Manifolds - Problem Solutions

Jan B. Gutowski
Department of Mathematics, King's College London
Strand, London
WC2R 2LS
Email: jan.gutowski@kcl.ac.uk

1. Manifolds

Problem 1.1. Show that the induced topology indeed satisfies the definition of a topology.

Solution:

Let $\mathcal{U}=\left\{U_{i}\right\}$ be the topology of Y and $X \subset Y$. The induced topology is $\mathcal{V}=$ $\left\{U_{i} \cap X \mid U_{i} \in \mathcal{U}\right\}$.
i) $\emptyset=\emptyset \cap X$ so since $\emptyset \in \mathcal{U}$ we have $\emptyset \in \mathcal{V}$.
ii) $X=X \cap Y$ so since $Y \in \mathcal{U}$ we have $X \in \mathcal{V}$
iii) Take $V_{i}=U_{i} \cap X \in \mathcal{V}$ then

$$
\begin{align*}
V_{1} \cap V_{2} \cap \ldots \cap V_{n} & =\left(U_{1} \cap X\right) \cap\left(U_{2} \cap X\right) \cap \ldots \cap\left(U_{n} \cap X\right) \\
& =\left(U_{1} \cap U_{2} \cap \ldots \cap U_{n}\right) \cap X \\
& \in \mathcal{V} \tag{1.1}
\end{align*}
$$

iv) For an arbitrary number of V_{i} 's:

$$
\begin{equation*}
\bigcup_{i} V_{i}=\bigcup_{i}\left(U_{i} \cap X\right)=\left(\bigcup_{i} U_{i}\right) \cap X \in \mathcal{V} \tag{1.2}
\end{equation*}
$$

Problem 1.2. Why aren't closed subsets of \mathbb{R}^{n}, e.g. a disk with boundary or a line in \mathbb{R}^{2}, along with the identity map charts (note that in its own induced topology any subset of \mathbb{R}^{n} is an open set)?

Solution: If $C \subset \mathbb{R}^{n}$ is closed we may still view it as an open set in its own induced topology. The identity map $i d: C \rightarrow \mathbb{R}^{n}$ is certainly continuous (in inverse image of an open set is open by definition of the induced topology). It is also clearly 1-1 and hence is a bijection onto its image. However consider $i d^{-1}: i d(C) \subset \mathbb{R}^{n} \rightarrow C$ this has

$$
\begin{equation*}
\left(i d^{-1}\right)^{-1}(C)=C \tag{1.3}
\end{equation*}
$$

but since C is open in its own induced topology and closed in the topology of \mathbb{R}^{n} we see that $i d^{-1}$ is not continuous (as $\left(i d^{-1}\right)^{-1}$ of an open set is closed). Thus $i d$ is not a homeomorphism.

Problem 1.3. What is $\mathbb{R} P^{1}$?

Solution:

By definition $\mathbb{R} P^{1}=\left\{(x, y) \in \mathbb{R}^{2}-(0,0) \mid(x, y) \sim(\lambda x, \lambda y), \lambda \in \mathbb{R}-0\right\}$. A point $(x, y) \in \mathbb{R}^{2}-(0,0)$ defines a line through the origin. The point $(\lambda x, \lambda y)$ with $\lambda \neq 0$ will define the same line as (x, y). Thus $\mathbb{R} P^{1}$ is the space of lines through the origin.

On the other and a line through the origin is specified by the angle (roughly $\theta=$ $\arctan (y / x))$ it makes with the postive x-axis. Since (x, y) and $(-x,-y)$ define the same line this angle is identified modulo π rather than 2π. Thus $\mathbb{R} P^{1}$ can be identified with a circle.

To make this more precise one should construct a diffeomorhpism from $\mathbb{R} P^{1}$ to S^{1}. Try this.

Problem 1.4. Show that the following:

$$
\begin{array}{ll}
U_{1}=\left\{(x, y) \in S^{1} \mid y>0\right\}, & \phi_{1}(x, y)=x \\
U_{2}=\left\{(x, y) \in S^{1} \mid y<0\right\}, & \phi_{2}(x, y)=x \\
U_{3}=\left\{(x, y) \in S^{1} \mid x>0\right\}, & \phi_{3}(x, y)=y \\
U_{4}=\left\{(x, y) \in S^{1} \mid x<0\right\}, & \phi_{4}(x, y)=y \tag{1.4}
\end{array}
$$

are a set of charts which cover S^{1}.

Solution:

It should be clear that all the U_{i} are open and cover S^{1} and that the ϕ_{i} continuous with $\phi_{i}\left(U_{i}\right)=(-1,1)$. Their inverses are

$$
\begin{array}{r}
\phi_{1}^{-1}(\theta)=\left(\theta, \sqrt{1-\theta^{2}}\right) \\
\phi_{2}^{-1}(\theta)=\left(\theta,-\sqrt{1-\theta^{2}}\right) \\
\phi_{3}^{-1}(\theta)=\left(\sqrt{1-\theta^{2}}, \theta\right) \\
\phi_{4}^{-1}(\theta)=\left(-\sqrt{1-\theta^{2}}, \theta\right) \tag{1.5}
\end{array}
$$

which are continuous for $\theta \in(-1,1)$ hence they are homeomorphisms (onto their image).
Next we must check that $\phi_{i} \circ \phi_{j}^{-1}:(-1,1) \rightarrow(-1,1)$ are C^{∞} for all non-intersecting pairs. Thus we must check that

$$
\begin{array}{lr}
\phi_{1} \circ \phi_{3}^{-1}(\theta)=\sqrt{1-\theta^{2}}, & \phi_{3} \circ \phi_{1}^{-1}(\theta)=\sqrt{1-\theta^{2}} \\
\phi_{1} \circ \phi_{4}^{-1}(\theta)=-\sqrt{1-\theta^{2}}, & \phi_{4} \circ \phi_{1}^{-1}(\theta)=\sqrt{1-\theta^{2}} \\
\phi_{2} \circ \phi_{3}^{-1}(\theta)=\sqrt{1-\theta^{2}}, & \phi_{3} \circ \phi_{2}^{-1}(\theta)=-\sqrt{1-\theta^{2}} \\
\phi_{2} \circ \phi_{4}^{-1}(\theta)=-\sqrt{1-\theta^{2}}, & \phi_{4} \circ \phi_{2}^{-1}(\theta)=-\sqrt{1-\theta^{2}} \tag{1.6}
\end{array}
$$

These are all C^{∞} since $\theta \in(-1,1)$.
Problem 1.5. Show that the 2-sphere $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is a 2dimensional manifold.

Solution:

The hint was to consider stereographic projection. This requires using two charts

$$
\begin{equation*}
U_{S}=\left\{(x, y, z) \in S^{2} \mid z<1\right\} \quad \text { and } \quad U_{N}=\left\{(x, y, z) \in S^{2} \mid z>-1\right\} \tag{1.7}
\end{equation*}
$$

these are clearly open and cover S^{2}. In each chart one constructs $\phi_{N / S}: U_{N / S} \rightarrow \mathbb{R}^{2}$ by taking a straight line through either the south pole $(0,0,-1)$ or north pole $(0,0,1)$ and then through the point $p \in U_{N / S}$. These lines are defined by the equation

$$
X(\lambda)=\left(\begin{array}{c}
0 \tag{1.8}\\
0 \\
\pm 1
\end{array}\right)+\lambda\left(\begin{array}{c}
x \\
y \\
z \mp 1
\end{array}\right)
$$

so that $X(0)$ is either the north or south pole and $X(1)$ is a point on S^{2}. We define $\phi_{N / S}(p)$ to be the point in the (x, y)-plane where the line intersects $z=0$.

Figure 1: Stereographic projection from $U_{S}=S^{2}-\{(0,0,1)\} \rightarrow \mathbb{R}^{2}$

Note that this construction works on all of U_{N} and on all of U_{S} respectively but not on all of S^{2}. Explicitly one has

$$
\begin{align*}
\phi_{S}(x, y, z) & =\left(\frac{x}{1-z}, \frac{y}{1-z}\right) \\
\phi_{N}(x, y, z) & =\left(\frac{x}{1+z}, \frac{y}{1+z}\right) \tag{1.9}
\end{align*}
$$

By construction these maps are injective as they define a unique line and this will intersect the $z=0$ plane at a unique point. They are continuous and their inverses (to construct them consider the line through $(u, v, 0)$ and $(0,0, \pm 1)$ and see where it intersects $\left.S^{2}\right)$:

$$
\begin{align*}
\phi_{S}^{-1}(u, v) & =\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{u^{2}+v^{2}-1}{1+u^{2}+v^{2}}\right) \\
\phi_{N}^{-1}(u, v) & =\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right) \tag{1.10}
\end{align*}
$$

These are also continuous. Finally we must simply observe that

$$
\begin{align*}
\phi_{S} \circ \phi_{N}^{-1}(u, v) & =\left(\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right) \\
\phi_{N} \circ \phi_{S}^{-1}(u, v) & =\left(\frac{u}{u^{2}+v^{2}}, \frac{v}{u^{2}+v^{2}}\right) \tag{1.11}
\end{align*}
$$

are C^{∞} on $\phi_{N}\left(U_{N} \cap U_{S}\right)=\phi_{S}\left(U_{N} \cap U_{S}\right)=\mathbb{R}-(0,0)$.

2. The Tangent Space

Problem 2.1. Consider the circle S^{1} as above. Show that $f: S^{1} \rightarrow \mathbb{R}$ with $f(x, y)=x^{2}+y$ is C^{∞}.

Solution:

We can take the coordinates above. We need to consider $f \circ \phi_{i}^{-1}(\theta): \phi_{i}\left(U_{i}\right) \rightarrow \mathbb{R}$:

$$
\begin{align*}
& f \circ \phi_{1}^{-1}(\theta)=\theta^{2}+\sqrt{1-\theta^{2}} \\
& f \circ \phi_{2}^{-1}(\theta)=\theta^{2}-\sqrt{1-\theta^{2}} \\
& f \circ \phi_{3}^{-1}(\theta)=1-\theta^{2}+\theta \\
& f \circ \phi_{4}^{-1}(\theta)=1-\theta^{2}+\theta \tag{2.1}
\end{align*}
$$

clearly all these functions are C^{∞} on $\phi_{i}\left(U_{i}\right)=(-1,1)$.

3. Maps Between Manifolds

Problem 3.1. Show that $f: S^{1} \rightarrow S^{1}$ defined by $f\left(e^{2 \pi i \theta}\right)=e^{2 \pi i n \theta}$ is C^{∞} for any n.

Solution:

Again we choose the same charts and note that $\theta \in[0,1]$. First observe that

$$
\begin{align*}
f \circ \phi_{1}^{-1}(\theta) & =e^{i n \arctan \left(\sqrt{1-\theta^{2}} / \theta\right)} \\
f \circ \phi_{2}^{-1}(\theta) & =e^{-i n \arctan \left(\sqrt{1-\theta^{2}} / \theta\right)} \\
f \circ \phi_{3}^{-1}(\theta) & =e^{i n \arctan \left(\theta / \sqrt{1-\theta^{2}}\right)} \\
f \circ \phi_{4}^{-1}(\theta) & =e^{-i n \arctan \left(\theta / \sqrt{1-\theta^{2}}\right)} \tag{3.1}
\end{align*}
$$

Note that this is well defined since $\theta \neq 0$ on $\phi_{1}\left(U_{1}\right), \phi_{2}\left(U_{2}\right)$ and $\theta \neq \pm 1$ on $\phi_{3}\left(U_{3}\right), \phi_{4}\left(U_{4}\right)$. For any function χ we also have that

$$
\begin{align*}
\phi_{1}\left(e^{i n \chi}\right) & =\cos (n \chi) \\
\phi_{2}\left(e^{i n \chi}\right) & =\cos (n \chi) \\
\phi_{3}\left(e^{i n \chi}\right) & =\sin (n \chi) \\
\phi_{4}\left(e^{i n \chi}\right) & =\sin (n \chi) \tag{3.2}
\end{align*}
$$

thus we see that $\phi_{i} \circ f \circ \phi_{j}^{-1}(\theta)$ has the form:

$$
\begin{align*}
& \cos \left(n \arctan \left(\sqrt{1-\theta^{2}} / \theta\right)\right. \\
& \pm \sin \left(n \arctan \left(\sqrt{1-\theta^{2}} / \theta\right)\right. \\
& \cos \left(n \arctan \left(\theta / \sqrt{1-\theta^{2}}\right)\right. \\
& \pm \sin \left(n \arctan \left(\theta / \sqrt{1-\theta^{2}}\right)\right. \tag{3.3}
\end{align*}
$$

And these are all C^{∞} on the appropriate range of θ.
Problem 3.2. Show that the charts of two diffeomorphic manifolds are in a one to one correspondence.

Solution:

Let $\left\{U_{i}, \phi_{i}\right\}$ and $\left\{V_{a}, \psi_{a}\right\}$ be differential structures for \mathcal{M} and \mathcal{N} respectively and $f: \mathcal{M} \rightarrow \mathcal{N}$ a diffeomorphism.

First we show that $\left\{f\left(U_{i}\right), \phi_{i} \circ f^{-1}\right\}$ is a set of charts that cover \mathcal{N}. We note that these cover \mathcal{N} :

$$
\begin{equation*}
\cup_{i} f\left(U_{i}\right)=f\left(\cup_{i} U_{i}\right)=f(\mathcal{M})=\mathcal{N} \tag{3.4}
\end{equation*}
$$

Furthermore $\phi_{i} \circ f^{-1}$ are clearly homeomorphisms (bijective, continuous with the inverse continuous).

Similarly $\left\{f^{-1}\left(V_{a}\right), \psi_{a} \circ f\right\}$ is a set of charts that cover \mathcal{M}.
Now on $V_{a} \cap f\left(U_{i}\right)$ we have that

$$
\begin{equation*}
\psi_{a} \circ f^{-1} \circ \phi_{i}^{-1}: \phi_{i}\left(V_{a} \cap f\left(U_{i}\right)\right) \rightarrow \psi_{a}\left(V_{a} \cap f\left(U_{i}\right)\right) \tag{3.5}
\end{equation*}
$$

and this is C^{∞} as f is C^{∞} (recall the definition). Thus the charts $\left\{f\left(U_{i}\right), \phi_{i} \circ f^{-1}\right\}$ are compatible with the charts $\left\{V_{a}, \psi_{a}\right\}$. Since we take the differential structure to be maximal we find that the charts $\left\{f\left(U_{i}\right), \phi_{i} \circ f^{-1}\right\}$ must be included in the differential struture $\left\{V_{a}, \psi_{a}\right\}$ of \mathcal{N}.

Similarly $\left\{f^{-1}\left(V_{a}\right), \psi_{a} \circ f\right\}$ are compatible with the charts $\left\{U_{i}, \phi_{i}\right\}$ and since we assume the differential structure to be maximal it follows that the $\left\{f^{-1}\left(V_{a}\right), \psi_{a} \circ f\right\}$ are included in $\left\{U_{i}, \phi_{i}\right\}$.

Thus it follows that $\left\{V_{a}, \psi_{a}\right\}$ and $\left\{U_{i}, \phi_{i}\right\}$ are in a one-to-one correspondence with each other.

Problem 3.3. Show that the set of diffeomorphisms from a manifold to itself forms a group under composition.

Solution:

Suppose $f, g: \mathcal{M} \rightarrow \mathcal{M}$ are diffeomorphims. Then

$$
\begin{equation*}
\phi_{i} \circ(f \circ g) \circ \phi_{j}^{-1}=\phi_{i} \circ\left(f \circ \phi_{k}^{-1} \circ \phi_{k} \circ g\right) \circ \phi_{j}^{-1}=\left(\phi_{i} \circ f \circ \phi_{k}^{-1}\right) \circ\left(\phi_{k} \circ g \circ \phi_{j}^{-1}\right) \tag{3.6}
\end{equation*}
$$

is C^{∞} for all i, j, k since f and g are C^{∞}. Similarly for $g^{-1} \circ f^{-1}$. Furthermore $f \circ g$ is a bijection if both f and g are. Thus $f \circ g$ is a diffeomorphism.

Clearly id: $\mathcal{M} \rightarrow \mathcal{M}$ is a diffeomorhism and by definition (the properties are symmetric between f and f^{-1}) if f is a diffeomorphism then so is f^{-1}.

4. Vector Fields

Problem 4.1. What goes wrong if try to define $(X \cdot Y)(f)=X(f) \cdot Y(f)$?

Solution:

With this definition we find that

$$
\begin{align*}
X \cdot Y(f+g) & =(X(f)+X(g))(Y(f)+Y(g)) \\
& =X(f) Y(f)+X(f) Y(g)+X(g) Y(f)+X(f) Y(g) \\
& =X \cdot Y(f)+X \cdot Y(g)+X(f) Y(g)+X(g) Y(f) \tag{4.1}
\end{align*}
$$

and the last two terms are unwanted.
If we try the same trick that we used for the commutator and define $[X, Y](f)=$ $X(f) Y(f)-Y(f) X(f)$ then this clearly vanishes identically.

Problem 4.2. Show that, if in a particular coordinate system,

$$
\begin{equation*}
X=\left.\sum_{\mu} X^{\mu}(x) \frac{\partial}{\partial x^{\mu}}\right|_{p}, \quad Y=\left.\sum_{\mu} Y^{\mu}(x) \frac{\partial}{\partial x^{\mu}}\right|_{p} \tag{4.2}
\end{equation*}
$$

then

$$
\begin{equation*}
[X, Y]=\left.\sum_{\mu} \sum_{\nu}\left(X^{\mu} \partial_{\mu} Y^{\nu}-Y^{\mu} \partial_{\mu} X^{\nu}\right) \frac{\partial}{\partial x^{\nu}}\right|_{p} \tag{4.3}
\end{equation*}
$$

Solution:

We simply calculate:

$$
\begin{align*}
X(Y)(f) & =X\left(\sum_{\nu} Y^{\nu} \frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right) \\
& =\sum_{\mu}\left(X^{\mu} \frac{\partial}{\partial x^{\mu}}\left(\sum_{\nu} Y^{\nu} \frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i} \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right) \\
& =\sum_{\mu} \sum_{\nu}\left(X^{\mu} \partial_{\mu} Y^{\nu} \frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right)+X^{\mu} Y^{\nu} \frac{\partial^{2}}{\partial x^{\nu} \partial x^{\mu}}\left(f \circ \phi_{i}^{-1}\right)\right) \circ \phi_{i} \tag{4.4}
\end{align*}
$$

Since the second term is symmetric in X^{μ} and Y^{ν} we find that

$$
\begin{equation*}
X(Y)(f)-Y(X)(f)=\sum_{\mu} \sum_{\nu}\left(X^{\mu} \partial_{\mu} Y^{\nu}-Y^{\mu} \partial_{\mu} X^{\nu}\right) \frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i} \tag{4.5}
\end{equation*}
$$

and we prove the theorem.
Problem 4.3. Show that for three vector fields X, Y, Z on \mathcal{M} the Jacobi identity holds:

$$
\begin{equation*}
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0 \tag{4.6}
\end{equation*}
$$

Solution:

Here we simply expand things out; suppose $f \in C^{\infty}(\mathcal{M})$, then

$$
\begin{align*}
([X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]])(f)= & X([Y, Z] f)-[Y, Z](X f)+Y([Z, X] f) \\
& -[Z, X](Y f)+Z([X, Y] f)-[X, Y](Z f) \\
= & X(Y(Z f))-X(Z(Y f))-Y(Z(X f))+Z(Y(X f)) \\
& +Y(Z(X f))-Y(X(Z f))-Z(X(Y f))+X(Z(Y f)) \\
& +Z(X(Y f))-Z(Y(X f))-X(Y(Z f))+Y(X(Z f)) \\
= & 0 \tag{4.7}
\end{align*}
$$

where we used the linearity properties of vectors, i.e. $X(Y+Z) f=X(Y f)+X(Z f)$.
Problem 4.4. Consider a manifold with a local coordinate system $\phi_{i}=\left(x^{1}, \ldots, x^{n}\right)$.
i) Show that $\left[\left.\frac{\partial}{\partial x^{\mu}}\right|_{p},\left.\frac{\partial}{\partial x^{\nu}}\right|_{p}\right]=0$
ii) Evaluate $\left[\left.\frac{\partial}{\partial x^{1}}\right|_{p},\left.\varphi\left(x^{1}, x^{2}\right) \frac{\partial}{\partial x^{2}}\right|_{p}\right]$ where $\varphi\left(x^{1}, x^{2}\right)$ is a C^{∞} function of x^{1}, x^{2}.

Solution:

In the first case we find

$$
\begin{align*}
{\left[\frac{\partial}{\partial x^{\mu}}, \frac{\partial}{\partial x^{\nu}}\right](f) } & =\left.\frac{\partial}{\partial x^{\mu}}\right|_{p}\left(\frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right)-\left.\frac{\partial}{\partial x^{\nu}}\right|_{p}\left(\frac{\partial}{\partial x^{\mu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right) \\
& =\frac{\partial^{2}}{\partial x^{\nu} \partial x^{\mu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}-\frac{\partial^{2}}{\partial x^{\mu} \partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i} \\
& =0 \tag{4.8}
\end{align*}
$$

And in the second case:

$$
\begin{align*}
{\left[\frac{\partial}{\partial x^{\mu}}, \varphi \frac{\partial}{\partial x^{\nu}}\right](f)=} & \left.\frac{\partial}{\partial x^{\mu}}\right|_{p}\left(\varphi \frac{\partial}{\partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right)-\left.\varphi \frac{\partial}{\partial x^{\nu}}\right|_{p}\left(\frac{\partial}{\partial x^{\mu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right) \\
= & \varphi \frac{\partial^{2}}{\partial x^{\nu} \partial x^{\mu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i}+\left.\left(\left.\frac{\partial}{\partial x^{\mu}}\right|_{p} \varphi\right) \frac{\partial}{\partial x^{\nu}}\right|_{p}(f) \\
& -\varphi \frac{\partial^{2}}{\partial x^{\mu} \partial x^{\nu}}\left(f \circ \phi_{i}^{-1}\right) \circ \phi_{i} \\
= & \left.\left(\left.\frac{\partial}{\partial x^{\mu}}\right|_{p} \varphi\right) \frac{\partial}{\partial x^{\nu}}\right|_{p}(f) \tag{4.9}
\end{align*}
$$

SO

$$
\begin{equation*}
\left[\frac{\partial}{\partial x^{\mu}}, \varphi \frac{\partial}{\partial x^{\nu}}\right]=\left.\left(\left.\frac{\partial}{\partial x^{\mu}}\right|_{p} \varphi\right) \frac{\partial}{\partial x^{\nu}}\right|_{p} \tag{4.10}
\end{equation*}
$$

