Manifolds – Problem Solutions

Jan B. Gutowski

Department of Mathematics, King's College London Strand, London WC2R 2LS Email: jan.gutowski@kcl.ac.uk

These notes are slightly modified from those written by Neil Lambert and Alice Rogers

1. Manifolds

Problem 1.1. Show that the induced topology indeed satisfies the definition of a topology.

Solution:

Let $\mathcal{U} = \{U_i\}$ be the topology of Y and $X \subset Y$. The induced topology is $\mathcal{V} = \{U_i \cap X | U_i \in \mathcal{U}\}.$

i) $\emptyset = \emptyset \cap X$ so since $\emptyset \in \mathcal{U}$ we have $\emptyset \in \mathcal{V}$. ii) $X = X \cap Y$ so since $Y \in \mathcal{U}$ we have $X \in \mathcal{V}$ iii) Take $V_i = U_i \cap X \in \mathcal{V}$ then

$$V_1 \cap V_2 \cap \dots \cap V_n = (U_1 \cap X) \cap (U_2 \cap X) \cap \dots \cap (U_n \cap X)$$
$$= (U_1 \cap U_2 \cap \dots \cap U_n) \cap X$$
$$\in \mathcal{V}$$
(1.1)

iv) For an arbitrary number of V_i 's:

$$\bigcup_{i} V_{i} = \bigcup_{i} (U_{i} \cap X) = \left(\bigcup_{i} U_{i}\right) \cap X \in \mathcal{V}$$
(1.2)

Problem 1.2. Why aren't closed subsets of \mathbb{R}^n , e.g. a disk with boundary or a line in \mathbb{R}^2 , along with the identity map charts (note that in its own induced topology any subset of \mathbb{R}^n is an open set)?

Solution: If $C \subset \mathbb{R}^n$ is closed we may still view it as an open set in its own induced topology. The identity map $id : C \to \mathbb{R}^n$ is certainly continuous (in inverse image of an open set is open by definition of the induced topology). It is also clearly 1-1 and hence is a bijection onto its image. However consider $id^{-1} : id(C) \subset \mathbb{R}^n \to C$ this has

$$(id^{-1})^{-1}(C) = C (1.3)$$

but since C is open in its own induced topology and closed in the topology of \mathbb{R}^n we see that id^{-1} is not continuous (as $(id^{-1})^{-1}$ of an open set is closed). Thus id is not a homeomorphism.

Problem 1.3. What is $\mathbb{R}P^1$?

Solution:

By definition $\mathbb{R}P^1 = \{(x,y) \in \mathbb{R}^2 - (0,0) | (x,y) \sim (\lambda x, \lambda y), \lambda \in \mathbb{R} - 0\}$. A point $(x,y) \in \mathbb{R}^2 - (0,0)$ defines a line through the origin. The point $(\lambda x, \lambda y)$ with $\lambda \neq 0$ will define the same line as (x,y). Thus $\mathbb{R}P^1$ is the space of lines through the origin.

On the other and a line through the origin is specified by the angle (roughly $\theta = \arctan(y/x)$) it makes with the postive x-axis. Since (x, y) and (-x, -y) define the same line this angle is identified modulo π rather than 2π . Thus $\mathbb{R}P^1$ can be identified with a circle.

To make this more precise one should construct a diffeomorphism from $\mathbb{R}P^1$ to S^1 . Try this. **Problem 1.4.** Show that the following:

$$U_{1} = \{(x, y) \in S^{1} | y > 0\}, \qquad \phi_{1}(x, y) = x$$

$$U_{2} = \{(x, y) \in S^{1} | y < 0\}, \qquad \phi_{2}(x, y) = x$$

$$U_{3} = \{(x, y) \in S^{1} | x > 0\}, \qquad \phi_{3}(x, y) = y$$

$$U_{4} = \{(x, y) \in S^{1} | x < 0\}, \qquad \phi_{4}(x, y) = y$$
(1.4)

are a set of charts which cover S^1 .

Solution:

It should be clear that all the U_i are open and cover S^1 and that the ϕ_i continuous with $\phi_i(U_i) = (-1, 1)$. Their inverses are

$$\begin{aligned}
\phi_1^{-1}(\theta) &= (\theta, \sqrt{1 - \theta^2}) \\
\phi_2^{-1}(\theta) &= (\theta, -\sqrt{1 - \theta^2}) \\
\phi_3^{-1}(\theta) &= (\sqrt{1 - \theta^2}, \theta) \\
\phi_4^{-1}(\theta) &= (-\sqrt{1 - \theta^2}, \theta)
\end{aligned}$$
(1.5)

which are continuous for $\theta \in (-1, 1)$ hence they are homeomorphisms (onto their image).

Next we must check that $\phi_i \circ \phi_j^{-1} : (-1,1) \to (-1,1)$ are C^{∞} for all non-intersecting pairs. Thus we must check that

$$\begin{aligned}
\phi_{1} \circ \phi_{3}^{-1}(\theta) &= \sqrt{1 - \theta^{2}}, & \phi_{3} \circ \phi_{1}^{-1}(\theta) &= \sqrt{1 - \theta^{2}} \\
\phi_{1} \circ \phi_{4}^{-1}(\theta) &= -\sqrt{1 - \theta^{2}}, & \phi_{4} \circ \phi_{1}^{-1}(\theta) &= \sqrt{1 - \theta^{2}} \\
\phi_{2} \circ \phi_{3}^{-1}(\theta) &= \sqrt{1 - \theta^{2}}, & \phi_{3} \circ \phi_{2}^{-1}(\theta) &= -\sqrt{1 - \theta^{2}} \\
\phi_{2} \circ \phi_{4}^{-1}(\theta) &= -\sqrt{1 - \theta^{2}}, & \phi_{4} \circ \phi_{2}^{-1}(\theta) &= -\sqrt{1 - \theta^{2}}
\end{aligned}$$
(1.6)

These are all C^{∞} since $\theta \in (-1, 1)$.

Problem 1.5. Show that the 2-sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$ is a 2-dimensional manifold.

Solution:

The hint was to consider stereographic projection. This requires using two charts

$$U_S = \{(x, y, z) \in S^2 | z < 1\}$$
 and $U_N = \{(x, y, z) \in S^2 | z > -1\}$ (1.7)

these are clearly open and cover S^2 . In each chart one constructs $\phi_{N/S} : U_{N/S} \to \mathbb{R}^2$ by taking a straight line through either the south pole (0, 0, -1) or north pole (0, 0, 1) and then through the point $p \in U_{N/S}$. These lines are defined by the equation

$$X(\lambda) = \begin{pmatrix} 0\\0\\\pm 1 \end{pmatrix} + \lambda \begin{pmatrix} x\\y\\z \mp 1 \end{pmatrix}$$
(1.8)

so that X(0) is either the north or south pole and X(1) is a point on S^2 . We define $\phi_{N/S}(p)$ to be the point in the (x, y)-plane where the line intersects z = 0.

Figure 1: Stereographic projection from $U_S = S^2 - \{(0,0,1)\} \rightarrow \mathbb{R}^2$

Note that this construction works on all of U_N and on all of U_S respectively but not on all of S^2 . Explicitly one has

$$\phi_S(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$$

$$\phi_N(x, y, z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

(1.9)

By construction these maps are injective as they define a unique line and this will intersect the z = 0 plane at a unique point. They are continuous and their inverses (to construct them consider the line through (u, v, 0) and $(0, 0, \pm 1)$ and see where it intersects S^2):

$$\phi_S^{-1}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{u^2+v^2-1}{1+u^2+v^2}\right)$$

$$\phi_N^{-1}(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, \frac{1-u^2-v^2}{1+u^2+v^2}\right)$$

(1.10)

These are also continuous. Finally we must simply observe that

$$\phi_S \circ \phi_N^{-1}(u, v) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

$$\phi_N \circ \phi_S^{-1}(u, v) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

(1.11)

are C^{∞} on $\phi_N(U_N \cap U_S) = \phi_S(U_N \cap U_S) = \mathbb{R} - (0, 0).$

2. The Tangent Space

Problem 2.1. Consider the circle S^1 as above. Show that $f: S^1 \to \mathbb{R}$ with $f(x, y) = x^2 + y$ is C^{∞} .

Solution:

We can take the coordinates above. We need to consider $f \circ \phi_i^{-1}(\theta) : \phi_i(U_i) \to \mathbb{R}$:

$$f \circ \phi_1^{-1}(\theta) = \theta^2 + \sqrt{1 - \theta^2}$$

$$f \circ \phi_2^{-1}(\theta) = \theta^2 - \sqrt{1 - \theta^2}$$

$$f \circ \phi_3^{-1}(\theta) = 1 - \theta^2 + \theta$$

$$f \circ \phi_4^{-1}(\theta) = 1 - \theta^2 + \theta$$

(2.1)

clearly all these functions are C^{∞} on $\phi_i(U_i) = (-1, 1)$.

3. Maps Between Manifolds

Problem 3.1. Show that $f: S^1 \to S^1$ defined by $f(e^{2\pi i\theta}) = e^{2\pi i n\theta}$ is C^{∞} for any n.

Solution:

Again we choose the same charts and note that $\theta \in [0, 1]$. First observe that

$$f \circ \phi_1^{-1}(\theta) = e^{in \arctan(\sqrt{1-\theta^2}/\theta)}$$

$$f \circ \phi_2^{-1}(\theta) = e^{-in \arctan(\sqrt{1-\theta^2}/\theta)}$$

$$f \circ \phi_3^{-1}(\theta) = e^{in \arctan(\theta/\sqrt{1-\theta^2})}$$

$$f \circ \phi_4^{-1}(\theta) = e^{-in \arctan(\theta/\sqrt{1-\theta^2})}$$
(3.1)

Note that this is well defined since $\theta \neq 0$ on $\phi_1(U_1), \phi_2(U_2)$ and $\theta \neq \pm 1$ on $\phi_3(U_3), \phi_4(U_4)$. For any function χ we also have that

$$\phi_1(e^{in\chi}) = \cos(n\chi)$$

$$\phi_2(e^{in\chi}) = \cos(n\chi)$$

$$\phi_3(e^{in\chi}) = \sin(n\chi)$$

$$\phi_4(e^{in\chi}) = \sin(n\chi)$$

(3.2)

thus we see that $\phi_i \circ f \circ \phi_j^{-1}(\theta)$ has the form:

$$cos(n \arctan(\sqrt{1 - \theta^2/\theta}) \\
\pm \sin(n \arctan(\sqrt{1 - \theta^2/\theta}) \\
cos(n \arctan(\theta/\sqrt{1 - \theta^2}) \\
\pm \sin(n \arctan(\theta/\sqrt{1 - \theta^2})$$
(3.3)

And these are all C^{∞} on the appropriate range of θ .

Problem 3.2. Show that the charts of two diffeomorphic manifolds are in a one to one correspondence.

Solution:

Let $\{U_i, \phi_i\}$ and $\{V_a, \psi_a\}$ be differential structures for \mathcal{M} and \mathcal{N} respectively and $f : \mathcal{M} \to \mathcal{N}$ a diffeomorphism.

First we show that $\{f(U_i), \phi_i \circ f^{-1}\}$ is a set of charts that cover \mathcal{N} . We note that these cover \mathcal{N} :

$$\cup_i f(U_i) = f(\cup_i U_i) = f(\mathcal{M}) = \mathcal{N}$$
(3.4)

Furthermore $\phi_i \circ f^{-1}$ are clearly homeomorphisms (bijective, continuous with the inverse continuous).

Similarly $\{f^{-1}(V_a), \psi_a \circ f\}$ is a set of charts that cover \mathcal{M} .

Now on $V_a \cap f(U_i)$ we have that

$$\psi_a \circ f^{-1} \circ \phi_i^{-1} : \phi_i(V_a \cap f(U_i)) \to \psi_a(V_a \cap f(U_i))$$

$$(3.5)$$

and this is C^{∞} as f is C^{∞} (recall the definition). Thus the charts $\{f(U_i), \phi_i \circ f^{-1}\}$ are compatible with the charts $\{V_a, \psi_a\}$. Since we take the differential structure to be maximal we find that the charts $\{f(U_i), \phi_i \circ f^{-1}\}$ must be included in the differential structure $\{V_a, \psi_a\}$ of \mathcal{N} .

Similarly $\{f^{-1}(V_a), \psi_a \circ f\}$ are compatible with the charts $\{U_i, \phi_i\}$ and since we assume the differential structure to be maximal it follows that the $\{f^{-1}(V_a), \psi_a \circ f\}$ are included in $\{U_i, \phi_i\}$.

Thus it follows that $\{V_a, \psi_a\}$ and $\{U_i, \phi_i\}$ are in a one-to-one correspondence with each other.

Problem 3.3. Show that the set of diffeomorphisms from a manifold to itself forms a group under composition.

Solution:

Suppose $f, g: \mathcal{M} \to \mathcal{M}$ are diffeomorphims. Then

$$\phi_i \circ (f \circ g) \circ \phi_j^{-1} = \phi_i \circ (f \circ \phi_k^{-1} \circ \phi_k \circ g) \circ \phi_j^{-1} = (\phi_i \circ f \circ \phi_k^{-1}) \circ (\phi_k \circ g \circ \phi_j^{-1})$$
(3.6)

is C^{∞} for all i, j, k since f and g are C^{∞} . Similarly for $g^{-1} \circ f^{-1}$. Furthermore $f \circ g$ is a bijection if both f and g are. Thus $f \circ g$ is a diffeomorphism.

Clearly $id : \mathcal{M} \to \mathcal{M}$ is a diffeomorphism and by definition (the properties are symmetric between f and f^{-1}) if f is a diffeomorphism then so is f^{-1} .

4. Vector Fields

Problem 4.1. What goes wrong if try to define $(X \cdot Y)(f) = X(f) \cdot Y(f)$?

Solution:

With this definition we find that

$$X \cdot Y(f+g) = (X(f) + X(g))(Y(f) + Y(g))$$

= $X(f)Y(f) + X(f)Y(g) + X(g)Y(f) + X(f)Y(g)$
= $X \cdot Y(f) + X \cdot Y(g) + X(f)Y(g) + X(g)Y(f)$
(4.1)

and the last two terms are unwanted.

If we try the same trick that we used for the commutator and define [X, Y](f) = X(f)Y(f) - Y(f)X(f) then this clearly vanishes identically.

Problem 4.2. Show that, if in a particular coordinate system,

$$X = \sum_{\mu} X^{\mu}(x) \frac{\partial}{\partial x^{\mu}} \Big|_{p} , \qquad Y = \sum_{\mu} Y^{\mu}(x) \frac{\partial}{\partial x^{\mu}} \Big|_{p}$$
(4.2)

then

$$[X,Y] = \sum_{\mu} \sum_{\nu} (X^{\mu} \partial_{\mu} Y^{\nu} - Y^{\mu} \partial_{\mu} X^{\nu}) \frac{\partial}{\partial x^{\nu}} \Big|_{p}$$
(4.3)

Solution:

We simply calculate:

$$\begin{aligned} X(Y)(f) &= X\left(\sum_{\nu} Y^{\nu} \frac{\partial}{\partial x^{\nu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i}\right) \\ &= \sum_{\mu} \left(X^{\mu} \frac{\partial}{\partial x^{\mu}} \left(\sum_{\nu} Y^{\nu} \frac{\partial}{\partial x^{\nu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i} \circ \phi_{i}^{-1}\right) \circ \phi_{i}\right) \\ &= \sum_{\mu} \sum_{\nu} \left(X^{\mu} \partial_{\mu} Y^{\nu} \frac{\partial}{\partial x^{\nu}} (f \circ \phi_{i}^{-1}) + X^{\mu} Y^{\nu} \frac{\partial^{2}}{\partial x^{\nu} \partial x^{\mu}} (f \circ \phi_{i}^{-1})\right) \circ \phi_{i} \end{aligned}$$
(4.4)

Since the second term is symmetric in X^{μ} and Y^{ν} we find that

$$X(Y)(f) - Y(X)(f) = \sum_{\mu} \sum_{\nu} \left(X^{\mu} \partial_{\mu} Y^{\nu} - Y^{\mu} \partial_{\mu} X^{\nu} \right) \frac{\partial}{\partial x^{\nu}} (f \circ \phi_i^{-1}) \circ \phi_i$$
(4.5)

and we prove the theorem.

Problem 4.3. Show that for three vector fields X, Y, Z on \mathcal{M} the Jacobi identity holds:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$
(4.6)

Solution:

Here we simply expand things out; suppose $f \in C^{\infty}(\mathcal{M})$, then

$$\begin{pmatrix} [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] \end{pmatrix} (f) = X([Y, Z]f) - [Y, Z](Xf) + Y([Z, X]f) \\ - [Z, X](Yf) + Z([X, Y]f) - [X, Y](Zf) \\ = X(Y(Zf)) - X(Z(Yf)) - Y(Z(Xf)) + Z(Y(Xf)) \\ + Y(Z(Xf)) - Y(X(Zf)) - Z(X(Yf)) + X(Z(Yf)) \\ + Z(X(Yf)) - Z(Y(Xf)) - X(Y(Zf)) + Y(X(Zf)) \\ = 0$$

$$(4.7)$$

where we used the linearity properties of vectors, i.e. X(Y+Z)f = X(Yf) + X(Zf).

Problem 4.4. Consider a manifold with a local coordinate system
$$\phi_i = (x^1, ..., x^n)$$
.
i) Show that $\left[\frac{\partial}{\partial x^{\mu}}\Big|_p, \frac{\partial}{\partial x^{\nu}}\Big|_p\right] = 0$
ii) Evaluate $\left[\frac{\partial}{\partial x^1}\Big|_p, \varphi(x^1, x^2)\frac{\partial}{\partial x^2}\Big|_p\right]$ where $\varphi(x^1, x^2)$ is a C^{∞} function of x^1, x^2 .

Solution:

In the first case we find

$$\begin{bmatrix} \frac{\partial}{\partial x^{\mu}}, \frac{\partial}{\partial x^{\nu}} \end{bmatrix} (f) = \frac{\partial}{\partial x^{\mu}} \Big|_{p} \left(\frac{\partial}{\partial x^{\nu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i} \right) - \frac{\partial}{\partial x^{\nu}} \Big|_{p} \left(\frac{\partial}{\partial x^{\mu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i} \right)$$
$$= \frac{\partial^{2}}{\partial x^{\nu} \partial x^{\mu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i} - \frac{\partial^{2}}{\partial x^{\mu} \partial x^{\nu}} (f \circ \phi_{i}^{-1}) \circ \phi_{i}$$
$$= 0 \tag{4.8}$$

And in the second case:

$$\begin{split} \left[\frac{\partial}{\partial x^{\mu}},\varphi\frac{\partial}{\partial x^{\nu}}\right](f) &= \frac{\partial}{\partial x^{\mu}}\Big|_{p}\left(\varphi\frac{\partial}{\partial x^{\nu}}(f\circ\phi_{i}^{-1})\circ\phi_{i}\right) - \varphi\frac{\partial}{\partial x^{\nu}}\Big|_{p}\left(\frac{\partial}{\partial x^{\mu}}(f\circ\phi_{i}^{-1})\circ\phi_{i}\right) \\ &= \varphi\frac{\partial^{2}}{\partial x^{\nu}\partial x^{\mu}}(f\circ\phi_{i}^{-1})\circ\phi_{i} + \left(\frac{\partial}{\partial x^{\mu}}\Big|_{p}\varphi\right)\frac{\partial}{\partial x^{\nu}}\Big|_{p}(f) \\ &-\varphi\frac{\partial^{2}}{\partial x^{\mu}\partial x^{\nu}}(f\circ\phi_{i}^{-1})\circ\phi_{i} \\ &= \left(\frac{\partial}{\partial x^{\mu}}\Big|_{p}\varphi\right)\frac{\partial}{\partial x^{\nu}}\Big|_{p}(f) \end{split}$$
(4.9)

 \mathbf{SO}

$$\left[\frac{\partial}{\partial x^{\mu}},\varphi\frac{\partial}{\partial x^{\nu}}\right] = \left(\frac{\partial}{\partial x^{\mu}}\Big|_{p}\varphi\right)\frac{\partial}{\partial x^{\nu}}\Big|_{p}$$
(4.10)