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1. Manifolds

Problem 1.1. Show that the induced topology indeed satisfies the definition of a topology.

Solution:

Let U = {U
i

} be the topology of Y and X ⇢ Y . The induced topology is V =

{U
i

\X|U
i

2 U}.
i) ; = ; \X so since ; 2 U we have ; 2 V.
ii) X = X \ Y so since Y 2 U we have X 2 V
iii) Take V

i

= U

i

\X 2 V then

V

1

\ V

2

\ ... \ V

n

= (U
1

\X) \ (U
2

\X) \ ... \ (U
n

\X)

= (U
1

\ U

2

\ ... \ U

n

) \X

2 V (1.1)

iv) For an arbitrary number of V
i

’s:

[

i

V

i

=
[

i

(U
i

\X) =

 
[

i

U

i

!
\X 2 V (1.2)

Problem 1.2. Why aren’t closed subsets of Rn, e.g. a disk with boundary or a line in R2,

along with the identity map charts (note that in its own induced topology any subset of Rn

is an open set)?

Solution: If C ⇢ Rn is closed we may still view it as an open set in its own induced

topology. The identity map id : C ! Rn is certainly continuous (in inverse image of an

open set is open by definition of the induced topology). It is also clearly 1-1 and hence is

a bijection onto its image. However consider id�1 : id(C) ⇢ Rn ! C this has

(id�1)�1(C) = C (1.3)

but since C is open in its own induced topology and closed in the topology of Rn we

see that id

�1 is not continuous (as (id�1)�1 of an open set is closed). Thus id is not a

homeomorphism.

Problem 1.3. What is RP 1?

Solution:

By definition RP 1 = {(x, y) 2 R2 � (0, 0)|(x, y) ⇠ (�x,�y),� 2 R � 0}. A point

(x, y) 2 R2 � (0, 0) defines a line through the origin. The point (�x,�y) with � 6= 0 will

define the same line as (x, y). Thus RP 1 is the space of lines through the origin.

On the other and a line through the origin is specified by the angle (roughly ✓ =

arctan(y/x)) it makes with the postive x-axis. Since (x, y) and (�x,�y) define the same

line this angle is identified modulo ⇡ rather than 2⇡. Thus RP 1 can be identified with a

circle.

To make this more precise one should construct a di↵eomorhpism from RP 1 to S

1.

Try this.
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Problem 1.4. Show that the following:

U

1

= {(x, y) 2 S

1|y > 0} , �

1

(x, y) = x

U

2

= {(x, y) 2 S

1|y < 0} , �

2

(x, y) = x

U

3

= {(x, y) 2 S

1|x > 0} , �

3

(x, y) = y

U

4

= {(x, y) 2 S

1|x < 0} , �

4

(x, y) = y

(1.4)

are a set of charts which cover S

1.

Solution:

It should be clear that all the U

i

are open and cover S

1 and that the �
i

continuous

with �
i

(U
i

) = (�1, 1). Their inverses are

�

�1

1

(✓) = (✓,
p
1� ✓

2)

�

�1

2

(✓) = (✓,�
p

1� ✓

2)

�

�1

3

(✓) = (
p
1� ✓

2

, ✓)

�

�1

4

(✓) = (�
p
1� ✓

2

, ✓)

(1.5)

which are continuous for ✓ 2 (�1, 1) hence they are homeomorphisms (onto their image).

Next we must check that �
i

� ��1

j

: (�1, 1) ! (�1, 1) are C

1 for all non-intersecting

pairs. Thus we must check that

�

1

� ��1

3

(✓) =
p
1� ✓

2

, �

3

� ��1

1

(✓) =
p
1� ✓

2

�

1

� ��1

4

(✓) = �
p
1� ✓

2

, �

4

� ��1

1

(✓) =
p
1� ✓

2

�

2

� ��1

3

(✓) =
p
1� ✓

2

, �

3

� ��1

2

(✓) = �
p
1� ✓

2

�

2

� ��1

4

(✓) = �
p
1� ✓

2

, �

4

� ��1

2

(✓) = �
p
1� ✓

2

(1.6)

These are all C1 since ✓ 2 (�1, 1).

Problem 1.5. Show that the 2-sphere S

2 = {(x, y, z) 2 R3|x2 + y

2 + z

2 = 1} is a 2-

dimensional manifold.

Solution:

The hint was to consider stereographic projection. This requires using two charts

U

S

= {(x, y, z) 2 S

2|z < 1} and U

N

= {(x, y, z) 2 S

2|z > �1} (1.7)

these are clearly open and cover S

2. In each chart one constructs �
N/S

: U
N/S

! R2 by

taking a straight line through either the south pole (0, 0,�1) or north pole (0, 0, 1) and

then through the point p 2 U

N/S

. These lines are defined by the equation

X(�) =

0

B@
0

0

±1

1

CA+ �

0

B@
x

y

z ⌥ 1

1

CA (1.8)
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so that X(0) is either the north or south pole and X(1) is a point on S

2. We define �
N/S

(p)

to be the point in the (x, y)-plane where the line intersects z = 0.

Figure 1: Stereographic projection from US = S

2 � {(0, 0, 1)} ! R2

Note that this construction works on all of U
N

and on all of U
S

respectively but not

on all of S2. Explicitly one has

�

S

(x, y, z) =

✓
x

1� z

,

y

1� z

◆

�

N

(x, y, z) =

✓
x

1 + z

,

y

1 + z

◆

(1.9)

By construction these maps are injective as they define a unique line and this will intersect

the z = 0 plane at a unique point. They are continuous and their inverses (to construct

them consider the line through (u, v, 0) and (0, 0,±1) and see where it intersects S2):

�

�1

S

(u, v) =

✓
2u

1 + u

2 + v

2

,

2v

1 + u

2 + v

2

,

u

2 + v

2 � 1

1 + u

2 + v

2

◆

�

�1

N

(u, v) =

✓
2u

1 + u

2 + v

2

,

2v

1 + u

2 + v

2

,

1� u

2 � v

2

1 + u

2 + v

2

◆

(1.10)

These are also continuous. Finally we must simply observe that

�

S

� ��1

N

(u, v) =

✓
u

u

2 + v

2

,

v

u

2 + v

2

◆

�

N

� ��1

S

(u, v) =

✓
u

u

2 + v

2

,

v

u

2 + v

2

◆

(1.11)
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are C

1 on �
N

(U
N

\ U

S

) = �

S

(U
N

\ U

S

) = R� (0, 0).

2. The Tangent Space

Problem 2.1. Consider the circle S

1 as above. Show that f : S1 ! R with f(x, y) = x

2+y

is C

1.

Solution:

We can take the coordinates above. We need to consider f � ��1

i

(✓) : �
i

(U
i

) ! R:

f � ��1

1

(✓) = ✓

2 +
p

1� ✓

2

f � ��1

2

(✓) = ✓

2 �
p

1� ✓

2

f � ��1

3

(✓) = 1� ✓

2 + ✓

f � ��1

4

(✓) = 1� ✓

2 + ✓

(2.1)

clearly all these functions are C

1 on �
i

(U
i

) = (�1, 1).

3. Maps Between Manifolds

Problem 3.1. Show that f : S1 ! S

1 defined by f(e2⇡i✓) = e

2⇡in✓ is C

1 for any n.

Solution:

Again we choose the same charts and note that ✓ 2 [0, 1]. First observe that

f � ��1

1

(✓) = e

in arctan(

p
1�✓

2
/✓)

f � ��1

2

(✓) = e

�in arctan(

p
1�✓

2
/✓)

f � ��1

3

(✓) = e

in arctan(✓/

p
1�✓

2
)

f � ��1

4

(✓) = e

�in arctan(✓/

p
1�✓

2
)

(3.1)

Note that this is well defined since ✓ 6= 0 on �
1

(U
1

),�
2

(U
2

) and ✓ 6= ±1 on �
3

(U
3

),�
4

(U
4

).

For any function � we also have that

�

1

(ein�) = cos(n�)

�

2

(ein�) = cos(n�)

�

3

(ein�) = sin(n�)

�

4

(ein�) = sin(n�)

(3.2)
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thus we see that �
i

� f � ��1

j

(✓) has the form:

cos(n arctan(
p

1� ✓

2

/✓)

± sin(n arctan(
p
1� ✓

2

/✓)

cos(n arctan(✓/
p
1� ✓

2)

± sin(n arctan(✓/
p

1� ✓

2)

(3.3)

And these are all C1 on the appropriate range of ✓.

Problem 3.2. Show that the charts of two di↵eomorphic manifolds are in a one to one

correspondence.

Solution:

Let {U
i

,�

i

} and {V
a

, 

a

} be di↵erential structures for M and N respectively and

f : M ! N a di↵eomorphism.

First we show that {f(U
i

),�
i

�f�1} is a set of charts that cover N . We note that these

cover N :

[
i

f(U
i

) = f([
i

U

i

) = f(M) = N (3.4)

Furthermore �
i

� f�1 are clearly homeomorphisms (bijective, continuous with the inverse

continuous).

Similarly {f�1(V
a

), 
a

� f} is a set of charts that cover M.

Now on V

a

\ f(U
i

) we have that

 

a

� f�1 � ��1

i

: �
i

(V
a

\ f(U
i

)) !  

a

(V
a

\ f(U
i

)) (3.5)

and this is C

1 as f is C

1 (recall the definition). Thus the charts {f(U
i

),�
i

� f

�1} are

compatible with the charts {V
a

, 

a

}. Since we take the di↵erential structure to be maximal

we find that the charts {f(U
i

),�
i

�f�1}must be included in the di↵erential struture {V
a

, 

a

}
of N .

Similarly {f�1(V
a

), 
a

�f} are compatible with the charts {U
i

,�

i

} and since we assume

the di↵erential structure to be maximal it follows that the {f�1(V
a

), 
a

� f} are included

in {U
i

,�

i

}.
Thus it follows that {V

a

, 

a

} and {U
i

,�

i

} are in a one-to-one correspondence with each

other.

Problem 3.3. Show that the set of di↵eomorphisms from a manifold to itself forms a

group under composition.

Solution:

Suppose f, g : M ! M are di↵eomorphims. Then

�

i

� (f � g) � ��1

j

= �

i

� (f � ��1

k

� �
k

� g) � ��1

j

= (�
i

� f � ��1

k

) � (�
k

� g � ��1

j

) (3.6)

is C1 for all i, j, k since f and g are C

1. Similarly for g�1 � f�1. Furthermore f � g is a

bijection if both f and g are. Thus f � g is a di↵eomorphism.

Clearly id : M ! M is a di↵eomorhism and by definition (the properties are symmetric

between f and f

�1) if f is a di↵eomorphism then so is f�1.
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4. Vector Fields

Problem 4.1. What goes wrong if try to define (X · Y )(f) = X(f) · Y (f)?

Solution:

With this definition we find that

X · Y (f + g) = (X(f) +X(g))(Y (f) + Y (g))

= X(f)Y (f) +X(f)Y (g) +X(g)Y (f) +X(f)Y (g)

= X · Y (f) +X · Y (g) +X(f)Y (g) +X(g)Y (f)

(4.1)

and the last two terms are unwanted.

If we try the same trick that we used for the commutator and define [X,Y ](f) =

X(f)Y (f)� Y (f)X(f) then this clearly vanishes identically.

Problem 4.2. Show that, if in a particular coordinate system,

X =
X

µ

X

µ(x)
@

@x

µ

���
p

, Y =
X

µ

Y

µ(x)
@

@x

µ

���
p

(4.2)

then

[X,Y ] =
X

µ

X

⌫

(Xµ

@

µ

Y

⌫ � Y

µ

@

µ

X

⌫)
@

@x

⌫

���
p

(4.3)

Solution:

We simply calculate:

X(Y )(f) = X

 
X

⌫

Y

⌫

@

@x

⌫

(f � ��1

i

) � �
i

!

=
X

µ

 
X

µ

@

@x

µ

 
X

⌫

Y

⌫

@

@x

⌫

(f � ��1

i

) � �
i

� ��1

i

!
� �

i

!

=
X

µ

X

⌫

✓
X

µ

@

µ

Y

⌫

@

@x

⌫

(f � ��1

i

) +X

µ

Y

⌫

@

2

@x

⌫

@x

µ

(f � ��1

i

)

◆
� �

i

(4.4)

Since the second term is symmetric in X

µ and Y

⌫ we find that

X(Y )(f)� Y (X)(f) =
X

µ

X

⌫

(Xµ

@

µ

Y

⌫ � Y

µ

@

µ

X

⌫)
@

@x

⌫

(f � ��1

i

) � �
i

(4.5)

and we prove the theorem.

Problem 4.3. Show that for three vector fields X,Y, Z on M the Jacobi identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (4.6)
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Solution:

Here we simply expand things out; suppose f 2 C

1(M), then

✓
[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

◆
(f) = X([Y, Z]f)� [Y, Z](Xf) + Y ([Z,X]f)

�[Z,X](Y f) + Z([X,Y ]f)� [X,Y ](Zf)

= X(Y (Zf))�X(Z(Y f))� Y (Z(Xf)) + Z(Y (Xf))

+Y (Z(Xf))� Y (X(Zf))� Z(X(Y f)) +X(Z(Y f))

+Z(X(Y f))� Z(Y (Xf))�X(Y (Zf)) + Y (X(Zf))

= 0 (4.7)

where we used the linearity properties of vectors, i.e. X(Y + Z)f = X(Y f) +X(Zf).

Problem 4.4. Consider a manifold with a local coordinate system �

i

= (x1, ..., xn).

i) Show that
h

@

@x

µ

���
p

,

@

@x

⌫

���
p

i
= 0

ii) Evaluate
h

@

@x

1

���
p

,'(x1, x2) @

@x

2

���
p

i
where '(x1, x2) is a C

1 function of x1, x2.

Solution:

In the first case we find

h
@

@x

µ

,

@

@x

⌫

i
(f) =

@

@x

µ

���
p

✓
@

@x

⌫

(f � ��1

i

) � �
i

◆
� @

@x

⌫

���
p

✓
@

@x

µ

(f � ��1

i

) � �
i

◆

=
@

2

@x

⌫

@x

µ

(f � ��1

i

) � �
i

� @

2

@x

µ

@x

⌫

(f � ��1

i

) � �
i

= 0 (4.8)

And in the second case:

h
@

@x

µ

,'

@

@x

⌫

i
(f) =

@

@x

µ

���
p

✓
'

@

@x

⌫

(f � ��1

i

) � �
i

◆
� '

@

@x

⌫

���
p

✓
@

@x

µ

(f � ��1

i

) � �
i

◆

= '

@

2

@x

⌫

@x

µ

(f � ��1

i

) � �
i

+

✓
@

@x

µ

���
p

'

◆
@

@x

⌫

���
p

(f)

�' @

2

@x

µ

@x

⌫

(f � ��1

i

) � �
i

=

✓
@

@x

µ

���
p

'

◆
@

@x

⌫

���
p

(f) (4.9)

so h
@

@x

µ

,'

@

@x

⌫

i
=

✓
@

@x

µ

���
p

'

◆
@

@x

⌫

���
p

(4.10)
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