 0 in
A.52a, A.52b. Working out this integral then yields the exact European
option price

o () e (5 7)
Wt f) = (f 1()N( P + o7 G o) (A.54a)

for the normal model, where N is the normal distribution and G is the
Gaussian density

72

G(g) =

(A.54b)

From A.53D it is clear that the option price under the normal model
matches the option price under the SABR model A.52a, A.52a if and only
if we choose the normal volatility oy to be

1 X {1 2g? 0 }
— = ———11—-2"=7Tyu¢.
ol (f—K)? 2

Taking the square root now shows the option’s implied normal (absolute)
volatility is given by

(A.55)

o

— K %
o]

(A.56)
X

through 0(¢?).

Before continuing to the implied log normal volatility, let us seek the
simplest possible way to re-write this answer which is correct through
0(¢*). Since x = z[1 + O(¢ )], we can re-write the answer as

— K
oy = <f—> (i) {1+ (1 +d2+d3) T+ -}, (A57a)
z x(2)
where
f-K ea(f-K) [ 1 /f a \
z f,’;% =K Jg eal(f")

This factor represents the average difficulty in diffusing from today’s for-
ward f to the strike X, and would be present even if the volatility were
not stochastic.

The next factor is

Z £ , (A.57D)
X(2) 1 («/1—2p:+:2—p+:)
= N T a—
where
B v S df v =K )
{_evz_;/[(C(f/)_ac(ﬁw){l—i—O(e )} (A.57¢)

Here f,, = \/ﬂ is the geometric average of fand K. (The arithmetic aver-
age could have been used equally well at this order of accuracy). This fac-
tor represents the main effect of the stochastic volatility.

The coefficients ¢y, ¢,, and ¢; provide relatively minor corrections.
Through O(¢?) these corrections are

2y = S lo ( o Kw/cm C([()
) Zf (A.574d)
a2
&2y = log( [1—2epvz+ ezvzzz]l/4) _ 27580 +---  (A57e)
24
29 = Lo Beva) 1,
ep3 = 48 pav Beva) 48 pvay, C(foy) + (A.571)
where
C'(fav) C"(Jav)
= = —. A.57
Ty T A (A-57¢)
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Let us briefly summarize before continuing. Under the normal model,
the value of a European call option with strike X and exercise date t,, is
given by (A.54a), (A.54b). For the SABR model,

df = eaC(F) dw,,  FO)=Ff (A.58a)
da = evadW,, al0)=a (A.58b)
AW, dW, = pt, (A.58¢)

the value of the call option is given by the same formula, at least
through O(s?), provided we use the implied normal volatility

ea(f— K) ( ¢ )
on(K) = — | =
f]{% X&)
21 =¥ 5 1 A
A1+ | T C () + S pvan Cfy) (A-593)
24 4
a2
42 243'0 vz] sztex+-~}.
Here
C'(fav) C"(fav)
av = K, = B = 5 A.59b
Ja VS Y1 i) V2 i) ( )
{:Kf_[(, X(¢) =log 1=200 480 —p ¢ . (A.59¢)
o C(fav) 1—-p

The first two factors provide the dominant behavior, with the remaining
factor 1 + [- - Je*1,, usually provideing corrections of around 1% or so.

One can repeat the analysis for a European put option, or simply use
call/put parity. This shows that the value of the put option under the
SABR model is

B K—f K—f
Ve fra K) = (K— YN (GN F) +on TG (UN F) (A60)

where the implied normal volatility oy is given by the same formulas
(A.59a - A.59c¢) as the call.

We can revert to the original units by replacing e« — @, v —> v
everywhere in the above formulas; this is equivalent to setting ¢ to 1
everywhere.

A. 3. Equivalent Black vol. With the exception of JPY traders, most
traders prefer to quote prices in terms of Black (log normal) volatilities,
rather than normal volatilities. To derive the implied Black volatility,
consider Black’s model

WILMOTT magazine

dF = eozkdW, — F(0)=f (A.61)
where we have written the volatility as eop to stay consistent with the
preceding analysis. For Black’s model, the value of a European call with

strike K and exercise date 1, is

Vea = JN (dy ) —KN (dy), (A.62a)
szx[ = Ve + D (Lsex )[[(_ﬂv (A62b)
with
log f]K+ Le%02
= 08S/ KL 3¢ oy (A.62¢)
EORBA/Tex

where we are omitting the overall factor D (¢, ) as before.

We can obtain the implied normal volatility for Black’s model by
repeating the preceding analysis for the SABR model with C(f) = fand
v = 0. Setting C(f) = fand v = 0 in (A.59a — A.59¢) shows that the nor-
mal volatility is

on(K) =

so5(/— K { (A.63)

1-— lezazt +}
log f1K b ’

24

through O(¢?). Indeed, in [14] it is shown that the implied normal
volatility for Black’s model is

1+ ﬁlong/[(—i— o5 log® 1K+ -+
a2 (1= 35 10g® 1K) €20} Ty + g etoptl + -+

(A.64)

on(K) = sop/fK
1+

through 0 (e*). We can find the implied Black vol for the SABR model by
setting oy obtained from Black’s model in equation (A.63) equal to oy
obtained from the SABR model in (A.59a - B.59c). Through O(s?) this

yields
(L) .
x(¢)

29y —y2 +1/f2 1
{1+|: V2 )/214+ /m/aZCvZ (ﬁlv)+ vaaylc(f;w) (A65)

alog f1K
S ar
Jx @

oK) =

2 —3p*
* 24p vz] 82T”+m}

This is the main result of this article. As before, the implied log normal
volatility for puts is the same as for calls, and this formula can be re-cast
in terms of the original variables by simpley setting ¢ to 1.

o
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AA4. Stochastic f model. As originally stated, the SABR model con-
sists of the special case C(f) = f?:

df = eaFPaw,,  KO)=f (A.66a)
da = evadW,, a0) =« (A.66Db)
AWy dW, = pdt. (A.660)

Making this substitution in (A.58a-A.58b) shows that the implied normal
volatility for this model is

ca(1-B)(f=K)

¢
K) = =
Sy (R (92(; ))
—B(2 — 2 2 — 3p?
Lt ﬁ( Z—ﬂzﬁ)a +pa1‘ii+ 4 VZ 82tex+"'
24fay 4fav 24
(A.67a)
through O(s?), where f,, = \/17( as before and
— K R J1 =2 2 _
g:KL, x(():log( pet e p—|—§>. (A.67b)
a [ 1—p
We can simplify this formula by expanding
1

f— K= /fKlog f/]({l + 21—4 log® /1K + log* f/K+-- -, (A68a)

1920

. L -$) /2
fP—K"FP=a1-B)fK ) logfik

A.68b)
a-8y. , a-g. x (

and neglecting terms higher than fourth order. This expansion reduces
the implied normal volatility to
82 14 Llog? fIK+ L log* fIK+--- ¢
on(K) = ea(fK ) (1_;‘1)1 . 1?12:”4 ; . <_ )
14+ L Jog® /1K + log* fIK+--- \¥(&)

1920
. _ﬁ(z_ﬂ)az 2_3:02 2] 2 }
{1 +[ 247K + | et ,
(A.69a)

pavp
4(f[()(1—5)/2

o

where

1—-p

_ 2 _
¢ = X 0P og K ;e(;)=1og(” 200 +¢ p+;).
o

(A.69b)

This is the formula we use in pricing European calls and puts.

To obtain the implied Black volatility, we equate the implied normal
volatility on(K) for the SABR model obtained in (A.69a — A.69b) to the
implied normal volatility for Black’s model obtained in (A.63). This
shows that the implied Black volatility for the SABR model is

ea 1

- SO P2 4 %long/lﬂ—
a2 .2

.{1+[(1 B) L
24(fK)'*

through O(¢?), where ¢ and #(¢ ) are given by (A.69b) as before. Apart
from setting ¢ to 1 to recover the original units, this is the formula quot-
ed in section 2, and fitted to the market in section 3.

A.5. Special cases Two special cases are worthy of special treatment:
the stochastic normal model (8 = 0) and the stochastic log normal
model (8 = 1). Both these models are simple enough that the expansion
can be continued through 0O(e*). For the stochastic normal model (8 = 0)
the implied volatilities of European calls and puts are

op(K)

¢
U5 o6t R4 .- <?9(§ ))

1920

2 — 3p?
+ 24p U2:|82tﬁx+"'}7

pavp
4(f[()(1—ﬂ )/2

(A.69¢)

2
14 8ZVZTM'+"'}

on(K) = e {l + (A.70a)

— o 08/ (¢ o’ 2-3p° 2] 2 }
ont) = e (5 ) {1+ s+ 25 e
(A.70D)
through O(¢*), where
1 _ 7 _
;:5\/ﬁ(logf/[(, f(g):log( ! Zp;lti) ,o—l—;“). (A.70¢)

For the stochastic log normal model (8 = 1) the implied volatilities are

-t i) [
v = ek Gy ) 240 TP
(A.71a)
RIS UCINE e }
+24(2 3p)v]erm+
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op(K) = ea - (L) . {l + [lpav—i— l(2 — 3p2)v2] &%t +}
£(¢) 4 24 o

(A.71b)

through O(¢*), where

V1-2p0 4+ —p+¢

1—-p

= r log f/ K, X(¢) =log ( ) . (A.71¢)
o

Appendix B. Analysis of the Dynamic
SABR Model.

We use effective medium theory [23] to extend the preceding analysis to the
dynamic SABR model. As before, we take the volatility y (¢) @ and “volvol”
v(¢) to be small, writng y () — ey (¢), and v(¢) — ev(t), and analyze

dE = ey () &C(F) dw;, (B.1a)
da = ev(t) ddWs, (B.1b)

with
AW dWy = p(t) dt, (B.1¢)

in the limit ¢ « 1. We obtain the prices of European options, and from
these prices we obtain the implied volatity of these options. After obtain-
ing the results, we replace ey (¢) — y(¢).and ev(¢) —> v(¢) to get the
answer in terms of the original variables.

Suppose the economy is in state ﬁ(t) =/, a(t) = « at date . Let
V (¢, ; &) be the value of, say, a European call option with strike Xand exer-
cise date 7. As before, define the transition density p(¢, f, «; T, F, A) by

p(t, fa; T, F,A) dFdA = prob {F< KTy < F+ dF, A < &(T)

. (B.2a)
<A+ dA| Rt)=f a@) =a]
and define
Pt fia; T, K) = f Ap(t, fia; T, K, A) dA. (B.2b)

Repeating the analysis in Appendix B through equation (A.10a), (A.10b)
now shows that the option price is given by

1 fes
Wt fa)=[f— K"+ E8262(1()f yATYPL, fia; T, K) dT,  (B.3)
13
where (¢, /; a; T, K) is the solution of the backwards problem

fort<T

1
P+ 582 {y2a>C* (D) By + 2pyva® C(f) Bu + v’ Pue} = 0,
(B.4a)
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P=a*8(f— K),fort=T. (B.4b)

We eliminate y (¢) by defining the new time variable

t T Loy
s= f viHdr, s = / y2(ydt, s.= f y2(@'ydr'. (B.5)
0 0 0
Then the option price becomes
1 Sex
Wt fa) =f— K" + 5;3262(1()/ P(s, fa;s', K) ds', (B.6)
s

where Z(s, f; a; s, K) solves the forward problem

1
P+ 582 {2 C*(f) Bp+ 2n(5) @ C(f) B + V> () 0Py} =0 fors<s'

(B.7a)
P=a*8(f—K), fors=s'. (B.7b)

Here
n(s) = p@)v(t) /y@), v(s) =v(@) /vy (). (B.8)

We solve this problem by using an effective media strategy [23]. In this
strategy our objective is to determine which constant values 7 and v
yield the same option price as the the time dependent coefficients 7(s)
and v(s). If we could find these constant values, this would reduce the
problem to the non-dynamic SABR model solved in Appendix B.

We carry out this strategy by applying the same series of time-independ-
ent transformations that was used to solve the non-dynamic SABR model
in Appendix B, defining the transformations in terms of the (as yet
unknown) constants 7 and v. The resulting problem is relatively complex,
more complex than the canonical problem obtained in Appedix B. We use
a regular perturbation expansion to solve this problem, and once we have
solved this problem, we choose 7 and v so that all terms arising from the
time dependence of n(#) and v(#) cancel out. As we shall see, this simul-
taneously determines the “effective” parameters and allows us to use the
analysis in Appendix B to obtain the implied volatility of the option.

B.1 Transformation. As in Appendix B, we change independent vari-

ables to
1 (7 ar
z= — / A , (B.9a)
ea Jp C(S)
and define
Beaz) = C(f). (B.9b)
We then change dependent variables from Pto 7, and then to A
p=Saxr (B.9¢)
o

o
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H=/CK)/CfHP= \/BO) /Bsaz)P. (B.9d)

Following the reasoning in Appendix B, we obtain
1 Sex
Vit fia)=f—K|" + Esa\/B(O)B(eaz)/ H(s, z,a; s") ds’, (B.10)
where H(s, z, a; ") is the solution of

1 22,2 1 2 B/
HS—I-E(l—ZenZ—i—a vz )sz—is naE(ZHZ—H)

+ 5 5 1 B// BB/Z H O (Blla)
£ —_——_— = = — =
“\48 sp
for s < s/, and
H=145(z) ats=ys' (B.11b)

through 0(s?). See (A.29), (A.31a), and (A.31b). There are no « derivatives
in equations (B.11a), (B.11Db), so we can treat « as a parameter instead of a
variable. Through O(¢? ) we can also treat 5'/B and B” /B as constants:

_ B'(sazn) _ B'(saz)

= —", = , (B.12)
B(sazy) B(eazy)
where z, will be chosen later. Thus we must solve
1 222 1 2
Hy+ 3 (1—2enz+e’v’2?) H.. — ¢ naby (zH, — H)
1 3 (B.13a)
2 2 /
+ &%a (—bz——bf)H=0 fors< s/,
4 8
H=1§(2) ats=ys'. (B.13Db)

At this point we would like to use a time-independent transformation
to remove the z4, term from equation (B.13a). It is not possible to cancel
this term exactly, since the coefficient n(s) is time dependent. Instead we
use the transformation

H=ev¥'ehé? [ (B.14)

where the constant § will be chosen later. This transformation yields

. .1 .
Hi+ = (1 —2enz+ e*v*2*) H.. — Eezabl(n —8)zH,

1
2

1, 5221 3 5 /
+Z£ab1(2n+8)H+sa sz—gbf H=0 fors < s/,

H=35(2) ats=s, (B.15a)

through O(¢?). Later the constant § will be selected so that the change in
the option price caused by the term J&’ab nzH. is exactly offset by the

o

change in price due to %8204171 8zH. term. In this way to the transforma-
tion cancels out the zA, term “on average.”
In a similar vein we define

Ke0z) = /1 — 2eijz+ 20222, (B.16a)

and

c)  €b

’

X= — p—
ev Jg 1—-n/v

1 [7 a1 <,/1 —2enz+ e202 22 — ii/0 + eﬁz)
— = log
(

B.16b)
where the constants 17 and v will be chosen later. This yields

N 11— 2enz+ 2v?z?
T 21 — 2enjz+ £20222

>

. N 1 .
(Hy — evl'(eV2) Hy) —Eszalﬁ (n —8) xH,

1 ~ 1 3 N
+Zszab1(2n+8)H+82a2 (sz— fbf>H=0 fors< s/,

8
(B.17a)
H=5(x)

ats=ys/, (B.17b)

through O(¢?). Here we used z= x+ --- and 2192 = xﬁx + --- to leading
order to simplify the results. Finally, we define

H=1"(vz) Q. (B.18)
Then the price of our call option is
1
Wt fa)=[f- K"+ Esoc\/B(O)B(saZ)]l/z
(B.19)

Sex
o 1,2 2
- (eUz) eat @l¥z f Qs, x; ") ds',
S

where (s, x; ") is the solution of

11— 2enz+ 2v?z?
Q+ = rey
21— 2enz+ g*v?z?

1 1 1 3
+ e20? <Z[”[— gl/]/) Q+ &%a? <Zb2 - gbf> Q=0 fors<ys,

1 1
Qv — 5820”71(7) —8)xQy + 2520!171(271 +8)Q

(B.20a)
Q=348(x) ats=ys, (B.20Db)
Using
1 _
z:x—Eean—i—m, (B.21)
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we can simplify this to
1 1
QG+ Qo =201 —7) XQur — 582 [v? = 0% =30 — )] ¥ Qur
1
+ 58201171(77 —8)(xQy— Q)

- EszabléQ— £20? 11”1— 11’1’ Q
4 4 8
1
4

Q=58(x)

3
— gbf) Q fors< s, (B.22a)

ats=ys, (B.22b)
through O(¢?). Note that 7,7/, and /" can be replaced by the constants
Kevzy),I'(e02 ), and " (¢0z, ) through O(s?).

B. 2. Perturbation expansion. Suppose we were to expand Q(s, x; s")
as a power series in ¢ :

Qs ;5" ) = QU (s, w35 ) +eQ V(s x5 +62QP (s, 45 5) +---. (B23)

Substituting this expansion into (B.22a), (B.22b) yields the following hier-
archy of equations. To leading order we have

1
+ = = ors < s, -z4d
©) 5 0 =0 fi / B.24
=45§(x) ats=ys". -24a
Q) =5(x) / (B.24a)
At O(¢ ) we have
@ L Loa Ty (0) !
QU+ QW = =M xQy) fors<s, (B.252)
QY =0 ats=ys. (B.25Db)
At O(g%) we can break the solution into
Q(Z) — Q(Z:) + Q(Za) + Q(Zb)’ (B.26)
where
1 3 1 1
(25) 02 — _2aps0® 2 - —rr 0)
Qs + ZQxx 4g 1 Q v (4 8 Q
1 3
(B.27a)
Q(Z.v) =0 ats=ys, (B.27b)

WILMOTT magazine

where
1 1
QB 4 EQ(X?‘H) = Sabi(n=35) (xQ® — Q) fors<s', (B.28a)
Q¥ =0 ats=ys, (B.28b)
and where
1 1
(2D) (2b) __ = (1) 2 -2
5 + s =- )XM——‘U—U
Q -< n—i)aQy’ =5 (B.293)
=37 — QY fors<s,
Q¥ =0 ats=y. (B.29b)

Once we have solved these equations, then the option price is then given by

Wt fa) = f— K" + %ea\/B(O)B(eaz)ll/z(ez) i¢' @2 1 (B 30a)
where

Sex Sex Sox
]=/ Q) (s, x55") d5’+e/ QW (s, x55") ds’+82/ Q) (s, x;5') ds’

+ngm @D (s x; s d§+82/m OO wys") ds' -
e ) . ) (B.30D)

The terms Q’, %), and Q®”’ arise from the time-dependence of the
coefficients n(s) and v(s). Indeed, if n(s) and v(s) were constant in time,
we would have Q) = Q?% = Q®» = 0, and the solution would be just
QY = Q) 4+ £2Q?9  Therefore, we will first solve for Q1), Q*¢) and Q©?*’,
and then try to choose the constants §, 77, and v so that the last three inte-
grals are zero for all x. In this case, the option price woud be given by

Wt fa) = f— KT + %sa,/B(o YB(eaz)V*(e2)

. Eis‘ublc‘izz

(B.31a)
/ Q9 (s, x;5") ds’,

and, through 0(¢?), Q) would be the solution of the static problem

1 3 ) 1 1

Q7+ Q) = —etabisQY — e*0? (Zm— g”) Qv
1 3 (B.31b)
— o (sz — gbf) Q¥ fors<ys',

Q¥ =48(x) ats=5s'. (B.31¢)
This is exactly the time-independent problem solved in Appendix B. See
equations (A.42), (A.43a), and (A.43D). So if we can carry out this strategy,
we can obtain option prices for the dynamic SABR model by reducing
them to the previously-obtained prices for the static model.

o
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B.2.1. Leading order analysis The solution of (B.24a), (B.24D) is
Gaussian:

Q) = Gx/VA) (B.32a)
where
1
Gx/VA) = ——=¢ "% A=¢—s (B.32b)
V2T A
For future reference, note that
X X —A ¥ —3Ax
G, = -5 G; Gy = e G: Gy = s G; (B.33a)
¥ — 6AX2 +3A? ¥ —10Ax°> +15A2%x
Gxxxx = T G'; G)(xxxx = - A5 G, (B-33b)
X — 15Ax* + 45A2%x% — 15A3
Gxxxxxx = A6 G. (B.33C)

B.2.2. Order ¢ Substituting Q) into the equation for Q*) and using
(B.33a) yields

X — Ax

AZG

1 _
¢+ Q) = —i)

for s < s/,
(B.34)

:_(5/_5)(7)_7_7)Gxxx_2(77_ﬁ)0x

with the “initial” condition Q") = 0 at s = s’. The solution is

Q(l) =A(S,5") Guw + 245 (5, 57) Gy (B.35a)

{zA(s, ) Ge(w//5 = 5} : (B.35D)

~ oy

where
assh=[ = -na A= [ no-nas B3sq
This term contributes

/ QU (s x5 d5 = 2405 50) Gux/ 5w — ) (B.36)

to the option price. See equations (B.30a), (B.30b). To eliminate this con-
tribution, we chose 7 so that A(s, s, ) = 0:

f;ﬁ (Sex — S)N(S) ds

1 2
E(SL’X - 5)

7= (B.37)

B.2.3. The £2Q??) term From equation (B.28a) we obtain

o

1 1 ¥ +A

Q"+ S Q" = —Jabi(n—8) G

: (B.38)
= —501191(77 —8)AGyy—abi(n—8)G
for s < ', with Q?? = 0 at s = s’. Solving then yields

3 s

QB = o {ah/ S = HnES) =8|dsG(x/Vs — s)} . (B.39)
s s

This term makes a contribution of

/ QP (s, x;5')ds' = ab,

s

( / (er = HINE —aw) G(x//5r —5) (B.40)

to the option price, so we choose

f:ﬂ (Sex — 37)[77(5) _8]d5~

1 2
E(SEX_S)

s=i= (B.41)

to eliminate this contribution.
B.2.4. The £2Q®” term Substituting Q") and Q®’ into equation
(B.29a), we obtain

1 _ _ 1
Q§2b) + E (ib) =M —N)AXGyxxxx + 20 — 1) AgXGyyn — EKxZGxxv (B-423)

for s < s', where

Kk = v3(s) —0* = 3an(s) —). (B.42D)
This can be re-written as
Q¥+ Q3" = (1= 1) AAGus + 5ol = 2010 = 1) Al Go
+ 3Gl — %K[AZGW + 5AGy + 2] (B.43)

Solving this with the initial condition Q) = 0 at s = s’ yields
1
Q(Zb) = EAZ (s, 51) Graxxxn + 2A(S, s ) Ag (s, 51) G
s
+3 [ 1 TGS B + 341055 G

s s s
+ % / [ — 2, (5) dS Grpur + ; / [§ — Sk (S) dSGyx + / k(5 dsG.

This can be written as

¢ = {4,42(5, 9 Go=12 [ 106 =G ) a5,
) (B.45)
s 2 s
—2/ ¢ =) ds~05+/ ¢ — ) dfc}
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Recall that 7 was chosen above so that A(s, s., ) = 0. Therefore the contri-
bution of Q") to the option price is

/ T QP (s x5y ds = — (12 / ) —AAG, 50 5
) / 5 — P ) d§> G.(%//3m =5) (B.46)
+ ( / " = 5 (@) ds”) C(x/ /5 = 5),

where k = v2(s) —02 — 37[n(s) —7].

We can choose the remaining “effective media” parameter v to set
either the coefficient of G,(x¥/+/s., — s) or the coefficient of G(x//S., — 5)
to zero, but cannot set both to zero to completely eliminate the contri-
bution of the term Q?”. We choose v to set the coefficient of
Gy(x/\/S.x — 5) to zero, for reasons that will become apparent in a
moment:

_ 1 S 2 o [ 2
UZZW{/ (Sex — $) V?($) dS —377/ (Sex — $)[N(S) —n)ds
3 Wex ™ K K
- 6/ / $2[n(s1) —nln(s2 ) —nldsyds; .
s Js (B.47)
Then the remaining contribution to the option price is
Sex 1
/ Q" (s, x5 ) ds' = =k (Sew — 9* G(X/N5ex — 5)
s i (B.48a)
= SF (50 =97 Q) (s x5 500,
where
) 1 Sa e g
K=3—"> (Sex — S)[L7(S) —07]ds. (B.48b)
2 (Sex - 5) K

Here we have used ff"” (Sex — $)((S) —17) ds = 0 to simplify (B.48b).

B.3. Equivalent volatilities. We can now determine the implied volatili-
ty for the dynamic model by mapping the problem back to the static model
of Appendix B. Recall from (B.30a), (B.30b) that the value of the option is

1 1.2 =
Wt fa) =|f— K" + Eeoh/E(o)B(eoz.z)[”z (e2) €377 | (B.49a)
where
Sex Sex Sex
J= / QV(s, x5 ds' + e[ QM (s, x;,8") ds' + 52/ Q¥ (s, x;,5") ds'
s s s

+82/L QB (s, x;5") ds’+82/ Q® (s, x;5') ds' +---, (B.49D)
S

s
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and where we have use § = 7. We chose the “effective parameters” 77 and
U so that the integrals of '), Q®?) contribute nothing to /. The integral

of Q" then contributed 1&%c (s, — 5)* Q) (s, &; 5. ). The option price is

J= /M{Q(o)(s, x5 ) +e2 QP (s, x5 5")) s’

1
+ .582/2 G — 9% QU5 %5 80 ) + - - (B.50a)
:/ Q) (s, 48" ) +e2Q* (s, x5 )} s + - -
through O(s?), where
A 1 2— 2
Sox = Sox + Ee K(Sey —S)+--- (B.50D)

Through 0O(¢?) we can combine Q¥ = Q©) (s, x;s") +£2Q? (s, x;5),
where Q) solves the static problem

1 3 1 1
() —06) — _Z 20b. 8 () _ a2,72 iy _[/[/>
Qy + zQxx 4‘9 1 Q &v <4 S

1 3
o) n2 2 _ 2 (s)
¢ - e’a (4b2 Sb%>Q
(B.51a)

Q) =68(s—5) at s=5¢, (B.51D)

This problem is homogeneous in the time s, so its solution Q) depends
only on the time difference t = s — 5. The option price is therefore

Wt fia)=[f— K"+ %sa,/g(o ) Beaz)IM?

(e2) eie @i / L Q¥ (z, x) dr, (B.52)
0
where Q°(z, x) is the solution of
1 3 1 1
Qf;j) _ 5 )(:;) — Zgnglr_]Q(j) + 821_}2 (Z[//[_ _[/[/> Q(s)
8
1 3 (B.53a)
+ &2a? (—bz - —bf) QW for t>0,
4 8
Q' =8(x) at 7 =0. (B.53b)

The option price defined by (B.52), (B.53a), and (B.53b) is identical to
the static model’s option price defined by (A.42), (A.43a), and (A.43D), pro-
vided we make the identifications

vV — U,

p— iU (B.54)

Tox = Sox — S= Sox — S+ 387K (o — 9)° (B.55)
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in Appendix B for the original non-dynamic SABR model, provided we
make the identifications

T =7+ 82/ V3 (T) —0)dt, (B.56a)
0

v — 7/0, v — 0. (B.56D)
See equations (A.42 — A.43D). Following the reasoning in the preceding

Appendix now shows that the European call price is given by the formula

- K -K
Wt fK) = (f— [()N( S ) + oN/Tex G ( J ) ., (B.57)
ONA/ Tex ONA/ Tex

with the implied normal volatility

sa(f— K) ( e )
Ky=—+— | — )
on(K) ff ar &)

Kar)

2
{1 " [2)/2274)/10‘26Z (far) + 1071 C (far) (B.58a)
20 =377 1],
where
‘=4 A fon)’ X)) = log ( 1=7/% ) . (B.58Db)
C(f;”/) C//(ﬁv)
oV B ’ - . B.58
S =VIK T = (B.58¢)
LTI DI
G = Jy Tl (11) O ]dr. bss

172
ZT

Equivalently, the option prices are given by Black’s formula with the
effective Black volatility of

alogf/](l( ¢ )

[l \aw)

oK) =

2y —y2 41
.{1+|:Vz vi +1//3,

4 a’c? (Jar) + %ﬁaylc(ﬁlv)

20% — 352
L2t =3

24 %é} #Tat
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