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Ideas and methods from differential geometry and Lie groups have played a 
crucial role in establishing the scientific foundations of robotics, and more than 
ever, influence the way we think about and formulate the latest problems in 
robotics.  In this talk I will trace some of this history, and also highlight some 
recent developments in this geometric line of inquiry. The focus for the most part 
will be on robot mechanics, planning, and control, but some results from vision 
and image analysis, and human modeling, will be presented.  I will also make the 
case that many mainstream problems in robotics, particularly those that at some 
stage involve nonlinear dimension reduction techniques or some other facet of 
machine learning, can be framed as the geometric problem of mapping one 
curved space into another, so as to minimize some notion of distortion.  A
Riemannian geometric framework will be developed for this distortion 
minimization problem, and its generality illustrated via examples from robot 
design to manifold learning.

Abstract



Outline
 A survey of differential geometric methods in robotics:
⁃A retrospective critique
⁃ Some recent results and open problems

 Problems and case studies drawn from:
⁃ Kinematics and path planning
⁃Dynamics and motion optimization
⁃Vision and image analysis
⁃Human and robot modeling
⁃Machine learning
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A

Shortest path on globe ≠  shortest path on map
North and south poles map to lines of latitude

Why geometry matters



2-D maps galore



[Example] The average of three points on a circle
 Cartesian coordinates:

 Polar coordinates:
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Why geometry matters

-

Result depends on the local coordinates used



Determinant 
not preserved 

Determinant 
preserved 

 Arithmetic mean

[Example] The average of two symmetric positive-definite 
matrices:

 Intrinsic mean

Why geometry matters

𝑃𝑃0 = 1 0
0 7 , 𝑃𝑃1 = 7 0

0 1

𝑃𝑃 = 4 0
0 4

𝑃𝑃𝑃 = 7 0
0 7 𝑃𝑃 = 𝑎𝑎 𝑏𝑏

𝑏𝑏 𝑐𝑐



Nigel: The numbers all go to eleven. Look, right across 
the board, eleven, eleven, eleven and...

Marty: Oh, I see. And most amps go up to ten?
Nigel: Exactly.
Marty: Does that mean it's louder? Is it any louder?
Nigel: Well, it's one louder, isn't it? It's not ten. You 

see, most blokes, you know, will be playing at ten. 
You're on ten here, all the way up, all the way up, 
all the way up, you're on ten on your guitar. 
Where can you go from there? Where?

Marty: I don't know.
Nigel: Nowhere. Exactly. What we do is, if we need that 

extra push over the cliff, you know what we do?
Marty: Put it up to eleven.
Nigel: Eleven. Exactly. One louder.

This is Spinal Tap  (1984, Rob Reiner)

Marty: Why don't you make ten a little louder, make 
that the top number and make that a little louder?

Nigel: These go to eleven.



The unit two-sphere is parametrized as
Spherical coordinates:

Freshman calculus revisited

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 1.

x = cos 𝜃𝜃 sin𝜙𝜙
y = sin 𝜃𝜃 sin𝜙𝜙
𝑧𝑧 = cos 𝜙𝜙

Given a curve                  on the 
sphere, its incremental arclength is

(𝑥𝑥 𝑡𝑡 ,𝑦𝑦 𝑡𝑡 , 𝑧𝑧 𝑡𝑡 )

𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 = 𝑑𝑑𝜙𝜙2 + sin2 𝜙𝜙 𝑑𝑑𝜃𝜃2



 Length of 

 Area of

Freshman calculus revisited

= �
𝐴𝐴

sin 𝜙𝜙 𝑑𝑑𝜙𝜙 𝑑𝑑𝜃𝜃

= �
0

𝑇𝑇
𝜙̇𝜙2 + 𝜃̇𝜃2sin 𝜙𝜙 𝑑𝑑𝑡𝑡

Calculating lengths and areas on the 
sphere using spherical coordinates:



Manifolds

Manifold ℳ

local coordinates x

*Invertible with a differentiable inverse. Essentialy, one can be smoothly deformed into the other.

A differentiable manifold is a space that is locally 
diffeomorphic* to Euclidean space (e.g., a multidimensional 
surface)



Riemannian metrics

𝑑𝑑𝑑𝑑2 = �
𝑖𝑖

�
𝑗𝑗

𝑔𝑔𝑖𝑖𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗

= 𝑑𝑑𝑑𝑑𝑇𝑇𝐺𝐺 𝑥𝑥 𝑑𝑑𝑑𝑑

A Riemannian metric is an inner product defined on 
each tangent space that varies smoothly over ℳ

𝐺𝐺 𝑥𝑥 ∈ ℝ𝑚𝑚×𝑚𝑚

symmetric positive-definite



Calculus on Riemannian manifolds

= �⋯�
𝒱𝒱

det 𝐺𝐺(𝑥𝑥) 𝑑𝑑𝑑𝑑1 ⋯𝑑𝑑𝑑𝑑𝑚𝑚

 Volume of a subset 𝒱𝒱 of ℳ:
Volume = ∫𝒱𝒱 𝑑𝑑𝑑𝑑

= �
0

𝑇𝑇
𝑥̇𝑥 𝑡𝑡 𝑇𝑇𝐺𝐺 𝑥𝑥 𝑡𝑡 𝑥̇𝑥 𝑡𝑡 𝑑𝑑𝑑𝑑

 Length of a curve 𝐶𝐶 on ℳ:

Length = �
𝐶𝐶
𝑑𝑑𝑑𝑑



Lie groups
 A manifold that is also an algebraic group is a Lie group
 The tangent space at the identity is the Lie algebra ℊ.
 The exponential map exp: ℊ → 𝒢𝒢

acts as a set of local coordinates for 𝒢𝒢
 [Example] GL(n), the set of 𝑛𝑛 × 𝑛𝑛

nonsingular real matrices, is a 
Lie group under matrix multiplication.
 Its Lie algebra gl(n) is ℝ𝑛𝑛×𝑛𝑛.



 Mappings may be in complicated parametric form
 Sometimes the manifolds are unknown or changing
 Riemannian metrics must be specified on one or both spaces
 Noise models on manifolds may need to be defined

Robots and manifolds

𝑑𝑑𝑑𝑑2 = �
𝑖𝑖

�
𝑗𝑗

𝑔𝑔𝑖𝑖𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗

Joint Configuration 
Space

local coordinates

forward 
kinematics

Task Space

local coordinates

𝑑𝑑𝑑𝑑2 = �
𝛼𝛼

�
𝛽𝛽

ℎ𝛼𝛼𝛼𝛼 𝑦𝑦 𝑑𝑑𝑦𝑦𝛼𝛼𝑑𝑑𝑦𝑦𝛽𝛽



Kinematics and 
Path Planning



Minimal geodesics on Lie groups
Let 𝒢𝒢 be a matrix Lie group with Lie algebra ℊ, and let  
〈 ⋅ , ⋅ 〉 be an inner product on ℊ. The (left-invariant) 
minimal geodesic between 𝑋𝑋0,𝑋𝑋1 ∈ 𝒢𝒢 can be found by 
solving the following optimal control problem:

min
𝑈𝑈 𝑡𝑡

�
0

1
〈𝑈𝑈 𝑡𝑡 ,𝑈𝑈 𝑡𝑡 〉𝑑𝑑𝑑𝑑

Subject to 𝑋̇𝑋 = 𝑋𝑋𝑋𝑋,𝑋𝑋(𝑡𝑡) ∈ 𝒢𝒢, 𝑈𝑈(𝑡𝑡) ∈ ℊ, with boundary 
condition 𝑋𝑋 0 = 𝑋𝑋0,𝑋𝑋 1 = 𝑋𝑋1. 



Minimal geodesics on Lie groups
For the choice 〈𝑈𝑈,𝑉𝑉〉 = Tr(𝑈𝑈𝑇𝑇𝑉𝑉) , the solution must satisfy

𝑋̇𝑋 = 𝑋𝑋𝑋𝑋
𝑈̇𝑈 = 𝑈𝑈𝑇𝑇𝑈𝑈 − 𝑈𝑈𝑈𝑈𝑇𝑇 = 𝑈𝑈𝑇𝑇 ,𝑈𝑈 .

If the objective function is replaced by ∫0
1 𝑈̇𝑈 , 𝑈̇𝑈 𝑑𝑑𝑑𝑑, the 

solution must satisfy  𝑋̇𝑋 = 𝑋𝑋𝑋𝑋 and 
𝑈⃛𝑈 = 𝑈𝑈𝑇𝑇, 𝑈̈𝑈 .

Minimal geodesics, and minimum acceleration paths, can be 
found on various Lie groups by solving the above two-point 
boundary value problems. For SO(n) and SE(n) the minimal 
geodesics are particularly simple to characterize.



Distance metrics on SE(3)

𝑑𝑑 𝑋𝑋1,𝑋𝑋2 = distance between 𝑋𝑋1 and 𝑋𝑋2



Distance metrics on SE(3)

If 𝑑𝑑 𝑋𝑋1′,𝑋𝑋2′ = 𝑑𝑑 𝑈𝑈𝑈𝑈1,𝑈𝑈𝑈𝑈2 =𝑑𝑑 𝑋𝑋1,𝑋𝑋2 for all U ∈ 𝑆𝑆𝑆𝑆(3),
𝑑𝑑 � ,� is a left-invariant distance metric.



Distance metrics on SE(3)

If 𝑑𝑑 𝑋𝑋1′,𝑋𝑋2′ = 𝑑𝑑 𝑋𝑋1𝑉𝑉,𝑋𝑋2𝑉𝑉 =𝑑𝑑 𝑋𝑋1,𝑋𝑋2 for all V ∈ 𝑆𝑆𝑆𝑆(3),
𝑑𝑑 � ,� is a right-invariant distance metric.



Distance metrics on SE(3)

If 𝑑𝑑 𝑋𝑋1′,𝑋𝑋2′ = 𝑑𝑑 𝑈𝑈𝑋𝑋1𝑉𝑉,𝑈𝑈𝑋𝑋2𝑉𝑉 =𝑑𝑑 𝑋𝑋1,𝑋𝑋2 for all U, V ∈ 𝑆𝑆𝑆𝑆(3),
𝑑𝑑 � ,� is a bi-invariant distance metric.



 Bi-invariant metrics on SO(3) exist: some simple ones are
𝑑𝑑 𝑅𝑅1,𝑅𝑅2 = || log 𝑅𝑅1𝑇𝑇𝑅𝑅2 || = 𝜙𝜙 ∈ [0,𝜋𝜋]

𝑑𝑑 𝑅𝑅1,𝑅𝑅2 = 𝑅𝑅1 − 𝑅𝑅2 = 3 − 𝑇𝑇𝑇𝑇(𝑅𝑅1𝑇𝑇𝑅𝑅2) = 1 − cos 𝜙𝜙

 No bi-invariant metric exists on SE(3)
 Left- and right-invariant metrics exist on SE(3): a simple 

left-invariant metric is 𝑑𝑑 𝑋𝑋1,𝑋𝑋2 = 𝑑𝑑 𝑅𝑅1,𝑅𝑅2 + 𝑝𝑝1 − 𝑝𝑝2
 Any distance metric on SE(3) depends on the choice of 

length scale for physical space

Some facts about distance metrics on SE(3)



 (Too) many papers on SE(3) distance metrics have been 
written!
 Robots are doing fine even without bi-invariance (but make 

sure the metric you use is left-invariant)
 Notwithstanding J. Duffy’s claims about “The fallacy of 

modern hybrid control theory that is based on “orthogonal 
complements” of twist and wrench spaces,”  J. Robotic 
Systems, 1989, hybrid force-position control seems to be 
working well.

Remarks



 The product-of-exponentials (PoE) formula for open kinematic 
chains (Brockett 1989) puts on a more sure footing the classical 
screw-theoretic tools for kinematic modeling and analysis:

𝑇𝑇 = 𝑒𝑒 𝑆𝑆1 𝜃𝜃1 ⋯ 𝑒𝑒 𝑆𝑆𝑛𝑛 𝜃𝜃𝑛𝑛𝑀𝑀
 Some advantages: no link frames needed, intuitive physical meaning, 

easy differentiation, can apply well-known machinery and results of 
general matrix Lie groups, etc.
 It is mystifying to me why the PoE formula is not more widely taught 

and used, and why people still cling to their Denavit-Hartenberg
parameters.

Robot kinematics: modern screw theory



Some relevant robotics textbooks
Targeted to upper-level undergraduates, 
can be complemented by more advanced 
textbooks like A Mathematical Introduction 
to Robotic Manpulation (Murray, Li, Sastry) 
and Mechanics of Robot Manipulation
(Mason). Free PDF available at
http://modernrobotics.org



Closed chain kinematics

 Differential geometric methods have 
been especially useful in their analysis: 
representing the forward kinematics 
𝑓𝑓 𝑀𝑀,𝑔𝑔 → 𝑁𝑁,ℎ as a mapping between 
Riemannian manifolds, manipulability
and singularity analysis can be 
performed via analysis of the pullback 
form (in local coordinates, 𝐽𝐽𝑇𝑇𝐻𝐻𝐻𝐻𝐺𝐺−1).

 Closed chains typically have curved configuration spaces, 
and can be under- or over-actuated.  Their singularity 
behavior is also more varied and subtle.



Dmitry Berenson et al, "Manipulation planning on constraint manifolds," ICRA 2009.

Path planning on constraint manifolds

Path planning for robots 
subject to holonomic 
constraints (e.g., closed 
chains, contact conditions). 
The configuration space is 
a curved manifold whose 
structure we do not 
exactly know in advance.



A simple RRT sampling-based algorithm

Start node

Goal node

Random 
node

Constraint manifold



A simple RRT sampling-based algorithm

Start node

Goal node

Nearest
neighbor
node

Random 
node

Constraint manifold



Start node

Goal node

Nearest
neighbor
node

Random 
node

Constraint manifold

A simple RRT sampling-based algorithm



Start node

Goal node

qs4
reached

qg
reached

Constraint manifold

A simple RRT sampling-based algorithm



Tangent Bundle RRT (Kim et al 2016)

Tangent Bundle RRT: An RRT algorithm for planning on curved 
configuration spaces:

- Trees are first propagated on the tangent bundle
- Local curvature information is used to grow the tangent space 

trees to an appropriate size.

Start node

Goal node

New node

Nearest neighbor
node



Tangent Bundle RRT

Start node

Goal node

Constraint manifold

Initializing
- Start and goal nodes assumed to be on constraint manifold.
- Tangent spaces are constructed at start and goal nodes.



Tangent Bundle RRT

Start node

Goal node

Random node

Constraint manifold

New node

New node

Random sampling on tangent spaces:
- Generate a random sample node on a tangent space.
- Find the nearest neighbor node in the tangent space and take a 

single step of fixed size toward random target node.
- Find the nearest neighbor node on the opposite tree and then 

extend tree via tangent space.



Tangent Bundle RRT

Goal node

Random node

Constraint manifold

Start node

New node

New node

Creating a new tangent space:
- When the distance to the constraint manifold exceeds a certain 

threshold, project the extended node to the constraint manifold 
and create a new bounded tangent space.



Tangent Bundle RRT

Start node

Goal node

New node

Nearest neighbor
node

Select a tangent space using a size-biased function (roulette 
selection): For each tangent space, assigned a fitness value that is
- proportional to the size of the tangent space and,
- Inversely proportional to the number of nodes belonging to the 

tangent space.



Tangent bundle RRT
Constructing a bounded tangent space:
 Use local curvature information to find the 

principal basis of the tangent space, and to 
bound the tangent space domain.

 Principal curvatures and principal vectors 
can be computed from the second 
fundamental form of the constraint 
manifold (details need to be worked out if 
there is more than one normal direction)

 If the principal curvatures are close to zero, 
the manifold is nearly flat, and thus 
relatively larger steps can be taken along 
the corresponding principal directions



Tangent bundle RRT
Q: Is the extra computation and bookkeeping worth it?
A: It’s highly problem-dependent, but for higher-dimensional 
systems, it seems so.



Planning on Foliations



Planning on Foliations



Planning on Foliations



Planning on Foliations



Planning on Foliations



Planning on Foliations



Release 
posture

Re-grasp 
posture

Jump motion

Planning on Foliations



Leaf

Planning on Foliations



Planning on Foliations



Planning on Foliations

Foliation, ℱ



Planning on Foliations

Connected path

Jump path

Connected path



Planning on Foliations (J Kim et al 2016)



Planning on Foliations



Dynamics and 
Motion Optimization



B. Armstrong, O. Khatib, J. Burdick, “The explicit dynamic model and 
inertial parameters of the Puma 560 Robot arm,”  Proc. ICRA, 1986.

PUMA 560 dynamics equations



PUMA 560 dynamics equations



PUMA 560 dynamics equations (page 2)



PUMA 560 dynamics equations (page 3)



- Recursive formulations of Newton-Euler dynamics 
already derived in early 1980s.

- Recursive formulations based on screw theory 
(Featherstone), spatial operator algebra (Rodriguez 
and Jain), Lie group concepts.

- Initialization:  𝑉𝑉0 = 𝑉̇𝑉0 = 𝐹𝐹𝑛𝑛+1 = 0
- For 𝑖𝑖 = 1 to 𝑛𝑛 do:

- 𝑇𝑇𝑖𝑖−1,𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑒𝑒S𝑖𝑖𝑞𝑞𝑖𝑖
- 𝑉𝑉𝑖𝑖 = Ad𝑇𝑇𝑖𝑖,𝑖𝑖−1 𝑉𝑉𝑖𝑖−1 + 𝑆𝑆𝑖𝑖 𝑞̇𝑞𝑖𝑖
- 𝑉̇𝑉𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑞̈𝑞𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑇𝑇𝑖𝑖,𝑖𝑖−1 𝑉̇𝑉𝑖𝑖−1 + [Ad𝑇𝑇𝑖𝑖,𝑖𝑖−1 𝑉𝑉𝑖𝑖−1 , 𝑆𝑆𝑖𝑖𝑞̇𝑞𝑖𝑖]

- For 𝑖𝑖 = 𝑛𝑛 to 1 do: 
- 𝐹𝐹𝑖𝑖 = Ad𝑇𝑇𝑖𝑖,𝑖𝑖−1

∗ 𝐹𝐹𝑖𝑖+1 + 𝐺𝐺𝑖𝑖𝑉̇𝑉𝑖𝑖ad𝑉𝑉𝑖𝑖
∗ 𝐺𝐺𝑖𝑖𝑉𝑉𝑖𝑖

- 𝜏𝜏𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑇𝑇𝐹𝐹𝑖𝑖

Recursive dynamics to the rescue



- Finite difference approximations of gradients (and Hessians) often 
lead to poor convergence and numerical instabilities.

- Derivation of recursive algorithms for analytic gradients and 
Hessians using Lie group operators and transformations:

The importance of analytic gradients



J.  Bobrow et al, ICRA Video Proceedings, 1999.

Maximum payload lifting



 Vision processing, object 
recognition, classification

 Sensing (joint, force, 
tactile, laser, sonar, etc.)

 Localization/SLAM
 Manipulation planning
 Control (arms, legs, torso, 

hands, wheels)
 Communication
 Task scheduling and 

planning

Things a robot must do (in parallel)
Robots are being asked to 
simultaneously do more and 
more with only limited resources 
available for computation, 
communication, memory, etc. 

Control laws and trajectories 
need to be designed in a way 
that minimizes the use of such 
resources.





 Control depends on both time and state
 Simplest control is a constant one
 Cost of control implementation (“attention”) is 

proportional to the rate at which the control changes with 
respect to state and time.
 A control that requires little attention is one that is robust 

to discretization of time and state

Measuring the cost of control



Given system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑡𝑡), consider the following 
controller cost:

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

2

+
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

2

dx dt

- A multi-dimensional calculus of variations problem 
(integral over both space and time)

- Existence of solutions not always guaranteed 

Brockett’s attention functional



Assuming control of the form 𝑢𝑢 = 𝐾𝐾 𝑡𝑡 𝑥𝑥 + 𝑣𝑣 𝑡𝑡 and 
state space integration is bounded, a minimum 
attention LQR control law* can be formulated as a 
finite-dimensional optimization problem:

min
𝑃𝑃𝑓𝑓,𝑄𝑄>0

𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑡𝑡0

𝑡𝑡𝑓𝑓
𝐾𝐾(𝑡𝑡) 2 + 𝑢̇𝑢∗ − 𝐾𝐾(𝑡𝑡) 𝑥̇𝑥∗ 2𝑑𝑑𝑑𝑑

𝑢𝑢 𝑥𝑥, 𝑡𝑡 = 𝐾𝐾 𝑡𝑡 𝑥𝑥 − 𝑥𝑥∗ 𝑡𝑡 + 𝑢𝑢∗ 𝑡𝑡
𝐾𝐾 𝑡𝑡 = −𝑅𝑅−1𝐵𝐵𝑇𝑇 𝑡𝑡 𝑃𝑃(𝑡𝑡)

−𝑃̇𝑃 = 𝑃𝑃𝑃𝑃 𝑡𝑡 + 𝐴𝐴𝑇𝑇 𝑡𝑡 − 𝑃𝑃𝑃𝑃 𝑡𝑡 𝑅𝑅−1𝐵𝐵𝑇𝑇 𝑡𝑡 𝑃𝑃 + 𝑄𝑄,𝑃𝑃 𝑡𝑡𝑓𝑓 = 𝑃𝑃𝑓𝑓

x*,u* are given, e.g., as the outcome of some offline optimization procedure or supplied by the user.

An approximate solution



Numerical experiments for a 2-dof arm catching a ball while 
tracking a minimum torque change trajectory:

Feedback gains increase with time
Feedforward inputs decrease with time

Feedback gain Feedforward input

Example: Robot ball catching



Vision and Image 
Analysis



 𝐴𝐴,𝐵𝐵,𝑋𝑋,𝑌𝑌 can be elements of 𝑆𝑆𝑆𝑆 3 or 𝑆𝑆𝑆𝑆 3

 𝐴𝐴,𝐵𝐵 are obtained from sensor measurements

 𝑋𝑋,𝑌𝑌 are unknowns to be determined.

Two-frame sensor calibration



Two-frame sensor calibration

 Given 𝑁𝑁 measurement pairs

 Find the optimal pair that minimizes the fitting criterion.



Two-frame sensor calibration

• are noisy; there does not exist any 

that perfectly satisfies

• Determine         that minimizes

noise
noise



Multimodal image volume registration:  Find optimal transformation 
that maximizes the mutual information between two image volumes.

Multimodal image registration

Detailed tissue structure 
provided by MRI (upper left) 
is combined with abnormal 
regions detected by PET 
(upper right).  The red regions 
in the fused image represent 
the anomalous regions.



Problem definition: 𝑇𝑇∗ = arg max
𝑇𝑇

𝐼𝐼(𝐴𝐴 𝑇𝑇𝑇𝑇 ,𝐵𝐵 𝑥𝑥 ) where 
 T is an element of some transformation group (SO(3), SE(3), 

SL(3) are widely used).
 𝑥𝑥 ∈ ℜ3 are the volume coordinates, 
 A,B are volume data,
 𝐼𝐼 ⋅,⋅ is the mutual information criterion, 

Evaluating the objective function is numerically expensive and 
analytic gradients are not available.  Instead, it is common to 
resort to direct search methods like the Nelder-Mead algorithm.

Multimodal image registration



The above reduce to an optimization problem on matrix Lie groups: 
 For the n-frame sensor calibration problem, the objective function reduces to 

the form ∑𝑖𝑖 𝑇𝑇𝑇𝑇(𝑋𝑋𝐴𝐴𝑖𝑖𝑋𝑋𝑇𝑇𝐵𝐵𝑖𝑖 − 𝑋𝑋𝐶𝐶𝑖𝑖). Analytic gradients and Hessians are 
available, and steepest descent along minimal geodesics seems to work quite 
well.

 In the multimodal image registration problem, Nelder-Mead can be generalized 
to the group by using minimal geodesics as the edges of the simplex.

 There is a well-developed literature on optimization on Lie groups, including 
generalizations of common vector space algorithms to matrix Lie groups and 
manifolds. 

Optimization on matrix Lie groups



Each voxel is a 3D multivariate normal distribution. The mean 
indicates the position, while the covariance indicates the 
direction of diffusion of water molecules. Segmentation of a 
DTI image requires a metric on the manifold of multivariate 
Gaussian distributions.

Diffusion tensor image segmentation



Using the standard approach of calculating distances on the means 
and covariances separately, and summing the two for the total 
distance, results in dist(a,b) = dist(b,c), which is unsatisfactory.

In this example, water 
molecules are able to move 
more easily in the x-axis 
direction.  Therefore, 
diffusion tensors (b) and (c) 
are closer than (a) and (b)

Geometry of DTI segmentation



An n-dimensional statistical manifold ℳ is a set of 
probability distributions parametrized by some smooth, 
continuously-varying parameter 𝜃𝜃 ∈ ℝ𝑛𝑛. 

𝑥𝑥

𝑥𝑥

𝜃𝜃1 ∈ ℝ𝑛𝑛
𝜃𝜃2 ∈ ℝ𝑛𝑛

𝑝𝑝(𝑥𝑥|𝜃𝜃1)

𝑝𝑝(𝑥𝑥|𝜃𝜃2)

(ℳ,𝑔𝑔)ℝ𝑛𝑛

Geometry of statistical manifolds



 The Fisher information defines a Riemannian metric 𝑔𝑔
on a statistical manifold ℳ:

𝑔𝑔𝑖𝑖𝑖𝑖 𝜃𝜃 = 𝔼𝔼𝑥𝑥 ~𝑝𝑝(.|𝜃𝜃)
𝜕𝜕 log 𝑝𝑝 𝑥𝑥 𝜃𝜃

𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕 log 𝑝𝑝 𝑥𝑥 𝜃𝜃

𝜕𝜕𝜃𝜃𝑗𝑗

 Connection to KL divergence:
𝐷𝐷𝐾𝐾𝐾𝐾 𝑝𝑝 . 𝜃𝜃 ||𝑝𝑝 . 𝜃𝜃 + 𝑑𝑑𝑑𝑑 =

1
2
𝑑𝑑𝜃𝜃𝑇𝑇𝑔𝑔 𝜃𝜃 𝑑𝑑𝑑𝑑 + 𝑜𝑜( 𝑑𝑑𝑑𝑑 2)

Geometry of statistical manifolds



 The manifold of Gaussian distributions  𝒩𝒩 𝑛𝑛
𝒩𝒩 𝑛𝑛 = 𝜃𝜃 = 𝜇𝜇, Σ 𝜇𝜇 ∈ ℝ𝑛𝑛,Σ ∈ 𝒫𝒫(𝑛𝑛)} , 
where 𝒫𝒫 𝑛𝑛 = 𝑃𝑃 ∈ ℝ𝑛𝑛×𝑛𝑛 𝑃𝑃 = 𝑃𝑃𝑇𝑇 ,𝑃𝑃 ≻ 0}

 Fisher information metric on 𝒩𝒩 𝑛𝑛
𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝜃𝜃𝑇𝑇𝑔𝑔 𝜃𝜃 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝜇𝜇𝑇𝑇Σ−1𝑑𝑑𝑑𝑑 +

1
2
𝑡𝑡𝑡𝑡 Σ−1𝑑𝑑Σ 2

 Euler-Lagrange equations for geodesics on 𝒩𝒩 𝑛𝑛
𝑑𝑑2𝜇𝜇
𝑑𝑑𝑡𝑡2

− 𝑑𝑑Σ
𝑑𝑑𝑑𝑑
Σ−1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 0

𝑑𝑑2Σ
𝑑𝑑𝑡𝑡2

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝜇𝜇𝑇𝑇

𝑑𝑑𝑑𝑑
− 𝑑𝑑Σ

𝑑𝑑𝑑𝑑
Σ−1 𝑑𝑑Σ

𝑑𝑑𝑑𝑑
= 0

Geometry of Gaussian distributions



 Geodesic Path on 𝒩𝒩 2

𝜇𝜇0 = 0
0 , Σ0 = 1 0

0 0.1 ,             𝜇𝜇1 = 1
1 , Σ1 = 0.1 0

0 1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Geometry of Gaussian distributions



 Fisher information metric on 𝒩𝒩 𝑛𝑛 with fixed mean 𝜇̅𝜇
𝑑𝑑𝑠𝑠2 =

1
2
𝑡𝑡𝑡𝑡 Σ−1𝑑𝑑Σ 2

Affine-invariant metric on 𝓟𝓟 𝒏𝒏
 Invariant under general linear group 𝐺𝐺𝐺𝐺(𝑛𝑛) action 

Σ → 𝑆𝑆𝑇𝑇Σ𝑆𝑆, 𝑆𝑆 ∈ 𝐺𝐺𝐺𝐺 𝑛𝑛
which implies coordinate invariance.
 Closed-form geodesic distance

𝑑𝑑𝒫𝒫(𝑛𝑛) Σ1, Σ2 = �
𝑖𝑖=1

𝑛𝑛

(log 𝜆𝜆𝑖𝑖(Σ1−1Σ2))2
1/2

Restriction to covariances



Using covarianceand Euclidean distance Using MND distance

Results of segmentation for brain DTI



Human and Robot 
Model Identification



 Need to identify mass-inertial 
parameters Φ.
Φ is linear with respect to the 

dynamics.

Inertial parameter identification
Dynamics: 

𝜏̂𝜏 = 𝜏𝜏 − 𝐽𝐽𝑇𝑇 𝑞𝑞 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒
= 𝑀𝑀 𝑞𝑞,Φ 𝑞̈𝑞 + 𝑏𝑏 𝑞𝑞, 𝑞̇𝑞,Φ

= Γ 𝑞𝑞, 𝑞̇𝑞, 𝑞̈𝑞 ⋅ Φ



Rigid body mass-inertial properties

𝐼𝐼𝑐𝑐 =
𝐼𝐼𝑐𝑐𝑥𝑥𝑥𝑥 𝐼𝐼𝑐𝑐

𝑥𝑥𝑦𝑦

𝐼𝐼𝑐𝑐
𝑥𝑥𝑦𝑦 𝐼𝐼𝑐𝑐

𝑦𝑦𝑦𝑦
𝐼𝐼𝑐𝑐𝑥𝑥𝑧𝑧

𝐼𝐼𝑐𝑐
𝑦𝑦𝑦𝑦

𝐼𝐼𝑐𝑐𝑥𝑥𝑧𝑧 𝐼𝐼𝑐𝑐
𝑦𝑦𝑦𝑦 𝐼𝐼𝑐𝑐𝑧𝑧𝑧𝑧

𝑐𝑐

𝑚𝑚𝑔⃗𝑔

 Clearly 𝑚𝑚 > 0 and 𝐼𝐼𝑐𝑐 > 0
 The fact that 𝐼𝐼𝑐𝑐 > 0 is necessary but 

not sufficient: Because mass density 
is non-negative everywhere, the 
following must also hold:

𝝀𝝀𝟏𝟏 + 𝝀𝝀𝟐𝟐 > 𝝀𝝀𝟑𝟑
𝝀𝝀𝟐𝟐 + 𝝀𝝀𝟑𝟑 > 𝝀𝝀𝟏𝟏
𝝀𝝀𝟑𝟑 + 𝝀𝝀𝟏𝟏 > 𝝀𝝀𝟐𝟐

where 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 are  the eigenvalues 
of 𝐼𝐼𝑐𝑐 (so-called triangle inequality 
relation for rigid body inertias)



Rigid body mass-inertial properties

ℎ𝑏𝑏 = 𝑚𝑚 ⋅ 𝑝𝑝𝑏𝑏

𝐼𝐼𝑏𝑏 =
𝐼𝐼𝑏𝑏𝑥𝑥𝑥𝑥 𝐼𝐼𝑏𝑏

𝑥𝑥𝑦𝑦

𝐼𝐼𝑏𝑏
𝑥𝑥𝑦𝑦 𝐼𝐼𝑏𝑏

𝑦𝑦𝑦𝑦
𝐼𝐼𝑏𝑏𝑥𝑥𝑧𝑧

𝐼𝐼𝑏𝑏
𝑦𝑦𝑦𝑦

𝐼𝐼𝑏𝑏𝑥𝑥𝑧𝑧 𝐼𝐼𝑏𝑏
𝑦𝑦𝑦𝑦 𝐼𝐼𝑏𝑏𝑧𝑧𝑧𝑧

𝑏𝑏

𝑐𝑐𝑝𝑝𝑏𝑏

𝑚𝑚𝑔⃗𝑔

For the purposes of dynamic 
calibration it is more convenient to 
identify the inertia parameters with 
respect to a body frame {b}, i.e., the 
six parameters associated with 
𝐼𝐼𝑏𝑏 , the three parameters associated 
with  ℎ𝑏𝑏, and the mass 𝑚𝑚, resulting 
in a total of 10 parameters, denoted 
𝜙𝜙 ∈ ℝ10, per rigid body. 



Wensing et al (2017) showed that Traversaro’s sufficiency 
conditions are equivalent to the following: 

𝑃𝑃 𝜙𝜙 =
𝑆𝑆𝑏𝑏 ℎ𝑏𝑏
ℎ𝑏𝑏𝑇𝑇 𝑚𝑚 ∈ ℝ4×4

is positive definite (i.e. 𝑃𝑃 𝜙𝜙 ∈ 𝒫𝒫(4)) , where
𝑆𝑆𝑏𝑏 = ∫ 𝑥𝑥𝑥𝑥𝑇𝑇𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

2
𝑡𝑡𝑡𝑡 𝐼𝐼𝑏𝑏 ⋅ 𝕝𝕝 − 𝐼𝐼𝑏𝑏

with 𝜌𝜌 𝑥𝑥 the mass density function.

Rigid body mass-inertial properties



 Let 𝜙𝜙𝑖𝑖 ∈ ℝ10 be the inertial parameters for link 𝑖𝑖, and 
Φ = 𝜙𝜙1,⋯ ,𝜙𝜙𝑁𝑁 ∈ ℝ10𝑁𝑁.

 Sampling the dynamics at T time instances, the identification 
problem reduces to a least-squares problem:

𝑨𝑨 ⋅ 𝜱𝜱 = 𝒃𝒃 ∈ ℝ𝑚𝑚𝑚𝑚

where 𝐴𝐴 =
Γ 𝑞𝑞(𝑡𝑡1 , 𝑞̇𝑞 𝑡𝑡1 , 𝑞̈𝑞(𝑡𝑡1)) ∈ ℝ𝑚𝑚×10𝑁𝑁

⋮
Γ 𝑞𝑞(𝑡𝑡𝑇𝑇 , 𝑞̇𝑞 𝑡𝑡𝑇𝑇 , 𝑞̈𝑞(𝑡𝑡𝑇𝑇)) ∈ ℝ𝑚𝑚×10𝑁𝑁

=
𝑎𝑎1𝑇𝑇
⋮

𝑎𝑎𝑚𝑚𝑚𝑚𝑇𝑇
and 𝑏𝑏 =

𝜏̂𝜏 𝑡𝑡1 ∈ ℝ𝑚𝑚

⋮
𝜏̂𝜏(𝑡𝑡𝑇𝑇) ∈ ℝ𝑚𝑚

=
𝑏𝑏1
⋮

𝑏𝑏𝑚𝑚𝑚𝑚

𝛷𝛷 should also satisfy
𝑷𝑷 𝝓𝝓𝒊𝒊 > 𝟎𝟎 , 𝒊𝒊 = 𝟏𝟏,⋯ ,𝑵𝑵.

Inertial parameter identification



Φ
ℳ𝑛𝑛 ≃ 𝒫𝒫 4 𝑛𝑛

ℝ10𝑛𝑛

ℋ2 ℋ3

ℋ1 ℋ𝑚𝑚𝑚𝑚

Find Φ in ℳ𝑛𝑛 ≃ 𝒫𝒫 4 𝑛𝑛 closest to each of the hyperplanes ℋ𝑖𝑖 =
𝑥𝑥 ∶ 𝑎𝑎𝑖𝑖𝑇𝑇𝑥𝑥 = 𝑏𝑏𝑖𝑖 . Implies the need for a distance metric 𝑑𝑑(⋅,⋅) on Φ.

Geometry of 𝑨𝑨 ⋅ 𝜱𝜱 = 𝒃𝒃

min
Φ, �Φ𝑖𝑖 i=1

mk
�
𝑖𝑖=1

𝑚𝑚𝑚𝑚

𝑤𝑤𝑖𝑖 ⋅ 𝑑𝑑 Φ, �Φ𝑖𝑖
2 + 𝛾𝛾 ⋅ 𝑑𝑑 Φ, �Φ0

2

regularization
term

s.t.�Φ𝑖𝑖 ∈ ℋ𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚𝑚𝑚

�Φ𝑖𝑖 : Projection of Φ onto ℋ𝑖𝑖 𝑖𝑖 = 1,⋯ ,𝑚𝑚𝑚𝑚
�Φ0 : Nominal values (from, e.g., CAD 
orstatistical data)



 For Standard Euclidean metric on Φ : 𝑑𝑑 Φ, �Φ = Φ− �Φ

Geometry of ordinary least squares

Φ
ℳ𝑛𝑛 ≃ 𝒫𝒫 4 𝑛𝑛

ℋ2 ℋ3

ℋ1 ℋ𝑚𝑚𝑚𝑚

ℝ10𝑛𝑛

Φ1

Φ2
Φ3

Φ𝑚𝑚𝑚𝑚

Φ0

Ordinary least squares
min
Φ

𝐴𝐴Φ − 𝑏𝑏 2 + 𝛾𝛾 Φ − �Φ0
2

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

with closed-form solution Φ𝐿𝐿𝐿𝐿 = 𝐴𝐴𝑇𝑇𝐴𝐴 + 𝛾𝛾𝛾𝛾 −1

(𝐴𝐴𝑇𝑇𝑏𝑏 + 𝛾𝛾Φ0) is equivalent to the following :

min
Φ, �Φ𝑖𝑖 i=1

mk
�
𝑖𝑖=1

𝑚𝑚𝑚𝑚

𝑎𝑎𝑖𝑖 2 Φ − �Φ𝑖𝑖
2 + 𝛾𝛾 Φ − �Φ0

2

regularization
term

s.t.�Φ𝑖𝑖 ∈ ℋ𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚𝑚𝑚
�Φ𝑖𝑖 : Euclidean Projection of Φ onto ℋ𝑖𝑖

�Φ0 : Prior value



 Geodesic distance based least-squares solution:

 𝑑𝑑ℳ𝑛𝑛 Φ, �Φ = ∑𝑗𝑗=1𝑛𝑛 𝑑𝑑𝒫𝒫 4 𝑃𝑃 𝜙𝜙𝑗𝑗 ,𝑃𝑃 �𝜙𝜙𝑗𝑗

Using geodesic distance on P(n)

min
Φ, �Φ𝑖𝑖 i=1

mk
�
𝑖𝑖=1

𝑚𝑚𝑚𝑚

𝑤𝑤𝑖𝑖 ⋅ 𝑑𝑑ℳ𝑛𝑛 Φ, �Φ𝑖𝑖
2 + 𝛾𝛾𝑑𝑑ℳ𝑛𝑛 Φ, �Φ0

2

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

s.t.�Φ𝑖𝑖 ∈ ℋ𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚𝑚𝑚

ℝ10𝑛𝑛

Φ
ℳ𝑛𝑛 ≃ 𝒫𝒫 4 𝑛𝑛

ℋ2 ℋ3

ℋ1 ℋ𝑚𝑚𝑚𝑚

Φ1

Φ2

Φ3

Φ𝑚𝑚𝑚𝑚

Φ0

�Φ𝑖𝑖 : Geodesic Projection of Φ onto ℋ𝑖𝑖

�Φ0 : Prior value



Example

Prior

Ordinary least-
squares with LMI

Geodesic 
distance on P(n)

Mass deviations

Mass deviations



Machine Learning



Manifold hypothesis
 Consider vector representation of data, e.g., an image, as 𝑥𝑥 ∈ ℝ𝐷𝐷

Meaningful data lie on a 𝑑𝑑-dim. manifold in ℝ𝐷𝐷, 𝑑𝑑 ≪ 𝐷𝐷
 Ex) image of number ‘7’

ℝ𝐷𝐷

⋮

𝑥𝑥 ∈ ℝ𝐷𝐷

A random vector in ℝ𝐷𝐷



Manifold learning and dimension reduction
Given data 𝑥𝑥𝑖𝑖 𝑖𝑖=1,⋯,𝑁𝑁, 𝑥𝑥𝑖𝑖 ∈ ℝ𝐷𝐷, find a map 𝑓𝑓 from data space to 

lower dimensional space while minimizing a global measure of 
distortion:

 Existing methods
 Linear methods: PCA (Principal Component Analysis), MDS (Multi-

Dimensional Scaling), …
 Nonlinear methods (manifold learning): LLE (Locally Linear Embedding), 

Isomap, LE (Laplacian Eigenmap), DM (Diffusion Map), …

𝑓𝑓
ℝ𝐷𝐷

usually ℝ𝑛𝑛, 𝑛𝑛 ≪ 𝐷𝐷

𝑥𝑥𝑖𝑖 ∈ ℝ𝐷𝐷
𝑓𝑓(𝑥𝑥𝑖𝑖) ∈ ℝ𝑛𝑛



Coordinate-Invariant Distortion Measures
 Consider a smooth map 𝑓𝑓:ℳ →𝒩𝒩 between two compact 

Riemannian manifolds
 (ℳ,𝑔𝑔): local coord. 𝑥𝑥 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑚𝑚), Riemannain metric 𝐺𝐺 = (𝑔𝑔𝑖𝑖𝑖𝑖)
 (𝒩𝒩,ℎ):  local coord. 𝑦𝑦 = (𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛),  Riemannian metric 𝐻𝐻 = (ℎ𝛼𝛼𝛼𝛼)

 Isometry
 Map preserving length, angle, and volume - the ideal case of no distortion
 If dim ℳ ≤ dim(𝒩𝒩), 𝑓𝑓 is an isometry when 𝑱𝑱 𝒙𝒙 ⊤𝑯𝑯(𝒇𝒇(𝒙𝒙))𝑱𝑱(𝒙𝒙) = 𝑮𝑮(𝒙𝒙) for 

all 𝑥𝑥 ∈ ℳ, where 𝐽𝐽 = 𝜕𝜕𝑓𝑓𝛼𝛼

𝜕𝜕𝑥𝑥𝑖𝑖
∈ ℝ𝑛𝑛×𝑚𝑚

𝑓𝑓

ℳ 𝒩𝒩

𝑝𝑝

𝑓𝑓(𝑝𝑝)

𝑞𝑞

𝑓𝑓(𝑞𝑞)
𝑣𝑣 𝑤𝑤

𝑑𝑑𝑓𝑓𝑝𝑝(𝑣𝑣)
𝑑𝑑𝑓𝑓𝑝𝑝(𝑤𝑤)𝑇𝑇𝑝𝑝ℳ

𝑇𝑇𝑓𝑓(𝑝𝑝)𝒩𝒩

𝑑𝑑𝑓𝑓𝑥𝑥:𝑇𝑇𝑥𝑥ℳ → 𝑇𝑇𝑓𝑓(𝑥𝑥)𝒩𝒩 is the 
differential of 𝑓𝑓:ℳ →𝒩𝒩



Coordinate-Invariant Distortion Measures
 Comparing pullback metric 𝐽𝐽⊤𝐻𝐻𝐻𝐻(𝑝𝑝) to 𝐺𝐺(𝑝𝑝)

 Let 𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚 be roots of det 𝐽𝐽⊤𝐻𝐻𝐻𝐻 − 𝜆𝜆𝜆𝜆 = 0
(𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚 = 1 in the case of isometry)
 𝜎𝜎(𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚) denote any symmetric function, e.g., 𝜎𝜎(𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚) = ∑𝑖𝑖=1𝑚𝑚 1

2
𝜆𝜆𝑖𝑖 − 1 2

 Global distortion measure

�
ℳ
𝜎𝜎(𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚) det𝐺𝐺 𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝑚𝑚

𝑓𝑓
𝑇𝑇𝑝𝑝ℳ 𝐺𝐺(𝑝𝑝)

𝐽𝐽𝑇𝑇𝐻𝐻𝐻𝐻(𝑝𝑝)

𝑝𝑝

ℳ

𝐻𝐻(𝑓𝑓(𝑝𝑝))

𝑓𝑓(𝑝𝑝)

𝑇𝑇𝑓𝑓(𝑝𝑝)𝒩𝒩

𝒩𝒩pullback metric



Harmonic Maps
 Assume 𝜎𝜎 𝜆𝜆1,⋯ , 𝜆𝜆𝑚𝑚 = ∑𝑖𝑖=1𝑚𝑚 𝜆𝜆𝑖𝑖, and boundary conditions  𝜕𝜕𝒩𝒩 = 𝑓𝑓(𝜕𝜕ℳ)

are given
 Define the global distortion measure as

𝐷𝐷 𝑓𝑓 = �
ℳ

𝑇𝑇𝑟𝑟 𝐽𝐽⊤𝐻𝐻𝐻𝐻𝐺𝐺−1 det𝐺𝐺 𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝑚𝑚

 Extremals of 𝐷𝐷 𝑓𝑓 are known as harmonic maps
 Variational equation (for 𝛼𝛼 = 1,⋯ ,𝑛𝑛)

�
𝑖𝑖=1

𝑚𝑚

�
𝑗𝑗=1

𝑚𝑚
1

det𝐺𝐺
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑓𝑓𝛼𝛼

𝜕𝜕𝑥𝑥𝑗𝑗
𝑔𝑔𝑖𝑖𝑖𝑖 det𝐺𝐺 + �

𝛽𝛽=1

𝑛𝑛

�
𝛾𝛾=1

𝑛𝑛

𝑔𝑔𝑖𝑖𝑖𝑖Γ𝛽𝛽𝛾𝛾
𝛼𝛼 𝜕𝜕𝑓𝑓𝛽𝛽

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑓𝑓𝛾𝛾

𝜕𝜕𝑥𝑥𝑗𝑗
= 0

where 𝑔𝑔𝑖𝑖𝑖𝑖 is (𝑖𝑖, 𝑗𝑗) entry of 𝐺𝐺−1, Γ𝛽𝛽𝛾𝛾
𝛼𝛼 denote the Christoffel symbols of the second kind

 Physical interpretation: Wrap marble (𝓝𝓝) with rubber (𝓜𝓜) (Harmonic 
maps correspond to elastic equilibria)

ℳ

𝒩𝒩 𝑓𝑓



Examples of Harmonic Maps
 Lines (𝑓𝑓: 0, 1 → [0, 1])
 𝐷𝐷 𝑓𝑓 = ∫0

1 ̇𝑓𝑓2𝑑𝑑𝑑𝑑
 ̈𝑓𝑓 = 0

 Geodesics (𝑓𝑓: 0, 1 → 𝒩𝒩)
 𝐷𝐷 𝑓𝑓 = ∫0

1 ̇𝑓𝑓⊤𝐻𝐻 ̇𝑓𝑓𝑑𝑑𝑑𝑑


𝑑𝑑2𝑓𝑓𝛼𝛼

𝑑𝑑𝑡𝑡2
+ ∑𝛽𝛽=1

𝑛𝑛 ∑𝛾𝛾=1𝑛𝑛 Γ𝛽𝛽𝛾𝛾
𝛼𝛼 𝑑𝑑𝑓𝑓𝛽𝛽

𝑑𝑑𝑑𝑑
𝑑𝑑𝑓𝑓𝛾𝛾

𝑑𝑑𝑑𝑑
= 0

 Laplace’s equation on ℝ2 (𝑓𝑓: ℝ2 → ℝ)
 𝛻𝛻2𝑓𝑓 = 0
 Harmonic functions

 2R Spherical mechanism (𝑓𝑓:𝑇𝑇2 → 𝑆𝑆2)
 𝑑𝑑𝑠𝑠2 = 𝜖𝜖1𝑑𝑑𝑢𝑢12 + 𝜖𝜖2𝑑𝑑𝑢𝑢22, 𝜖𝜖1𝜖𝜖2 = 1
 𝐷𝐷 𝑓𝑓 = 𝜋𝜋2(𝜖𝜖1 + 2𝜖𝜖2), 𝜖𝜖1∗ = 2, 𝜖𝜖2∗ = 1/ 2

𝑓𝑓 0 = 0 𝑓𝑓 1 = 1

𝒩𝒩

𝑓𝑓 0 = 𝑝𝑝
𝑓𝑓 1 = 𝑞𝑞

𝑢𝑢1

𝑢𝑢2



Harmonic Maps and Robot Kinematics
Open chain planar mechanism (𝑓𝑓:𝑇𝑇𝑛𝑛 → SE(2))
 𝑓𝑓 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 = 𝑀𝑀𝑒𝑒𝐴𝐴1𝑥𝑥1 ⋯ 𝑒𝑒𝐴𝐴𝑛𝑛𝑥𝑥𝑛𝑛
 𝐷𝐷 𝑓𝑓 = 𝐿𝐿12 + 2𝐿𝐿22 + ⋯+ 𝑛𝑛𝐿𝐿𝑛𝑛2 𝑑𝑑 + 𝑛𝑛𝑛𝑛
 Optimal link length: 𝐿𝐿1∗ ,⋯ , 𝐿𝐿𝑛𝑛∗ = (1, 1

2
, 1
3

,⋯ , 1
𝑛𝑛

)

 3R Spherical mechanism (𝑓𝑓:𝑇𝑇3 → SO(3))
 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = 𝑒𝑒𝐴𝐴1𝑥𝑥1𝑒𝑒𝐴𝐴2𝑥𝑥2𝑒𝑒𝐴𝐴3𝑥𝑥3
 𝐷𝐷 𝑓𝑓 is invariant to 𝛼𝛼,𝛽𝛽
 Workspace volume 𝑊𝑊 𝑓𝑓 = sin𝛼𝛼 sin𝛽𝛽 Volume(SO(3))
 𝛼𝛼 = 90°,𝛽𝛽 = 90° maximize the workspace volume

𝐴𝐴1

𝐴𝐴2
𝐴𝐴3

𝐿𝐿1 = 6

𝐿𝐿2 = 3
𝐿𝐿3 = 2

𝛼𝛼
𝛽𝛽

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝐴𝐴1

𝐴𝐴2

𝐴𝐴3

3-link finger example

3-link spherical wrist mechanism



Taxonomy of Manifold Learning Algorithms
ℳ 𝒩𝒩 𝑮𝑮−𝟏𝟏

(inverse pseudo-metric) 𝑯𝑯 𝝈𝝈(𝝀𝝀) Volume 
form Constraint

LLE
(Locally 
Linear 

Embedding)

Bounded region in ℝ𝐷𝐷

containing data points ℝ𝑑𝑑
Δ𝑥𝑥Δ𝑥𝑥⊤

(Δ𝑥𝑥 is local reconstruction error obtained 
when running the algorithm) 

𝐼𝐼 �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖 𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 �
ℳ
𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑥𝑥 ⊤𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝐼𝐼

LE
(Laplacian 
Eigenmap)

Same as above ℝ𝑑𝑑 �
ℳ∩𝐵𝐵𝜖𝜖(𝑥𝑥)

𝑘𝑘 𝑥𝑥, 𝑧𝑧 𝑥𝑥 − 𝑧𝑧 𝑥𝑥 − 𝑧𝑧 ⊤𝜌𝜌 𝑧𝑧 𝑑𝑑𝑑𝑑 𝐼𝐼 �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖 𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 �
ℳ
𝑑𝑑(𝑥𝑥)𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑥𝑥 ⊤𝜌𝜌 𝑥𝑥 𝑑𝑑𝑑𝑑 = 𝐼𝐼

(𝑑𝑑 𝑥𝑥 = ∫ℳ∩𝐵𝐵𝜖𝜖(𝑥𝑥) 𝑘𝑘 𝑥𝑥, 𝑧𝑧 𝜌𝜌 𝑧𝑧 𝑑𝑑𝑑𝑑)

DM
(Diffusion

Map)
Same as above ℝ𝑑𝑑 �

ℳ∩𝐵𝐵𝜖𝜖(𝑥𝑥)
𝑘𝑘 𝑥𝑥, 𝑧𝑧 𝑥𝑥 − 𝑧𝑧 𝑥𝑥 − 𝑧𝑧 ⊤𝑑𝑑𝑑𝑑 𝐼𝐼 �

𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖 1𝑑𝑑𝑑𝑑 �
ℳ
𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑥𝑥 ⊤𝑑𝑑𝑑𝑑 = 𝐼𝐼

 𝑘𝑘(𝑥𝑥, 𝑦𝑦) is a kernel function usually chosen by the user

 Using heat kernel 𝑘𝑘 𝑥𝑥, 𝑦𝑦 = 4𝜋𝜋𝜋 −𝑑𝑑/2 exp(− 𝑥𝑥−𝑧𝑧 2

4ℎ
)

gives a way to estimate the Laplace-Beltrami operator

Manifold learning algorithms such as LLE, LE, DM share a similar 
objective as harmonic maps while having equality constraint to 
avoid trivial solution 𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.∈ ℝ𝑑𝑑



Example: Swiss roll (diffusion map)

Flattened swiss roll

: data points

Diffusion map 
embedding

Swiss roll data 
(2-dim manifold in 3-dim space)



Example: Swiss roll (geometric distortion)

𝜎𝜎(𝝀𝝀) = ∑𝑖𝑖=1𝑚𝑚 1
2
𝜆𝜆𝑖𝑖 − 1 2

Harmonic mapping + 
𝜎𝜎(𝝀𝝀) = ∑𝑖𝑖=1𝑚𝑚 1

2
𝜆𝜆𝑖𝑖 − 1 2

for boundary points
Flattened swiss roll

: boundary points

: data points

Swiss roll data 
(2-dim manifold in 3-dim space)

Minimum distortion 
results



Example: Faces
Min distortion 

(𝜎𝜎(𝝀𝝀) = ∑𝑖𝑖=1𝑚𝑚 1
2
𝜆𝜆𝑖𝑖 − 1 2)

Laplacian eigenmap embedding

heading
angle

mouth
shapeheading

angle mouth
shape

heading
angle

Min distortion (Harmonic mapping + 𝜎𝜎(𝝀𝝀) = 
∑𝑖𝑖=1𝑚𝑚 1

2
𝜆𝜆𝑖𝑖 − 1 2 for boundary points)

mouth
shape

Original face 
image located 
on embedding 

coordinates

Embedding 
coordinate



Concluding Remarks



 Geometric methods have unquestionably been effective 
in solving a wide range of problems in robotics
Many problems in perception, planning, control, 

learning, and other aspects of robotics can be reduced 
to a geometric problem, and geometric methods offer a 
powerful set of coordinate-invariant tools for their 
solution.

Concluding Remarks
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