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1. Manifolds

Problem 1.1. Show that the induced topology indeed satisfies the definition of a topology.

Solution:

Let U = {U;} be the topology of Y and X C Y. The induced topology is V =
{Ui N X|UZ S Z/{}

i) ) =0 N X so since ) € U we have () € V.

ii) X =XNY sosince Y € U we have X € V

iii) Take V; = U; N X € V then

VinVan..NVy = (U NX)N (Us N X)) (Un N X)
= (UlﬂUgﬂ...ﬂUn)ﬁX
eV (1.1)

iv) For an arbitrary number of V;’s:

U%zU(UﬂWX)z(UUi)ﬂXEV (1.2)

Problem 1.2. Why aren’t closed subsets of R, e.q. a disk with boundary or a line in R?,
along with the identity map charts (note that in its own induced topology any subset of R™
is an open set)?

Solution: If C' C R" is closed we may still view it as an open set in its own induced
topology. The identity map id : C' — R" is certainly continuous (in inverse image of an
open set is open by definition of the induced topology). It is also clearly 1-1 and hence is
a bijection onto its image. However consider id~! : id(C') C R™ — C this has

(id ) 1 (C)=C (1.3)

but since C is open in its own induced topology and closed in the topology of R"™ we
see that id~! is not continuous (as (id~!)~! of an open set is closed). Thus id is not a
homeomorphism.

Problem 1.3. What is RP1?

Solution:

By definition RP' = {(z,y) € R? — (0,0)|(z,y) ~ (Az,\y),A € R —0}. A point
(z,y) € R? —(0,0) defines a line through the origin. The point (Az, \y) with A\ # 0 will
define the same line as (z,y). Thus RP! is the space of lines through the origin.

On the other and a line through the origin is specified by the angle (roughly 6 =
arctan(y/x)) it makes with the postive z-axis. Since (z,y) and (—z, —y) define the same
line this angle is identified modulo 7 rather than 2w. Thus RP! can be identified with a
circle.

To make this more precise one should construct a diffeomorhpism from RP! to S!.
Try this.



Problem 1.4. Show that the following:

Uy = {(z,y) € Sty > 0} , o1(x,y) =x
Uz = {(z,y) € Sty <0}, ¢o(a,y) =2
Us = {(z,y) € Sl >0}, ¢s(z,y) =y
Uy = {(z,y) € Stz < 0}, da(x,y) =y

(1.4)
are a set of charts which cover S'.

Solution:
It should be clear that all the U; are open and cover S' and that the ¢; continuous
with ¢;(U;) = (—1,1). Their inverses are

¢1'(0) = (6,V1—6?)
¢ (0) = (6,—V1—06?)
¢3'(0) = (V1—62,0)
¢3 ' (0) = (—V1—62,0)

(1.5)

which are continuous for 6 € (—1, 1) hence they are homeomorphisms (onto their image).
Next we must check that ¢; o gb;l :(—1,1) = (—1,1) are C* for all non-intersecting
pairs. Thus we must check that

Progs(0) =V1-02,  ¢30¢;(0) =\1— 02
drog(0) = —/1—062, baodH(0) = /162

(9) = )
¢1'(6) = (
$pody(0) = V162,  ¢y0¢,'(0) = —V1—6
d106,1(0) = —VI-02,  diody'(0)=—V1-0

These are all C* since 6 € (—1,1).

Problem 1.5. Show that the 2-sphere S = {(x,y,2) € R3|x? 4y + 2% = 1} is a 2-
dimensional manifold.

Solution:
The hint was to consider stereographic projection. This requires using two charts

Us = {(x,y,2) € S|z < 1} and Un = {(2,y,2) € §?|z > 1} (1.7)

these are clearly open and cover S2. In each chart one constructs énys t Unys — R? by
taking a straight line through either the south pole (0,0, —1) or north pole (0,0,1) and
then through the point p € Uy,g. These lines are defined by the equation

0 T
XN=|0 |+ Y (1.8)
+1 zF1



so that X (0) is either the north or south pole and X (1) is a point on 52. We define ¢y, (p)
to be the point in the (x,y)-plane where the line intersects z = 0.

Figure 1: Stereographic projection from Ug = S? — {(0,0,1)} — R?

Note that this construction works on all of Uy and on all of Ug respectively but not
on all of §2. Explicitly one has

oo = (122 122)

1—2"1-2

Y T

¢N(.’17,’y,2) - (1+Z71+Z>
(1.9)

By construction these maps are injective as they define a unique line and this will intersect
the z = 0 plane at a unique point. They are continuous and their inverses (to construct
them consider the line through (u,v,0) and (0,0, £1) and see where it intersects S2):

¢_1( ) 2u 2v u? + 0% -1
u,v) = )
ST 1+u? 402" 14w+ 02" 1+ u? 402
¢_1( ) 2u 2v 1—u? —?
u,v) =
N 1+u2 402" 1+u 402" 1+ u? 4 02
(1.10)
These are also continuous. Finally we must simply observe that
1 B U v
b5 o gy (u,v) = (u2 + 027 2 +v2)
-1 o u v
¢NO¢S (U,U) - (U2 +U27 w2 +U2>
(1.11)



are C* on ¢n(Un NUs) = ¢ps(Un NUs) =R —(0,0).

2. The Tangent Space

Problem 2.1. Consider the circle S* as above. Show that f : S* — R with f(x,y) = 22 +y
15 C'°.

Solution:

We can take the coordinates above. We need to consider f o ¢; () : ¢;(U;) — R

foorl(e) = 62+ 16
fogs () =67 —+/1—62
Fodsl6) =1-0%+0
fod () =1-602+0
(2.1)
clearly all these functions are C* on ¢;(U;) = (—1,1).
3. Maps Between Manifolds
Problem 3.1. Show that f : S* — S' defined by f(e*™) = 2™ js O for any n.
Solution:
Again we choose the same charts and note that 6 € [0, 1]. First observe that
fo ¢1 (9) ein arctan(v/1—62/0)
fo ¢2 (9) — —im arctan(v/'1—02/6)
fo ¢3 1(9) marctan(&/\/ 1-62)
fo ¢4 1 (6) e—in arctan(6/v/1—602)
(3.1)

Note that this is well defined since 6 # 0 on ¢1(U1), ¢2(Uz2) and 0 # +1 on ¢3(Us), ¢a(Uy).
For any function y we also have that

$1(e"™) = cos(ny)
P2(e"™X) = cos(ny)
$3(e"™) = sin(ny)
$a(e™X) = sin(nx)



thus we see that ¢; o f o gbj_l(ﬁ) has the form:

cos(n arctan(ﬂ/&)
+sin(n arctan(ﬂ/ﬁ)
cos(n arctan(f/ ﬂ)
+sin(n arctan(@/ﬂ)
(3.3)

And these are all C'° on the appropriate range of 6.

Problem 3.2. Show that the charts of two diffeomorphic manifolds are in a one to one
correspondence.

Solution:

Let {U;, ¢} and {V,, 9.} be differential structures for M and N respectively and
f: M — N a diffeomorphism.

First we show that {f(U;), ¢;0 f 1} is a set of charts that cover A/. We note that these
cover N:

Uif(Ui) = fUil;) = f(M) =N (3.4)
Furthermore ¢; o f~! are clearly homeomorphisms (bijective, continuous with the inverse
continuous).
Similarly {f~'(Va4),%4q o f} is a set of charts that cover M.
Now on V, N f(U;) we have that

g 0 f_l © ¢2_1 : ¢i(Va N f(Uz>) - %(Va N f(UZ>) (3-5)

and this is C™ as f is C°° (recall the definition). Thus the charts {f(U;),¢; o f~'} are
compatible with the charts {V,,1,}. Since we take the differential structure to be maximal
we find that the charts { f(U;), ¢;of ~'} must be included in the differential struture {V,, 1, }
of N.

Similarly {f~1(V,), %40 f} are compatible with the charts {U;, #;} and since we assume
the differential structure to be maximal it follows that the {f~1(V4), %, o f} are included
in {UZ, ¢2}

Thus it follows that {V,, ¥, } and {U;, ¢;} are in a one-to-one correspondence with each
other.

Problem 3.3. Show that the set of diffeomorphisms from a manifold to itself forms a
group under composition.

Solution:
Suppose f,g: M — M are diffeomorphims. Then

dio(fog)og;' =¢io(fogy ogrog)od;! =(giofod, ) o(drogod;') (3.6)

is C> for all 4, j, k since f and g are C*°. Similarly for ¢!

o f~!. Furthermore fogis a
bijection if both f and g are. Thus f o g is a diffeomorphism.
Clearly id : M — M is a diffeomorhism and by definition (the properties are symmetric

between f and f~!) if f is a diffeomorphism then so is f~1.



4. Vector Fields

Problem 4.1. What goes wrong if try to define (X -Y)(f) = X(f)-Y(f)?

Solution:
With this definition we find that

X-Y(f+g9) = X(f)+ X)X (f)+Y(9)
= X(NHY () +X(N)Y(9) + X(9)Y(f) + X ()Y (9)
=X -Y(/)+X -Y(9)+X(/)Y(9)+ X(9)Y(f)
(4.1)

and the last two terms are unwanted.
If we try the same trick that we used for the commutator and define [X,Y](f) =
X(f)Y(f) =Y (f)X(f) then this clearly vanishes identically.

Problem 4.2. Show that, if in a particular coordinate system,

X = ZX“ éw ., Y= Zw &W (4.2)
then 9
(X,Y] = %: ;(Xﬂauw —YIOXY) 5 ; (4.3)
Solution:
We simply calculate:
_ v a —1 .
X(V)(f) = X (ZY o (fod; >o¢z>
=2 xn 0 DY O (Fosrodiost)od,
, Oxh \ — oxV ! Lo ‘
82
= ZZ(X“B v oo xry O (oo )) o
(4.4)
Since the second term is symmetric in X#* and Y we find that
0
X(Y)(f) = ZZ (XHO.YY = YFOX") 5 (fod ) o g (45)

and we prove the theorem.

Problem 4.3. Show that for three vector fields X,Y,Z on M the Jacobi identity holds:

[X7 [YvZH"i_[K [ZaX]]+[Zv [XvY”:O (4'6)



Solution:
Here we simply expand things out; suppose f € C*°(M), then
([Xa Y, Z]|+[v,[2, X]] + 2, [X, YH> (f) = X(Iv, 2]5) - [V, Z](X

ZUXf) + Y (12, X]f)
—[Z2, X](Y ) + 2([X, Y]f

) — (X, Y](Z])

= XY (2)) - X(2(Y[) -Y(Z(X[) + Z(Y(X]))

+Y(Z2(X[) - Y(X(Z])) - Z(X(Y ) + X(Z
+Z(X(Yf) = Z(Y(X[)) - X(Y(Zf) +Y(X
=0

where we used the linearity properties of vectors, i.e. X(Y + 2)f = X(Yf) + X(Zf).

Problem 4.4. Consider a manifold with a local coordinate system ¢; = (x!, ..., z™).
i) Show that [ o 762V ] =0
p
ii) Evaluate [&E (z, :132)8%2 } where (', 2%) is a C™ function of x*, x2.
v P

Solution:
In the first case we find

o o7 8 0 (0 o
[ ) = | (s Tooron) - 5] (Gmtreaon)
o2 ) o2 )
= 8x”81:“(f0¢i_ )O@'—m(fo@_ )o ¢
—0 (4.8)

And in the second case:

0 0 0 0 _ 0
[ 93] = | (o500 000) = e
9? . )

= Y927 On (Fodi)edi+ <8x“‘ ('0) ox¥ lp

2
-1 ]
_Soax/@x” (fodi)od

~ (5], ) s, (49)

o o7 (0 9
[630“’%083;”} N (6‘3:“ ’p(P) oz lp

(5ztrooo0)
o

SO




