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Abstract

Ideas and methods from differential geometry and Lie groups have played a
crucial role in establishing the scientific foundations of robotics, and more than
ever, influence the way we think about and formulate the latest problems in
robotics. In this talk | will trace some of this history, and also highlight some
recent developments in this geometric line of inquiry. The focus for the most part
will be on robot mechanics, planning, and control, but some results from vision
and image analysis, and human modeling, will be presented. | will also make the
case that many mainstream problems in robotics, particularly those that at some
stage involve nonlinear dimension reduction techniques or some other facet of
machine learning, can be framed as the geometric problem of mapping one
curved space into another, so as to minimize some notion of distortion. A
Riemannian geometric framework will be developed for this distortion
minimization problem, and its generality illustrated via examples from robot
design to manifold learning.



Outline

A survey of differential geometric methods in robotics:
A retrospective critique
Some recent results and open problems

Problems and case studies drawn from:
Kinematics and path planning
Dynamics and motion optimization
Vision and image analysis
Human and robot modeling
Machine learning
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Why geometry matters

Shortest path on globe # shortest path on map
North and south poles map to lines of latitude



2-D maps galore
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Why geometry matters

[Example] The average of three points on a circle
= Cartesian coordinates:

AfE ) Bl f) <o,1>

B

Mean Extrinsic mean
\,*0 Intrinsic mean
= Polar coordinates: &/A/
A:(L1x) B:f
Mean :

Result depends on the local coordinates used




Why geometry matters

[Example] The average of two symmetric positive-definite
matrices:

f=lo ol =1y

= Arithmetic mean

P = 4 0 Determinant
0 4 not preserved

= |ntrinsic mean

,  |V7 0| Determinant
P = 0 \/7 preserved P = [Z IZ
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This is Spinal Tap (1984, Rob Reiner)

TH|5 IS Nigel: The numbers all go to eleven. Look, right across

( the board, eleven, eleven, eleven and...

Marty: Oh, | see. And most amps go up to ten?
Nigel: Exactly.

o “The;Funniest

nuﬁm“m?" “ Marty: Does that mean it's louder? Is it any louder?

Nigel: Well, it's one louder, isn't it? It's not ten. You
see, most blokes, you know, will be playing at ten.
You're on ten here, all the way up, all the way up,
all the way up, you're on ten on your guitar.
Where can you go from there? Where?

Marty: | don't know.

Nigel: Nowhere. Exactly. What we do is, if we need that
extra push over the cliff, you know what we do?

Marty: Put it up to eleven.

Nigel: Eleven. Exactly. One louder.

Marty: Why don't you make ten a little louder, make
that the top number and make that a little louder?

Nigel: These go to eleven.

1
¢--these go to'elaven:




Freshman calculus revisited

The unit two-sphere is parametrized as
x? 4+ y? + z% = 1. Spherical coordinates:

X = cos 8 sin ¢
y = sin 0 sin ¢
Z = COS ¢

Given a curve (x(t),y(t),z(t)) on the
sphere, its incremental arclength is

ds? = dx? + dy? + dz? = d¢? + sin? ¢ d§?
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Freshman calculus revisited

Calculating lengths and areas on the
sphere using spherical coordinates:

T
= Length of C = ] \/gbz + 62sin ¢ dt
0

= Area of A =ff |sin | d¢p d6
A
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Manifolds

A differentiable manifold is a space that is locally
diffeomorphic* to Euclidean space (e.g., a multidimensional
surface)

Manifold M

/-NX local coordinates x
RTH

*Invertible with a differentiable inverse. Essentialy, one can be smoothly deformed into the other.




Riemannian metrics

A Riemannian metric is an inner product defined on
each tangent space that varies smoothly over M

ds? = Z Z g:;(x) dx'dx’
J

i

= dxTG(x)dx
Y G(x) € R™*m
X’ symmetric positive-definite
X




Calculus on Riemannian manifolds

= Length of a curve C on M
Length = f ds

f \/x(t)TG(X(t))x(t) dt

= Volume of a subset V of M:

R" X(0)
Volume = [, dV / @ \ \
4 X(T)

:f...f\/detG(x) dxy -+ dxm
%




Lie groups

= A manifold that is also an algebraic group is a Lie group
« The tangent space at the identity is the Lie algebra g.

= The exponential map exp: ¢ = §
acts as a set of local coordinates for g/

= [Example] GL(n), the set of n X n

nonsingular real matrices, is a
Lie group under matrix multiplication.

- Its Lie algebra gl(n) is R™*". / . \
: 0 \




Robots and manifolds

Joint Configuration forward / Task Space
Space kinematics

t.'

local coordinates , , Iocal coordinates
X e R™ y € RN

ds? =ZZgij(x)dx‘dx1 ds? =ZZha5(y)dy“dyﬁ
i a B

= Mappings may be in complicated parametric form

= Sometimes the manifolds are unknown or changing
= Riemannian metrics must be specified on one or both spaces
= Noise models on manifolds may need to be defined



Kinematics and
Path Planning



Minimal geodesics on Lie groups

Let § be a matrix Lie group with Lie algebra ¢, and let
(-, -) beaninner product on g. The (left-invariant)
minimal geodesic between X, X; € G can be found by
solving the following optimal control problem:

1
min f (U(t),U(t))dt
0

U(t)

Subject to X = XU, X(t) € G, U(t) € g, with boundary
condition X(0) = X,, X(1) = X;.



Minimal geodesics on Lie groups

For the choice (U,V) = Tr(U'V), the solution must satisfy
X =XU
U=UTu-uuT =[UT,U].
If the objective functio.n is replaced by fo (U,U) dt, the
solution must satisfy X = XU and
j = [uT, 1]
Minimal geodesics, and minimum acceleration paths, can be
found on various Lie groups by solving the above two-point

boundary value problems. For SO(n) and SE(n) the minimal
geodesics are particularly simple to characterize.



Distance metrics on SE(3)

0 1 X2_01

s

d(X{,X,) = distance between X; and X,



Distance metrics on SE(3)

|f d(X]_’,XZI) — d(UXl, UXz):d(Xl,Xz) forall U € SE(B),
d( -, ) is a left-invariant distance metric.



Distancevmetrics on SE(3)

|f d(Xll,XZI) — d(X]_V,X2V):d(X1,X2) forallV € SE(B),
d( -, ) is aright-invariant distance metric.



Distancevmetrics on SE(3)

i)
w

|f d(X]_’,XZI) — d(UX]_V, UXZV):d(Xl,Xz) for all U,V € SE(B),
d( -, ) is a bi-invariant distance metric.




Some facts about distance metrics on SE(3)

= Bi-invariant metrics on SO(3) exist: some simple ones are
d(Ry, Ry) = ||1og(R{R)|| = ¢ € [0, 7]
d(Ry,Ry) = |IRy — Ry|| = J3 — Tr(RTR,) =1 —cos ¢

= No bi-invariant metric exists on SE(3)

= Left- and right-invariant metrics exist on SE(3): a simple
left-invariant metricis d(X{,X,) = d(R{,R,) + le — pzl‘

= Any distance metric on SE(3) depends on the choice of
length scale for physical space




Remarks

= (Too) many papers on SE(3) distance metrics have been
written!

= Robots are doing fine even without bi-invariance (but make
sure the metric you use is left-invariant)

= Notwithstanding J. Duffy’s claims about “The fallacy of
modern hybrid control theory that is based on “orthogonal
complements” of twist and wrench spaces,” J. Robotic
Systems, 1989, hybrid force-position control seems to be

working well.



Robot kinematics: modern screw theory

= The product-of-exponentials (PoE) formula for open kinematic
chains (Brockett 1989) puts on a more sure footing the classical
screw-theoretic tools for kinematic modeling and analysis:

T = 8[51]91 e[Sn]QnM

= Some advantages: no link frames needed, intuitive physical meaning,
easy differentiation, can apply well-known machinery and results of
general matrix Lie groups, etc.

= [t is mystifying to me why the PoE formula is not more widely taught
and used, and why people still cling to their Denavit-Hartenberg
parameters.



Some relevant robotics textbooks

Targeted to upper-level undergraduates,
can be complemented by more advanced
textbooks like A Mathematical Introduction
to Robotic Manpulation (Murray, Li, Sastry)
and Mechanics of Robot Manipulation
(Mason). Free PDF available at
http://modernrobotics.org

A Mathematical
Infroducrfon_to

ROBOTIC”
MANIPULATION

Richard M Murray
Zexiang Li
§) Shankar Sostry




Closed chain kinematics

= Closed chains typically have curved configuration spaces,
and can be under- or over-actuated. Their singularity
behavior is also more varied and subtle.

= Differential geometric methods have
been especially useful in their analysis: \%
representing the forward kinematics
f(M,g) = (N, h)as a mapping between o »
Riemannian manifolds, manipulability
and singularity analysis can be =
performed via analysis of the pullback ﬁ

form (in local coordinates, JTHJG™1).




Path planning on constraint manifolds

Path planning for robots
subject to holonomic
constraints (e.g., closed
chains, contact conditions).
The configuration space is
a curved manifold whose
structure we do not
exactly know in advance.

Dmitry Berenson et al, "Manipulation planning on constraint manifolds," ICRA 20089.



A simple RRT sampling-based algorithm

*andom
node

Start node

Constraint manifold



A simple RRT sampling-based algorithm

Nearest & &S

7 y /

neighbog™ .° /
P L)
/7
7/
/ /

node.” !
S Goal node

Start node

Constraint manifold



A simple RRT sampling-based algorithm

Random

Q\“n(\)de

'Y N s Nearest
\ N .
Start node N _heighbor
= ‘node
\
\

\

Goal node

Constraint manifold



A simple RRT sampling-based algorithm



Tangent Bundle RRT (Kim et al 2016)

\o
(o) o‘/Goal d
o\ §
(J (J °
O\O/o

Tangent Bundle RRT: An RRT algorithm for planning on curved
configuration spaces:

- Trees are first propagated on the tangent bundle

- Local curvature information is used to grow the tangent space
trees to an appropriate size.



Tangent Bundle RRT

Start node

o o

Goal node

Constraint manifold

Initializing
Start and goal nodes assumed to be on constraint manifold.
Tangent spaces are constructed at start and goal nodes.



Tangent Bundle RRT

Random node

Start node (0]
o

O New node

o

Goal node

Constraint manifold

Random sampling on tangent spaces:

Generate a random sample node on a tangent space.

Find the nearest neighbor node in the tangent space and take a
single step of fixed size toward random target node.

Find the nearest neighbor node on the opposite tree and then
extend tree via tangent space.



Tangent Bundle RRT

Random node

Start node

(o} NewTode

o

Goal node

Constraint manifold

Creating a new tangent space:

- When the distance to the constraint manifold exceeds a certain
threshold, project the extended node to the constraint manifold
and create a new bounded tangent space.



Tangent Bundle RRT

Start node

\ ®
o o

o ! Neafest neighbor

Select a tangent space using a size-biased function (roulette

selection): For each tangent space, assigned a fitness value that is

- proportional to the size of the tangent space and,

- Inversely proportional to the number of nodes belonging to the
tangent space.



Tangent bundle RRT

Constructing a bounded tangent space:

LMo, = Use local curvature information to find the

principal basis of the tangent space, and to
bound the tangent space domain.

= Principal curvatures and principal vectors
can be computed from the second
fundamental form of the constraint
manifold (details need to be worked out if
there is more than one normal direction)

= |f the principal curvatures are close to zero,
the manifold is nearly flat, and thus
relatively larger steps can be taken along
the corresponding principal directions




Tangent bundle RRT

Q: Is the extra computation and bookkeeping worth it?

A: It’s highly problem-dependent, but for higher-dimensional
systems, it seems so.




Planning on Foliations
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Planning on Foliations
G,




Planning on Foliations



Planning on Foliations




Planning on Foliations



Planning on Foliations




Planning on Foliations

Release

@ E posture

Re-grasp
posture

Jump motion



Planning on Foliations




Planning on Foliations




Planning on Foliations

q, Foliation, F



Planning on Foliations

Connected path
Jump path

Connected path




Planning on Foliations (J Kim et al 2016)

Algorithm 1 Planning Algorithm

: =X
1: Given: Xipitial, Xfinal X T
2: Tree Ts.Init(Xinitial) initial
3: Ts.Node(Xipitial ). CurrConfig +— InverseKinematics((rand, Xinitial) | N
4: repeat X/ " Kinal
5: Qeurr- Xn. Xp ¢ ExploreTree(Ts)
B: Unext < ProjectToLeaf(qeyrr, Xp)
T TenrrGnext — FindPathOnF (Qeurrs Qnext )
8: if CollisionFree(Qeurrtnext) then
9: T's.AddNode(x},)
10: Ts.AddEdge(xy. xp)
11: Tiq.Node[:Xp).Path — QenrrUnext ~ Foliation F
12: Ts.Node(xp).CurrConfig = Qpext
13: else
14: TeurrTQarrival < Jump(Qeurr, Xa, xp)
15: Ts.Node(xy,).Path < Qe Qarrival
16: Ts.Node(x,,).CurrConfig <— Carrival
17: end if
18: until Xgpa 1s added to Ts

19: () + ExtractPath()

20: return final path € configuration space M




Planning on Foliations
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Dynamics and
Motion Optimization



PUMA 560 dynamics equations

B. Armstrong, O. Khatib, J. Burdick, “The explicit dynamic model and
inertial parameters of the Puma 560 Robot arm,” Proc. ICRA, 1986.




PUMA 560 dynamics equations

!3=
I, =

I, =

Iy =

I; =

I’ =
Ia=
Ia=
Iia=
fu=
Inw=
I,,s=
Jis=
Iz =
Ia=
Iin=
In=
I, =
Iza=

I3s=

Tiea+ma e (raa® + 7,37 )+ (ms + my + ms +my) eay? §
=Izz3 + Tyya + (M3 + my + my + mg) say?

myer;a® =maer,?;

mysryae(ds + ria) +myeaz;er,,

+(m3 + my+ms +mg)eaze(ds +d;);
—mysazerys +(my+ms+mg)eazed, +myeazer,,;
Toca+mserys? +myeay? +mye(dy +r:4) + f;,,
+my nas? +mg ed? + 1.5 +mgeay? +mged,

+mg o r:s? + Tesa 3

myerys? Ty =Ty vminr? +2emyedier,,
+(my+ms +mg)e(d? —as?)+Tppq = Togy + Lias
—Tyys +mg *r:a? — Lo + 1226 3

. =my e (da +ds) «(dy +rii) = (ms +mg) = (da +d5)=d,

myer,ser;s+mse(ds+ds)er,s;
myerya s (da +raa)s

2em easer.y+2s(my+ms+mg)eased,;
—2emg ersy *rys;

(my+ms +mg)eazeasi

{m‘ + mys +M¢) ‘63'(&3 +d;) ;

Tooo + Tyys + Toze

mgedy*riei

Mg =az ®r:e §

Tias + Isz6 + me .7:6’ H

mg o (dz +ds) srees

ryyc —Tpsa + T:2s — !’yl +mg . ’J‘: + Tiz6 —T:26 5
Iyys — Izzs — mg = ree>+ Teze — Isz6 3

Teza = Tyya + Tazs — Iees s

Mg ®* a3 * 6 §

Tiza 3

Part 1I. Cravitlonal Constants

—g*([(ms+my+ms+mg)sar+maer.a);

i =

o = ge(myery —~(my+ms +mg)esdy —my=ryy);
£ = gemy ®r,;j

g9e = =—ge(my+ms+mg)sa;;

g3 = =—geoemg*r;ei -

Table A3. Computed Values for the Constants Appearing

in the Equations of Forces of Motion.

(Inertial constants have units of kilogram meters-squared)

I, = 1.43 = 0.05 I, = 1.75

l; = 1.38 = 0.05 Iy =

Is = 3.72x10~! *0.31x10"! Is =

I: = 298x10-!=%0.29x10"! I, =

I, = 2.38x10-? % 1.20x10-3 Ie =

Fip = —1.42x10"7 £ 0.70x10~? I =

I,y = —3.79%10~% £ 0.90x 103 I,, =

I,y = 1.25x%x10~2 & 0.30x10-3 Iie =

f: = 6.42x10~* = 3.00x10—* Iis =

I, = 3.00x10-**14.0x10""* I3 =

I;; = —1.00x10"% % 6.00x10~"* I;; =

I;s = 4.00x10% % 2.00x10~%

Ty = 1.14 =% 0.27 Ina = 4.71

Ims = 8.27x10"' =£0.93x10"! Iy =

Ims = 1.79x10-!' +0.14x10"! I =

(Gravitational constants have units of newton meters)

g1 = —371.2 % 00.5 g1 = —B8.44
1.02 £ 0.50 B¢ =

Bs =

s —2.82x10"7 £ 0.56x 107

%+ 0.07

6.50x10~! %+ 0.20x10~!
3.33x10"! = 0.16x10—*
—1.34x10-! +0.14x10~}
—2.13x10-? = 0.22x10~?
—1.10x10-? £ 0.11x10-?
1.64x10~% £ 0.07x10~?
1.24x10-3 + 0.30x10-3
4.31x10~* £ 1.30x10~*
—2,02x10~* = 8.00x 104
~5.80x10~% + 1.50x10~%

= 0.54

2.00x10-! £ 0.16x10~!
1.93x10"!' =0.16x10—}

=0.20

2.49x10~! = 0.25x 10!



PUMA 560 dynamics equations (page 2)

Table A4. The expressions giving the elements of the kinetic
eaergy matrix.
[The Abbreviated Expressions bave usits of kg-m?.)

@y =Ty + 0+ I3+ CC2+ I: « $523+ 1o+ SC23 + I, « SC2
41304 (S55 ¢ [S523 |1 +CC4) — 1) =2« SC2I3 4 T4+ 5T5)
403+ 5523 CC4+22 ([4 2 C2e823+ [12+C24C23
4143 = [5523 2 C5 + SC23+ T4 = 55)

ol v 2w [S23 « 05 + 23 2 Cd = §5)
s sS40 55+ £33 + [SC2W+ C5 + CC2I+ C4 e 55)) ;
3 257 + 138072 + 030« 5523 + TAdx10~' «C2.523 .

bis

7 +sS2+ Ia2C23+ 0I5+ C2+ [13 %523 — [13+023=-54+55
+1a v S22 54«55+ 1) »[S23+C4+ 55— C23C5)
+04p» 523+ SC4 + J20 + S4+ (523« C4+ CCS5 + C23 = 5C5)
+f3y %+ 523« S4=55;
6.50x10~'» S2 — 1.34x10"' s+ C23 + 2.38x10"7.C2.
= [y 2C234 1132523 =[,3+C23e S4s S5+ f15» $23+ 5C4
a2 (5232 C4 e S5 =C23=C5) + f32 9523+ 54255
+10+ $4+ (523 C4+CCS5 + C23 5C3) ; .
—1.34x10" '« ©23 + —397x107%«523. bisa
[142C23 4+ I3 *523aC4+ 55+ 14+ C2+C4d=55 ’
+f1s +C23+ S4=55—I30=(523+C4+5C5+C23+555)
41324023 C4+55; =0.
Gis = I3 +5234S4+05+015+C2+54+C5+ [1-+ 523+ 54

+113+ (523 =55 —C23+C4+C58)+[33+C23+54+C5;

= 0.

T2y = [C23«C5— 523+ Ch=53); 0.
@33 = Ima + a2+ Is + J20* S54= 555+ I3, « 554
422 {fs » 53+ [12=C3+ I3 =C5
+0s*(S3+C5+C32C4+55)+[a3 = Td=55};
6.79 + T.44x10~' = 53 .
G2y = [3353+ 0+ [13oC3+ I13+(53C5+C3+C4ds+55)
0204554555+ 03, + 554+ 2 {[,3+C5 + I1;+C4+55);
333 + 3.72x10"' =53 — 1.10x10"%=C3.

L

ay =

bire

bz

H

LN

n

@34 = —l1s*S4+ 55— g2 53+54%55+ I35+ 54+5C5; bizs
=0.
Gy = Nz = C4=C5+ 5+ [C3255+ §53+C4d=C5) .
=y o« Cd -+ Tyg « 55 ; 0. 136
a3 = Ja3 5455 2=0. bias
@33 = fos + Js + T30 = SS4 =S58 4 I3, = S54 buas
+22 {13 = C5+ 133 =C4d=55); = 1.16 .
G3g = —J13 54455 4 Jqn s 54+5C5;
= —1.25%x10"% « 54« 55 . row
Gas = Jys *C4daCS5 + N1z »CAd + I35 »55; =8
= 1L25%1072 « C4+C5 .
baia
ays = I35+ S4e55; =0 . 0
B4y = Ims + Tia = Tan = 5553 = 0.20 . o
ey = 0.
ays = f23+C5; =0.
ass = fma +Iiz 3 = 0.18 .
ass = D. bzas
ey = Jme + T2a 3 = N.19 .

Table AS5S. The expressions giving the elements of the Coriolis matrix
(The Abbreviated Expressions have units of kg-m?.)
L
bua =2e{-J;e5C2+ 15 «C223 4+ [; « SC2I — [13 + 5223 bras
+013 ¢ (22 SC23sC5+ (1 — 2+ 5523) « T4« 55)

0y = 117223 0005 — S223 74 « §5) + [y, » S023 « 3004
Hla = ([l +€7074) « SC23 2 555 — (1 — 2 « §523) = 74 » 575)
Ty e {[1l =2« 5522)«e’56 — 2+ 5723« T4+ 55)}
+linefl —2¢S523)+ L1 » 1 —2+552);
2 —2.T6 e SC2 4+ T44x10™' a 223 + (LGD s SCT23
— 23 INT* e |l -2 5523) .
=2 {fy s 247234 [r»S5C23 - 1,3 +-C2+523
4lyy = (20 SO23 005 + (1 =2+ 5523) + Cd + 55)
ol « 2 ((C2B 405 = 523+ C4 e 55) + Iz, « SC2I CCH
4130+ {1l + CC4) » SC23+ 555 — (1 — 2+ 5523) « T4+ SC5)
411s ¢ ([l —2%5523)=C5—2+5C23+C4+55)}
+la [l —225523);
2 T.A44x10~" » O2+ 23 + 0.0~ SC23
+ 220%10-% « C2 + §23 — 2.13x107% « (L — 2« 5523) .
=2e{—J1s*5C23+ 54455~ 162C2+C23+54+55
+Fs s 04255 —I39 (55234 5552 5C4 — S5C23+ 5S4+ 5C5)
—JI33 * CC23« S4e 55— I3, = 5523+ SCh} 3
—2.50x 103 « SC23 « S4+ 55 + 8.60x107'+C4+55
— 2.48x10"% s C2+C23 =« 54+ 55.
= 2a{f30 + [5C5+(CC4= (1l - CC23) — CC23)
—5C23:C4+(1l —2+555))— I35+ (5523« 55— 5C23+C4+C5)
114+ C2={5232+55-C23+C4+C5)+ 1y =54=C5
4faz + [CC23+C4+C5— SC23+55)} 3
2 —2.50x 10~ « (§523 « 55— 5C23 « C4 «.C5)
— 2.4Sx10~*=C2«(523+ 55— C23=C4=C5)
+ 8.€60x107% » 54+ C5.

u

=0. ! .
=2e{—Jy =523+ 1,3+ C23+ ;3 =523e 5455
41y = [C23+C4«55+ 523+C5)+ [15=C23+ 5C4
+fap * 54 =[C23«C4+CC5 — 523+ 5C5)
4f32 + C23 =54+ 55}
= 2.6Tx10""' « §23 — T.58x107%=C23. .
=~y * 2= 5232 54+55+[15+=523=(1— (2-554)
G305 523=(1l =2+ 554+CC5) — [1,=523; =0.
= [z = C23 54+ [1322+(523+C4+C5+ C23=55)
+fn =« S4=(C23=(L—2+555] - 523+C4#2«5C5);
= 0.
= —I33 +[523+C5+C23=C4=55)3 =0.
= b1z » bizs = bras - biss = bias -
=2e{l,32523+C4+C5+1,3+C22C4=C5
40y *C23 =54+ C5+ [222C23+C4+C5}+ Iz =523=C4
—f35+(S23«C4e(l—24555)+2+C23+5C5);
=0.
= f33 =523« 54=55; =0.
= —I33 % (C23+ 55+ 523+ C4+C5); =0.

=0. by = 0.
= L4 * 523+ J1o = 523+ (1 — (2= 554))
+2a (—[132C23+C4+ 55+ 14252+ C4=55
T3 = [523  [CCS5+ CC4—0.5)+ C23+C4+5CS5)
+l33 » 523 T4+ 55);
= 1.64x 10~ = §23 — 2.50x107 %« C23+C4d = 55 +
2.43x1072 =« S22+ Cd = S5 + 0.30%10~% = 523 « (1 — (2= 554)) .

=20 {=l13=C234542C5+ [33+523+54+C5

+l16 =52 54+«C5} = Iir=C23+54
4l30 « (C23 2542 (1l -2+ 555)—2+523«5C4%5C5);

= —2.50x10-2 « 023+ S4+C5 + 2.48x107% « 524 54+C5
— 6.42x10"*+ C23 + 54

= —byas - :

=2 {—f,,-s:-a-!.-t?3+r..'[CJ-CS~SJ-CI-SSH=

= 220x10-7 « §3 4+ T 44x107'C3 .



PUMA 560 dynamics equations (page 3)

Byas = 2w {—Fa®C3aS54a55+l10%SChnSS5S . = N =0.
B T iy e SCA I eS4e55)1 Base = Beas Besaa fasy
= —2.48x10-3 « C3 = Sd = 55 . Bais = Buza - Rese =10 s
bizy =28 [Ty w55+ Nge(C3eCheCS5— 53 55)
#i20* 5542 5C5 + f2a=Ch=C5) 3 Table A8. The e_xpn::sian: for the terms of the centrifugal matrix.
= —2.50%10% « 55 + 2.43x10~% e (C3=C4=C5— 53+ 55) . (The Abbreviated Expressions bave uaits of kg-m?.)
brzs = 0. Base = Baag - cin = 0.
= +I4eC2 - [8e523— 10«52+ [13+C23
baas = Bagy - baysg = 0. Ci3 + 2
+03 2523054055+ [seC2e54=55
by =2e{—Jia 2 54=C5=J1s»5354+C5} #1013 o (C23 0 Ch s 55+ 5230 C5) + f1s »C23 = SC4
—fireS4+TaawS54+(1 —2+555); =0. +f30» 542 (C23eCdecCS5 — 523« 5CS5)
Brus = J23 «C4e55; =0. FJ33+C23 e 5S4+ 55;
iy s e ~ 6.00x10™' e 02 + L34x10-'e 523 — 238x10-7 e 532 .
36 = J33 -
bayz =0. baua = 0. - ﬂ-:tl'.” 5
Bsie = 2= {=Fy3 2 C23eChe S5+ f12 5230 Cd =S5 B e =5~ - i s~ 0
+f10 » (523 = (CCS « CC4 ~ 0.5) + C23 « Cd » SC5)} “fameC23+54%55; e

+la* 523+ 5= 523« (L = (2= 554)) 3 r
—2.50x10~* « C23 = Ch = . 0-% . 523 ~ly3» 5230 540 S5-Iy« C2e 5455,
= o sl - +Tys 2 [S23eC5 4+ C23aClsS55)—[33+C230 54055

)
2
e

]

+ 0.30x10"% e 523 e (L - 2= §54) . ~ O
b, 2 =TIys » C23 e 54 «.C5 + Sd e CS5)
G cie = O. e = —05ebys-
+l30% S4+(C23 e (L —24555) — 2« 523« CaeS5C5); € = 8. €33 = 0.5 by -
= —2.50x10"% e C23 e S4eC5 — 642x10*+C23+54 . 24 = —TisaCheSS—I1yeS3eCleSS+ geCheSCSy
Bare = —Buzs - Byaa = 0. o~ i
Bizy = 2o (fz0 » SCh e SSS+ I3y  SCA = I3z e SkaS8); €13 = —IseCleaSS+l=(C3aCS—S53eCheSS)
= - +F33»C5 5 =0 . .
Byzs = 2o (—Jis v S5+ 100 5540 SCS5 + [332Ci=C5}) 3 c2e = 0. sy = —0.5 «Byys -
= —2.50%10~% « S5 . c3z ™= —c33 €3 = 0.
bize = 0. Bazu = Bazu - €3g = —laeCldnS5+Jz0CheSCS5;
bazs = byas Base = 0, &~ —1.25x10"%eCde=55.
Baas = —l13 " 20 S4eCS5 — [yraSd+ a0 Sde(l —2+555); . 2
b il Cas DI,;-G‘-SS-P I35« CS5; . ::s Ca4 =
e, - = =0 - = =0 -
Byis = Byys o, Eaza = Byie « Barz = —baug - * = - = e 05w lare
Bus = —Baia - Buie=0. w2 = OE<lem- S e Eaag
Buzs = —Jpo = (523 Ch el —2+ S55) +2+C23+ 5C5) " Cea = 0. esp = —OSeby;s . ey = —0.5=byas .
=Mz = S2I=C4 £33 = 05 ebgys » €3q = =05eby,s . ess = 0.
= —6.42x10"% + 523 Cd o
esa = 0. cer = 0. Cga = 0.
Bure = —Brae - Byzs = —baze = Byza= 0 . Caz = 0. cey = 0. cgs = 0.
byzs = Nz e Sh+» a0 = Sde(l —2558); i
= B.AZX10™Y o 54 . “ .
[ W —_— byae = 0. Table AT. Gravity Terms.
(The Abbreviated Expressions bave naits of pewton-metera.)
buas = byas - byss = =byus - : &
Boes = —T30 =2 s SC5§ =0. =L : ,
N B =gleC2+ g2+ 8523 +932524g4=C23;
wes =03 +g5 % (S2IC5+C23+C4+55)
Busa = —Jas» S5 3 ~0. = —37.2¢C2 — £ 12523 + 102+52.
Bayy = —bygs - Baya = —Saps - Bsia = —buas « g = "SI+ gd e C23 4+ g5+ (52305 +C23=CdsS55);
ey w0 R~ s gy ™= —Bygs = = —8.4+ 523 + 0.25.C23.
B3zq = —Byzs - bazy = 0. byzs = —bass - il - ;:5 ::2’3 -sz:;s‘-ssa‘ 55
- = -8B =% e - - -
Bise = Baze - bags = 0. Bise = —bysa . g5+ [C23 = 55+ 5230 Ch = CS)
= & = - - -+ - - ¥
byus = 0. bsas = —bess - b3ss = 0. = —28x10"% e (C23 55 + S23Ca4=CS5).
beiz = buze - bars = byss - Bare = biys - g =0.
bais = buss - bere = 0. bgza= 0.

beze = baas - bgas = Bags - bsze = 0.



Recursive dynamics to the rescue

- Recursive formulations of Newton-Euler dynamics
already derived in early 1980s.

- Recursive formulations based on screw theory
(Featherstone), spatial operator algebra (Rodriguez
and Jain), Lie group concepts.

- Initialization: V, =V, =F,.; =0
- For i=1ton do:

Ti—1; = M;e®i

Vi = AdTi’i_l(Vi—l) + 5 q;

Vi = SiG; + Adr,, ,(Vie1) + [Adr,,_,(Vi1), Sig;]
- For i=nto 1 do:

Fy = Ady,, ,(Fip) + GiViady, (GV;)

T; = S;TFL



The importance of analytic gradients

Finite difference approximations of gradients (and Hessians) often
lead to poor convergence and numerical instabilities.

Derivation of recursive algorithms for analytic gradients and
Hessians using Lie group operators and transformations:

Initialization Wy _ g By
i
Eylg—" m_.'q_. Fpin =0, l'-”l:u i :'Iu
_-'_"lil £

il v a¥,
¥y @ 8F, st = Ad 1 el = adg -_|-|--‘-
_E"! _'-'3! _rﬂi_l Oicn iy Fata ay :H
iy s 8F, ,
T = Yexn IV = Ad,, T

¥y .?1 ra b a4
gy iy _ g
" g ook av, vy

— —d-—L_
.'.i'ln_. = Adpn | Gt = ady, i g

¥y @y Fess e _
Tk e Tedl Flasl )
GFy g g T ahy e

Backward recursion: for £ = » to O

Forward recursion: for k=1 ton

"""'—.—1:.“. [ﬂ” ad® ¢ 5., F&+I+T}+J T—af!LJtp'*_u:ﬁ'Jgr—:L-—:

il Yy ' .
S = Adp TRl = §yadg, Vi £

) . . G A JI
D= ads Bist — ads, {,44d e Vies + 204y} W =Ad S O “ﬁ:‘f’* Vi = ady, Ji:
¥y _ B : - : .
T =Adp =t = 0,45% %’;} .-.‘Iu';_. d:j: = NI i':,i‘_'-—af!.‘.'...hh.—uu" Jip=t "H

A+l 'w—

i‘#:;::.- Wit e 13,V +Brg .
T 1 ST .'i.[ kY k g, fﬁl |I|'.”'m "Iﬂl‘;_ |'H' [ + J- |'.|| ' - :.'d'"' -fj;l' - E.I'd* J..t &l |
il il ”'-!
lll'TlilL AH}L I e rJg ’

BFy _ g0 OFp vy _ o g B
'I:JI'L = Ad, L ”:,J* 4y 8 - dﬂli.[ B4, iﬂ.} ¥ ‘!d} <1 W + J |'.i'| I:.I'I:-I: oy J-'tl. & E.I'd J-'t ik
B



Maximum payload lifting

J. Bobrow et al, ICRA Video Proceedings, 1999.



Things a robot must do (in parallel)

= Vision processing, object
recognition, classification

= Sensing (joint, force,
tactile, laser, sonar, etc.)

= Localization/SLAM
= Manipulation planning

= Control (arms, legs, torso,
hands, wheels)

= Communication

= Task scheduling and
planning

Robots are being asked to
simultaneously do more and
more with only limited resources
available for computation,
communication, memory, etc.

Control laws and trajectories
need to be designed in a way
that minimizes the use of such
resources.







Measuring the cost of control

= Control depends on both time and state
= Simplest control is a constant one

= Cost of control implementation (“attention”) is
proportional to the rate at which the control changes with
respect to state and time.

= A control that requires little attention is one that is robust
to discretization of time and state



Brockett’s attention functional

Given system x = f(x,u,t), consider the following

controller cost:

|

- A multi-dimensiona

2
dx dt

2
+

Ju
ot

ou
dx

calculus of variations problem

(integral over both space and time)
- Existence of solutions not always guaranteed



An approximate solution

Assuming control of the form u = K(t)x + v(t) and
state space integration is bounded, a minimum
attention LQR control law™* can be formulated as a
finite-dimensional opt|m|zat|on problem:

Min  Juer = f KON + [ — K() 2 [1dt

P7,Q>0
u(x,t) = K(t)(x — x*(t)) + u*(t)
K(t) =—-R1BT(t)P(t)
—P = PA(t) + AT(t) — PB()R™BT(t)P + Q,P(tr) = Py

x*,u* are given, e.g., as the outcome of some offline optimization procedure or supplied by the user.



Example: Robot ball catching

Numerical experiments for a 2-dof arm catching a ball while
tracking a minimum torque change trajectory:

Feedback gain Feedforward input

— T =
—Kp2 3 _— u? N
—norm(K) m—pnormiu)

N

0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
Time (sec) Time (sec)

Feedback gains increase with time
Feedforward inputs decrease with time




Vision and Image
Analysis



Two-frame sensor calibration

camera reflective marker

movingHrame camera A moving-frame X IMU
fixed- frame /—\\ moving-frame
D
camera world >
ﬁxed = I \‘/ j
Yy /S / -
IMU ground IMU ground
fixed-frame fixed-frame

« A,B,X,Y can be elements of SO(3) or SE(3)
= A, B are obtained from sensor measurements

= X, Y are unknowns to be determined.



Two-frame sensor calibration

camera reflective marker
movingHrame camera A moving-frame X IMU
fixed-frame moving-frame
camera world @
fixed-frame
g IMU
moving-frame Y B
IMU ground B IMU ground
fixed-frame

fixed-frame

- Given N measurement pairs (A;, B;)i=1....N

= Find the optimal (X,Y) pair that minimizes the fitting criterion.



Two-frame sensor calibration

camera reflective marker
movingHrame camera A moving-frame X IMU

‘ ﬁxed-fran%w‘ng-ﬁame
| 17

camera world
fixed-frame

<IF>-

IMU
moving-frame Y B

IMU groundnOISe
fixed-frame

IMU ground
fixed-frame

noise

* (A, Bi)i=1,...n are noisy; there does not exist any (X,Y)

sy

that perfectly satisfies A;.X =Y B,

e Determine (X,Y) that minimizes

1 N

' - A X — Y B
om0 |

1=




Multimodal image registration

Multimodal image volume registration: Find optimal transformation
that maximizes the mutual information between two image volumes.

Detailed tissue structure
provided by MRI (upper left)
is combined with abnormal
regions detected by PET
(upper right). The red regions
in the fused image represent
the anomalous regions.




Multimodal image registration

Problem definition: T* = arg max I(A(Tx),B(x)) where
= Tis an element of some transformation group (SO(3), SE(3),
SL(3) are widely used).
= x € R3 are the volume coordinates,
= A, B are volume data,
= [(+,-) is the mutual information criterion,
Evaluating the objective function is numerically expensive and

analytic gradients are not available. Instead, it is common to
resort to direct search methods like the Nelder-Mead algorithm.



Optimization on matrix Lie groups

The above reduce to an optimization problem on matrix Lie groups:

= For the n-frame sensor calibration problem, the objective function reduces to
the form Y., Tr(XA;X"B; — XC;). Analytic gradients and Hessians are
available, and steepest descent along minimal geodesics seems to work quite
well.

= In the multimodal image registration problem, Nelder-Mead can be generalized
to the group by using minimal geodesics as the edges of the simplex.

= There is a well-developed literature on optimization on Lie groups, including
generalizations of common vector space algorithms to matrix Lie groups and
manifolds.



Diffusion tensor image segmentation

Each voxel is a 3D multivariate normal distribution. The mean
indicates the position, while the covariance indicates the
direction of diffusion of water molecules. Segmentation of a
DTl image requires a metric on the manifold of multivariate

Gaussian distributions.



Geometry of DTl segmentation

In this example, water

| molecules are able to move

T TS T S more gasﬂy in the x-axis
direction. Therefore,

diffusion tensors (b) and (c)
are closer than (a) and (b)

Using the standard approach of calculating distances on the means
and covariances separately, and summing the two for the total
distance, results in dist(a,b) = dist(b,c), which is unsatisfactory.

Q +

JBOTICS



Geometry of statistical manifolds

An n-dimensional statistical manifold M is a set of
probability distributions parametrized by some smooth
continuously-varying parameter 8 € R".

’

NEM
\ /
9, € R™

6, € R"

Rn[ M, 9)

x,

X



Geometry of statistical manifolds

» The Fisher information defines a Riemannian metric g
on a statistical manifold M

0 logp(x|6) dlogp(x|6)

= Connection to KL divergence:
1
DKL(P(- 10)]|p(. |6 + dQ)) = EdHTg(H)dH + o(||d6]1%)



Geometry of Gaussian distributions

» The manifold of Gaussian distributions N (n)
Nmn)={0=wIlueR" ,ZePn)},
where P(n) = {P € R™"|p = PT,P > 0}
» Fisher information metric on N'(n)

1
ds? =deTg(6)do = duTx'du + Etr((z—lczZ)Z)

» Euler-Lagrange equations for geodesics on N (n)
dzu dZZ_ld_u -0

dt? dt dt
d?x  dudu? dr_qdT

dt2 = dt dt dt dt

0



Geometry of Gaussian distributions

» Geodesic Path on V' (2)

0.1 O
T A R P ) B L]

AR (N

1

i




Restriction to covariances

» Fisher information metric on V'(n) with fixed mean [
1
ds? = Etr((Z‘le)z)

Affine-invariant metric on P(n)

= Invariant under general linear group GL(n) action
Y - STyS S € GL(n)

which implies coordinate invariance.

= Closed-form geodesic distance /
- 11/2

dpany (B1,52) = | ) (l0g 44(3712,))?

=1




esults of segmentation for brain DTI

Using covarianceand Euclidean distance Using MND distance



Human and Robot
Model Identification



Inertial parameter identification

Dynamics:

Ja

T=T— (Q)Fext
= M(q,®)4 + b(q,q, P)
=T1(q,q,4) - ®

= Need to identify mass-inertial
parameters O,

= @ s linear with respect to the
dynamics.




Rigid body mass-inertial properties

« Clearlym >0 and . > 0

= The fact that I, > 0 is necessary but
not sufficient: Because mass density {c}
is non-negative everywhere, the !
following must also hold: :
).1 + /12 > /13 ‘i,mg’

A, + A > Ay _ o

Ay + 2> Ay I I
where 1, 1,, 15 are the eigenvalues I =17 127 17
of I. (so-called triangle inequality [X7 Ig/z |77

relation for rigid body inertias)



Rigid body mass-inertial properties

For the purposes of dynamic
calibration it is more convenient to
identify the inertia parameters with
respect to a body frame {b}, i.e., the
Six parameters associated with

I, the three parameters associated
with h;, and the mass m, resulting
in a total of 10 parameters, denoted
¢ € R1?, per rigid body.

Xy XZ

yy yz

Yz ZZ
Ib Ib




Rigid body mass-inertial properties

Wensing et al (2017) showed that Traversaro’s sufficiency
conditions are equivalent to the following:

S, hy

E ]:R4-X4-
hy m

P(¢) =

is positive definite (i.e. P(¢p) € P(4)), where
Sy, = [ xxTp(x)dV = %tr(lb) 1 =1

with p(x) the mass density function.



Inertial parameter identification

- Let ¢; € RV be the inertial parameters for link i, and

b = [¢1'°"1¢N] e ROV,

= Sampling the dynamics at T time instances, the identification
problem reduces to a least-squares problem:

A-&=beR™

where 4 =

= @ should also satisfy

P(¢;) >0,i=1,-

T(q(t),q(t2), G(t)) € R™AV| o]

T(q(tr), 4(tr), (tr)) € RPN | [T

and b =

,N.

#(t;) € R™|

T(tr) € R™

|

by

|



Geometryof A- & = b

Find @ in M™ = P(4)" closest to each of the hyperplanes H; =
{x Lajx = bi}. Implies the need for a distance metric d(-,-) on O.

3, "N -
/\ min ZWl d((b(b) ty: d((b (IDO)

CD{CDL}I 1 1= regularlzatlon
term

oD : s.t.@ie}[i , i=1,---,mk
(\ MM =P
®; : Projection of ® onto H; (i = 1,:--,mT)
@, : Nominal values (from, e.g., CAD
\/ orstatistical data)
Homk




Geometry of ordinary least squares
- For Standard Euclidean metric on @ : d(®, ®) = ||® — @|

Ordinary least squares

~ 12
mqinllA(b — b|I? + y||[® — Dl
cI)3 —H;, ;egulafizatioﬁ
—term
> with closed-form solution ®X° = (ATA4 + yI)~1

(ATb + y®,) is equivalent to the following :

M™ = P4)" min ZIIalII ”CD CI)” +V”CD CDOH
c1>{c1>l}

i=1 = regularlzatlon
. term
S.t.q)i (S j—[i p [ = 1,---,mk
i ®; : Euclidean Projection of ® onto H;

®,, : Prior value



Using geodesic distance on P(n)

= Geodesic distance based least-squares solution:

< dagn(®,8) = X7, dpiay (P(0), P(8)))

mk
2
min zwl dyen (@, D; ) + ydaen (@, Dy)
i=1 =1 regularlzatwnJ
—term

S.t.EISi S j’[i, [ = 1,---,mk

®; : Geodesic Projection of ® onto H;

®,, : Prior value




squares with LMI
Geodesic
distance on P(n)

Ordinary least-

3

=3
Mass deviations
Mass deviations

Prior




Machine Learning



Manifold hypothesis

= Consider vector representation of data, e.g., an image, as x € R”

= Meaningful data lie on a d-dim. manifold in R?, d « D
" Ex) image of number 7’

x € RP

7




Manifold learning and dimension reduction

= Given data {x;}i=1...n, X; € RP, find a map f from data space to
lower dimensional space while minimizing a global measure of

distortion:

= Existing methods

.« o, JJEIER

[ [
» usually R™, n « D

* Linear methods: PCA (Principal Component Analysis), MDS (Multi-

Dimensional Scaling), ...

* Nonlinear methods (manifold learning): LLE (Locally Linear Embedding),
Isomap, LE (Laplacian Eigenmap), DM (Diffusion Map), ...



Coordinate-Invariant Distortion Measures

= Consider a smooth map f: M — NN between two compact
Riemannian manifolds

= (M, g): local coord. x = (x4, **, Xy, ), Riemannain metric G = (g;;)
= (W, h): local coord. y = (¥q,**, ¥n), Riemannian metric H = (hyp)

" |sometry

* Map preserving length, angle, and volume - the ideal case of no distortion

* If dim(M) < dim(V), fgcs an isometry when J(x) TH(f(x))J(x) = G(x) for
all x € M, where ] = (af_) e RVXM

oxt

Afx: TeM - Tr N is the
differential of f: M - N




Coordinate-Invariant Distortion Measures

= Comparing pullback metric JTHJ (p) to G (p)

H({f ()

= Let Ay, -, A,, berootsof det(JTH] —AG) =0
(A4, -+, A4;; = 1 inthe case of isometry)
= g(A4, '+, Apy) denote any symmetric function, e.g., a(A4, -+, 4p,) = Z?;li 14; — 1]|2

= Global distortion measure

j o(Aq, -, Ay)Vdet G dxt - dx™
M



Harmonic Maps

= Assume a(A4, -+, 1) = X1t A;, and boundary conditions dN = f(0M)
are given

" Define the global distortion measure as

N~ S
D(f) = JTT(]TH]G_l)\/detG dxt---dx
i \ M
= Extremals of D(f) are known as harmonic maps
= Variational equation (for a=1,--,n)
of ; ofF afy
ZZ\/det Ox! (E)xf detG ) ;VZ ]Fﬁy dxi dxJ

where gV is (i, j) entry of G2, Fﬁy denote the Christoffel symbols of the second kind

" Physical interpretation: Wrap marble (V') with rubber (M) (Harmonic
maps correspond to elastic equilibria)



Examples of Harmonic Maps

= Lines (f:[0,1] = [0,1])
* D(f) = folfzdt f(0)=0t

.f:()

= Geodesics (f:[0,1] —» V)
“D(f) = [, fTHfdt

_azfe ra drfar? _
dt2 +Zﬁ 121’ 1 1gy dt dt

= Laplace’s equation on R? (f: R? -» R)
- V2f =0
* Harmonic functions

= 2R Spherical mechanism (f: T2 — S?)
= ds? = e;du? + e,dus, €16, = 1

= D(f) = n2(eq + 26,), €F =V2,€5 = 1//2




Harmonic Maps and Robot Kinematics

= Open chain planar mechanism (f: T™ — SE(2))
m f(xl’...’xn) — MeAlxl ...eAnxn
= D(f) = (L4 + 215 + -+ nl2)d + nc

= Optimal link length: (L%, -+, L3,) = (1 L '";%)

= 3R Spherical mechanism (f: T3 — SO(3))
= f(xq,%y,x3) = eA1¥1g42¥2043%3
= D(f) isinvariant to a, 8
= Workspace volume W (f) = sin a sin £ Volume(SO(3))
“a =90° L = 90° maximize the workspace volume

3-link spherical wrist mechanism




Taxonomy of Manifold Learning Algorithms

G ! Volume :
M : : Constraint
(inverse pseudo-metric) form
LLE T m
B . . ]RD AxAx
(Locally oun(':le'd reglonin. R?  (Axis local reconstruction error obtained I Z A p(x)dx j FOOf)Tp(x)dx =1
Linear containing data points . R i
Embedding) when running the algorithm) =
LE [ derere@Tped =1
(Laplacian ~ Same as above R4 f k(x,2)(x — z)(x — 2) " p(2)dz 1 Z A p(x)dx Y
Eigenmap) M0Be () = (dC) = [y, 0 KO 2)p(2)d2)
DM Uk
(Diffusion ~ Same as above R4 f k(x,z)(x — z)(x — z)Tdz I Z A ldx f fOf)Tdx =1
Map) MNBe(x) = M

Manifold learning algorithms such as LLE, LE, DM share a similar k(x,y) is a kernel function usually chosen by the user
llx—z|1?

objective as harmonic maps while having equality constraint to Using heat kernel k(x,y) = (4h)~%/2 exp(— e
avoid trivial solution f = const. € R4 gives a way to estimate the Laplace-Beltrami operator



Example: Swiss roll (diffusion map)

Diffusion map

Swiss roll data
embedding

(2-dim manifold in 3-dim space)

O : data points

60

n
40 50 60 70 80 90 100

10 Flattened swiss roll

20 30 40




Example: Swiss roll (geometric distortion)

Minimum distortion

results

Swiss roll data

(2-dim manifold in 3-dim space) 1

2

o(d) = X215 114 — 1117

O : data points

60

50 I

w
=]

Harmonic mapping +
1
o(A) = Ty 14 — 111
for boundary points

"' o

. F 3

n
20 30 40 50 60 0 80 20 100

Flattened swiss roll

.
* o 88 Sg

. ® : boundary points




Example: Faces

heading
angle

20

Embedding
coordinate

Original face
image located
on embedding

coordinates
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Concluding Remarks



Concluding Remarks

= Geometric methods have unquestionably been effective
in solving a wide range of problems in robotics

= Many problems in perception, planning, control,
learning, and other aspects of robotics can be reduced

to a geometric problem, and geometric methods offer a
powerful set of coordinate-invariant tools for their

solution.
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