Manual of Petroleum
 Measurement Standards
 Chapter 11 - Physical Properties Data

Section 2, Part 4 - Temperature Correction for the Volume NGL and LPG

ASTM Technical Publication [Stock No. XXXXX]
GPA Technical Publication 8217

Second Edition, Month 2017

[^0]
Foreword

For custody transfer purposes, natural gas liquid (NGL) and liquefied petroleum gas (LPG) volumes are generally stated at a fixed base temperature and saturation pressure. As most volume transfers occur at temperatures and pressures other than standard conditions, these volumes are adjusted to standard conditions through the use of correction factors.

This document presents a new method to calculate temperature correction factors. With the publication of this document, previous API, ASTM and GPA documents containing NGL and LPG temperature correction factors should no longer be used. The document is specifically titled as being suitable for NGL and LPG liquids. Light hydrocarbon mixtures containing significant quantities of methane, carbon dioxide and nitrogen which have density ranges which overlap those contained in these tables can be encountered. However, the two-fluid correlation which is the basis of these tables was not calibrated for such mixtures.

The actual Standard represented by this report consists of the explicit implementation procedures. Sample tables and other examples created from a computerized version of these implementation procedures are presented within. However, these are for examples only and do not represent the Standard.
Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.
This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005.
Suggested revisions are invited and should be submitted to the Standards and Publications Department, API, 1220 L Street, NW, Washington, D.C. 20005, standards@api.org.

API Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.
Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.
API publications may be used by anyone desiring to do so. This publication is an updated version of TP-2527. Previous editions of this publication were numbered TP-25. Upon acceptance by API/GPA/ASTM, this document is no longer a technical publication but should be considered a standard. Hence the designation change to GPA 8217. Users of this standard should take efforts to ensure they are using the most current version of this publication. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.
API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This $2^{\text {nd }}$ edition revision addressed several editorial errors and issues that needed clarification. There are no changes in the $2^{\text {nd }}$ edition which would change the implementation guidelines.

Table of Contents

[^1]ASTM Note iv
GPA Disclaimer v
Table of Contents iv
Nomenclature vii
1 Introduction 1
2 Scope 2
3 Significant Digits7
4 Comparison to the Previous Standard7
5 Implementation Procedures 12
5.1 CTL (Table 24) and Relative Density (Table 23) for NGL and LPG using a $60^{\circ} \mathrm{F}$ Base Temperature 12
5.1.1 Implementation Procedure for Table 24E ($60^{\circ} \mathrm{F}$ Basis) 12
5.1.1.1 Inputs and Outputs 12
5.1.1.2 Outline of Calculations 12
5.1.1.3 T24 Implementation Procedure 13
5.1.1.4 Examples for Section 5.1.1 (Table 24E) 19
5.1.2 Implementation Procedure for Table 23E ($60^{\circ} \mathrm{F}$ Basis) 50
5.1.2.1 Inputs and Outputs 50
5.1.2.2 Outline of Calculations 50
5.1.2.3 T23 Implementation Procedure. 51
5.1.2.4 Examples for Section 5.1.2 (Table 23E) 60
5.2 CTL (Table 54) and Density (Table 53) for NGL and LPG using a $15^{\circ} \mathrm{C}$ Base Temperature90
5.2.1 Implementation Procedure for Table 54E ($15^{\circ} \mathrm{C}$ Basis) 90
5.2.1.1 Inputs and Outputs. 90
5.2.1.2 Outline of Calculations 90
5.2.1.3 T54 Implementation Procedure 90
5.2.1.4 Examples for Section 5.2.2 (Table 54E). 94
5.2.2 Implementation Procedure for Table 53E ($15^{\circ} \mathrm{C}$ Basis) 112
5.2.2.1 Inputs and Outputs 112
5.2.2.2 Outline of Calculations 112
5.2.2.3 T53 Implementation Procedure 112
5.2.2.4 Examples for Section 5.2.2 (Table 53E) 85

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
5.3 CTL (Table 60) and Density (Table 59) for NGL and LPG using a $20^{\circ} \mathrm{C}$ Base Temperature 131
5.3.1 Implementation Procedure for Table 60E ($20^{\circ} \mathrm{C}$ Basis) 131
5.3.1.1 Inputs and Outputs 131
5.3.1.2 Outline of Calculations 131
5.3.1.3 T60 Implementation Procedure 131
5.3.1.4 Examples for Section 5.3.1 (Table 60) 135
5.3.2 Implementation Procedure for Table 59E ($20^{\circ} \mathrm{C}$ Basis) 153
5.3.2.1 Inputs and Outputs 153
5.3.2.2 Outline of Calculations 153
5.3.2.3 T59 Implementation Procedure. 153
5.3.2.4 Examples for Section 5.3.2 (Table 59E) 157
6 Sample Sections of Printed Tables 173
7 References 185

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Nomenclature

A, B, C	parameters in Section 5.1.2 quadratic equation
$C_{T L}$	temperature correction factor
h_{2}	scaling factor
$k_{1}, k_{2}, k_{3}, k_{4}$	parameters in saturation density equation
T_{B}	base temperature ($60^{\circ} \mathrm{F}, 15^{\circ} \mathrm{C}$, or $20^{\circ} \mathrm{C}$)
$T_{B K}$	base temperature (288.15 K, or 293.15 K)
T_{c}	fluid critical temperature (K)
$T_{c, \text { ref }}$	reference fluid critical temperature (K)
T_{F}	observed measurement temperature (${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$)
$T_{r, \chi}$	reduced observed temperature
T_{X}	observed temperature (K)
$V_{60} / V_{T x}$	ratio of volume at $60^{\circ} \mathrm{F}$ to volume at temperature T_{x}. Is the basic definition of $C_{T L}$
X	interpolating factor
Z_{c}	critical compressibility factor
α, β, ϕ	parameters in Section 5.1.2 quadratic equation
δ	interpolation variable
τ	parameter in saturation density equation
τ_{x}	parameter in saturation density equation at observed temperature
γ_{x}	relative density at observed temperature
$\gamma_{\chi, \text { high }}$	relative density at the observed temperature corresponding to the upper boundary for the $60^{\circ} \mathrm{F}$ relative density
$\gamma_{x, \text { low }}$	relative density at the observed temperature corresponding to the lower boundary for the $60^{\circ} \mathrm{F}$ relative density
	relative density at the observed temperature corresponding to the intermediate 60° relative density used in Section 5.1.2 iteration procedure
	trial relative density at the observed temperature used in Section 5.1.2 iteration procedure
$\gamma_{\text {TB }}$	relative density at the base temperature, T_{B}
γ_{60}	relative density at a base temperature of $60^{\circ} \mathrm{F}$
$\gamma_{T X}$	relative density at the observed temperature, T_{x}
$\gamma_{60, h i g h}$	upper bound for the observed fluid's $60^{\circ} \mathrm{F}$ relative density
$\gamma_{60, \text { low }}$	lower bound for the observed fluid's $60^{\circ} \mathrm{F}$ relative density
$\gamma_{60, \text { mid }}$	intermediate $60^{\circ} \mathrm{F}$ relative density value used in Section 5.1.2 iteration procedure
$\gamma_{60, \text { trial }}$	trial $60^{\circ} \mathrm{F}$ relative density value used in Section 5.1.2 iteration procedure
	critical molar density (gram-mole/L)
	density at a base temperature of $60^{\circ} \mathrm{F}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
	density at a base temperature of $15^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
This documen has not rec circulated Cha	t is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but eived all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or or quoted, in whole or in part, outside of API committee activities except with the approval of the irman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

ρ_{20}	density at a base temperature of $20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\rho^{\text {sat }}$	saturation molar density (gram-mole/L)
$\rho_{60}^{\text {sat }}$	saturation molar density at $60^{\circ} \mathrm{F}($ gram-mole/L)
$\rho_{T}^{\text {sat }}$	saturation molar density at observed temperature (gram-mole/L)
$\rho_{w 60}$	density of water at $60^{\circ} \mathrm{F}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

[^2]This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG

Tables 23E, 24E, 53E, 54E, 59E, and 60E

0 Implementation Guidelines

This Revised Standard/Fechnical Publication is effective upon the date of publication and supersedes the ASTM-IP 1952 Petroleum Measurement Tables, GPA 2142, GPA TP-16, Tables 33 and 34 of API MPMS Chapter 11.1-1980 Volumes XI/XII (Adjuncts to ASTM D1250-80 and IP 200/80), API MPMS Chapter 11.2.2/11.2.2M, and API/ASTM/GPA 8217/8117. However, due to the nature of the changes in this Revised Standard/Fechnical Publication and the fact that it is or may be incorporated by reference in various regulations, it is recognized that guidance concerning an implementation period may be needed in order to avoid disruptions within the industry and ensure proper application. As a result, it is recommended that this Revised Standard/Technical Publication be utilizeused on all new and existing applications no later than TWO YEARS after the publication date. An application, for this purpose, is defined as the point where the calculation is applied.

Once the Revised Standard/Technical Publication is implemented in a particular application, the Previous Standard/_Technical Publication will no longer be used in that application.

However, the use of API standards and ASTM and GPA technical publications remains voluntary, and the decision on when to utilizeuse a standard/technical publication is an issue that is subject to the negotiations between the parties involved in the transaction.

1 Introduction

For custody transfer purposes, natural gas liquid (NGL) and liquefied petroleum gas (LPG) volumes are generally stated at a fixed base temperature and saturation pressure. As most volume transfers occur at temperatures and pressures other than standard conditions, these volumes are adjusted to standard conditions through the use of correction factors. Separate factors for temperature $\left(C_{T L}\right)$ and pressure $\left(C_{P L}\right)$ are used to make these corrections. This document presents a new method to calculate temperature correction factors. Pressure correction factors are not within the scope of this document, but can be calculated using American Petroleum Institute Manual of Petroleum Measurement Standards (MPMS) Chapter 11.1-2004 ${ }^{[1]}$ (which superseded Chapter 11.2.1-1984 ${ }^{[2]}$ and $11.2 .1 \mathrm{M}-1984^{[3]}$), Chapter 11.2.2-1986/GPA $8286-86^{[4]}$ or Chapter 11.2.2M-1986/GPA 8286-86 ${ }^{[5]}$, depending on product type.

Previously, most NGL and LPG temperature correction factors have been obtained from a variety of sources:

- ASTM-IP "Petroleum Measurement Tables"" ${ }^{[6]}$, published in 1952. This publication is limited to a $60^{\circ} \mathrm{F}$ relative density range of 0.500 and higher.
- GPA Standard 2142, "Standard Factors for Volume Correction and Specific Gravity Conversion of Liquefied Petroleum Gases" ${ }^{[7]}$, published in 1957, also contains the same correction factors as the 1982 ASTM-IP document.
- GPA TP-16 "Composite Pressure and Temperature Volume Correction Factor Tables for Liquefied Petroleum Gas (LPG) and Natural Gasoline" ${ }^{[8]}$, published in 1988. It is limited to the following products: HD-5 Propane with a relative densities of 0.501 , 0.505 , and 0.510 ; iso-butane at a relative density of 0.565 ; normal butane at a relative density of 0.585 ; and natural gasoline (12-14 psia RVP) at a relative density of 0.664.
- API MPMS Chapter 11.1-1980/ASTM D1250-80 Volume XII, Table 33 "Specific Gravity Reduction to $60^{\circ} \mathrm{F}$ For Liquefied Petroleum Gases and Natural Gasoline" ${ }^{[9]}$.
- API MPMS Chapter 11.1-1980/ASTM D1250-80 Volume XII, Table 34 "Reduction of Volume to $60^{\circ} \mathrm{F}$ Against Specific Gravity $60 / 60^{\circ} \mathrm{F}$ For Liquefied Petroleum Gases" ${ }^{[9]}$.
- API/ASTM/GPA 8117 "Temperature Correction for the Volume of Light Hydrocarbons" ${ }^{[10]}$.
- API/ASTM/GPA 8217 "Temperature Correction for the Volume of NGL and LPG" ${ }^{[14]}$

With the publication of this document, the above API, ASTM and GPA documents should no longer be used for NGL and LPG temperature correction factors. Text for GPA 82175 as approved is included without technical change in this present document. Some edits have been made to align flow charts with examples shown so that they may be consistent.

2 Scope

The actual Standard represented by this report consists of the explicit implementation procedures. Sample tables, flow charts, and specific examples created from a computerized version of these implementation procedures are presented within. The examples are to provide guides and check points to those who wish to implement a computerized procedure to represent the Standard, however these are not a part of the actual Standard.

This Standard covers a $60^{\circ} \mathrm{F}$ relative density range of 0.3500 to 0.6880 which nominally equates to a density at $15^{\circ} \mathrm{C}$ of 351.7 to $687.8 \mathrm{~kg} / \mathrm{m}^{3}$ and a density at $20^{\circ} \mathrm{C}$ of 331.7 to $683.6 \mathrm{~kg} / \mathrm{m}^{3}$. The temperature range of this Standard is -50.8 to $199.4^{\circ} \mathrm{F}$ (-46 to $93^{\circ} \mathrm{C}$). At all conditions, the

[^3]pressure is assumed to be at saturation conditions (also known as bubble point or saturation vapor pressure).

Note that these are nominal ranges which are further refined within the standard by correlation limits to be the ranges bounded by the points in the following table:

Table 1: MPMS 11.2.4 Correlation Limits						
$\begin{gathered} \frac{\text { Relative }}{} \\ \underline{\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	Lower Temperatur e Limit (${ }^{\circ} \mathrm{F}$)	Upper Temperatur e Limit (${ }^{\circ} \mathrm{F}$)	Lower Temperatur e Limit (${ }^{\circ} \mathrm{C}$)	Upper Temperatur e Limit (${ }^{\circ} \mathrm{C}$)	Lower Temperatur e Limit (K)	Upper Temperatur e Limit (K)
$\underline{0.35000}$	-50.8	87.4	-46.0	30.8	227.15	303.93
0.35599	-50.8	89.9	-46.0	32.2	227.15	305.32
$\underline{0.42928}$	-50.8	140.9	-46.0	60.5	$\underline{227.15}$	333.65
$\underline{0.47038}$	$\underline{-50.8}$	$\underline{174.8}$	-46.0	79.3	$\underline{227.15}$	352.48
$\underline{0.49935}$	-50.8	199.4	-46.0	93.0	$\underline{227.15}$	366.15
$\underline{0.68800}$	-50.8	199.4	-46.0	93.0	227.15	366.15

As shown in the following figure:

Figure 1: MPMS 11.2.4 Boundaries
Input range - the box defined in the scope of the standard as a $\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)$ relative density of 0.35 to 0.688 and -46 to $93^{\circ} \mathrm{C}$.

Correlation range - the polygon defined by line segments connecting the relative densities and critical temperatures of the reference fluids in Table 1 of the standard for the upper boundary, $46^{\circ} \mathrm{C}$ for the lower temperature boundary, the relative density of EE (68/32) for the lower relative density boundary and the relative density of n-heptane for the upper relative density boundary. See Figure 1 in this document for an illustration.

The calculation method was developed from GPA RR-148 "Volume Correction Factors for Natural Gas Liquids - Phase II" ${ }^{[11]}$ and API/ASTM/GPA Technical Publication, TP-25, September, $1998{ }^{[10]}$. The implementation procedures for Tables 23 and 24 are entirely consistent with those presented in API/ASTM/GPA Technical Publication, TP-275. Supporting data can be found in GPA RR-147 "Density Measurements on Natural Gas Liquids" " ${ }^{[12]}$. GPA RR-133 "Volume Correction Factors for Natural Gas Liquids - Phase I" ${ }^{[13]}$ should no longer be used, as GPA RR-148 completely replaced it.

[^4]The implementation procedures describe how to:

1) calculate the $C_{T L}$ given an appropriate density factor at the basis temperature and an observed temperature, and
2) calculate the appropriate density factor at basis temperature given a relative density at an observed temperature.

The implementation procedures are presented in pairs by base temperature. First the procedures for Tables 23 and 24 at a $60^{\circ} \mathrm{F}$ base temperature are given. The procedure for Table 23 makes use of the procedure described in Table 24 thus Table 24 is presented first. These are followed by procedures for Tables 54 and 53 at a base temperature of $15^{\circ} \mathrm{C}$ which themselves make use of procedures in described in Tables 23 and 24; these in turn are followed by the procedures for Tables 60 and 59 at a base temperature of $20^{\circ} \mathrm{C}$ which also make use of procedures in described in Tables 23 and 24.

It is important to note that this standard assumes all fluids covered by this standard are at a fixed base temperature and saturation pressure. When a RHOtp is meastred at an elevated pressure, an iterative procedure to solve for base density is required for fiscal purposes. The following expression shall be used to determine base density RHOb)

$$
\left|\delta \rho_{o}^{(m)}\right|<0.000001 \mathrm{~kg} / \mathrm{m}^{3} \text { where- } \delta \rho_{o}^{(m)}=\rho_{o}-\rho_{60}^{(m)} \cdot C_{T P L}^{(m)}
$$

The computation for correcting from density at flowing conditions (RHOtp) to density at base conditions (RHOb) may be carried out continuously if mutwally agreed between the parties.

[^5]
3 Significant Digits

It is intended that all future temperature correction factors be utilized used with five decimal digits (e.g., $0 . \mathrm{xxxxx}$ or $1 . \mathrm{xxxxx}$). As a result, this document contains $C_{T L}$ values with only five decimal digits. This is a departure from both the 1952 "ASTM-IP Petroleum Measurement Tables" and GPA TP-16, which give either 3 or 4 decimal digits.

4 Comparison to the Previous Standards

As the 1952 ASTM-IP standard is limited to a low-end relative density of 0.50 , a comparison can only be made at higher relative densities. The following figures show how the standards compare. The calculations are performed at $10^{\circ} \mathrm{F}$ and $5^{\circ} \mathrm{C}$ increments. It can be noted that the deviation plots for the 0.50 to 0.59 relative densities (500 to $590 \mathrm{~kg} / \mathrm{m}^{3}$ densities) are "ragged" in appearance, while the deviation plots for the higher relative densities are "smooth." This can mostly be attributed to the 1952 ASTM-IP Standard's rounding method: $C_{T L}$ values under relative density 0.60 contain 3 decimal digits while $C_{T L}$ values greater than 0.600 contain 4 decimal digits.

Note: Negative deviations indicate that the new table $C_{T L}$ is lower than the old (1952) ASTM table $C_{T L}$. Positive deviations indicate that the new table $C_{T L}$ is higher than the old (1952) ASTM table $C_{T L}$.

[^6]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Chart 3: $C_{T L}$ Deviations of New Table 24 Values Compared to Old Table 24 Values

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Chart 7: $C_{T L}$ Deviations of New Table 54 Values Compared to Old Table 54 Values

Chart 8: $C_{T L}$ Deviations of New Table 54 Values Compared to Old Table 54 Values

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

5 Implementation Procedures

The methods to calculate $C_{T L}$ from Tables $24 \mathrm{E}, 54 \mathrm{E}$, and 60 E and relative density at the base temperature from Tables 23E, 53E and 59E follow. These methods are called implementation procedures, which are similar to the methods described and found in American Petroleum Institute MPMS Chapter 11.1. The new API 11.1-2004 uses the Newton Iteration Method which is not employed or applicable for this standard.

All calculations are to be performed using double precision (i.e., long floating point, eight byte, or 64-bit) arithmetic. This should allow the computer program to recognize the difference between 1.0 and $1.0+\varepsilon$ for absolute values of ε on the order of 10^{-16}. This also means that approximately 16 decimal digits are used for all calculations.

Examples are presented for each of the procedures described, they cover the range of the tables. Even though double precision was used for these example calculations only twelve decimal digits are printed here. If one uses these examples to test their own computer implementation of these procedures, it is suggested that at least eight of the significant digits be matched. The exceptions to this are for the variables α, β, A, B, and C of Table 23 (Section 5.1.2). These may show greater deviation, but the resulting $\gamma_{60, \text { trial }}$ and $\gamma_{\mathrm{x}, \text { trial }}$ values should match within eight significant digits.

5.1 CTL (Table 24) and Relative Density (Table 23) for NGL and LPG using a $60^{\circ} \mathrm{F}$ Base Temperature

5.1.1 Implementation Procedure for Table 24E ($60^{\circ} \mathrm{F}$ Basis)

This section presents the implementation procedure T24 for the computation of Temperature Correction Factor, $C_{T L}$. The $C_{T L}$ is used to calculate volumes of fluid at the base temperature from volumes at some known measurement temperature. The fluids are characterized by the specification of relative density at the base temperature, $60^{\circ} \mathrm{F}$.

5.1.1.1 Inputs and Outputs

Inputs: \quad Relative density at $60^{\circ} \mathrm{F}, \gamma_{60}$
Observed temperature, $T_{F}\left({ }^{\circ} \mathrm{F}\right)$
Output: \quad Temperature Correction Factor, $C_{T L}\left(\right.$ from T_{F} to $\left.T_{B}\right)$

5.1.1.2 Outline of Calculations

The calculations are performed using an extended two-fluid corresponding states equation. By comparing densities at $60^{\circ} \mathrm{F}$, two reference fluids are selected so that one is slightly more dense

[^7]and one is slightly less dense than the observed fluid. The densities of these reference fluids are then scaled to the observed reduced temperature (reduced by the critical temperature of the fluid of interest). The Temperature Correction Factor is then computed from the reference fluid densities. See Figure 1 for a general flow chart of the calculation procedure.

5.1.1.3 T24 Implementation Procedure

T24/Step Number Operation/Procedure at that step
T24/1: Round the relative density γ_{60} to the nearest 0.0001 and round the observed temperature T_{F} to the nearest $0.1^{\circ} \mathrm{F}$.

Temperature rounding examples: -0.05 rounds to $-0.1 ;-0.049$ rounds to $0.0,-0.051$ rounds to -0.1 . Density rounding examples follow: 0.35555 rounds to $0.3556, \underline{0.355549}$ rounds to $0.3555,0.40289$ rounds to 0.4029 .

T24/2: Convert the rounded observed temperature to units of Kelvin, T_{χ} :

$$
T_{x}=\frac{T_{F}+459.67}{1.8}
$$

T24/3: The resultant temperature T_{x} and relative density γ_{60} must fall within the following boundariesranges:

Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to $93^{\circ} \mathrm{C}$, or -50.8 to $199.4^{\circ} \mathrm{F}$)
Relative density between 0.3500 and 0.6880 , inclusive
If these values do not fall in these ranges, then the standard does not apply. Flag this result (possibly by returning a -1 for $C_{T L}$) and exit this procedure.

T24/4: Determine the two adjacent reference fluids to be used for the calculations. The rounded $60^{\circ} \mathrm{F}$ relative density γ_{60} will fit between two reference fluids’ $60^{\circ} \mathrm{F}$ relative densities as listed in Fable 1 Table 2. Choose the lowest density reference fluid that has a density value greater than or equal to γ_{60} and refer to this fluid using the subscript "2." Also use the next lowest density reference fluid and refer to this fluid using the subscript "1."

T24/5: Using Table 1 Table 2, $60^{\circ} \mathrm{F}$ relative densities, compute the interpolation variable, δ :

$$
\delta=\frac{\gamma_{60}-\gamma_{60,1}}{\gamma_{60,2}-\gamma_{60,1}}
$$

[^8]T24/6: From Fable 4 Table 2 critical temperatures, calculate the fluid critical temperature, T_{c} :

$$
T_{c}=T_{c, 1}+\delta\left(T_{c, 2}-T_{c, 1}\right)
$$

T24/7: Compute the fluid's reduced observed temperature, $T_{r, x}$:

$$
T_{r, x}=\frac{T_{x}}{T_{c}}
$$

If the reduced temperature $T_{r, x}$ is greater than 1.0, then the fluid is at supercritical conditions and cannot exist as a liquid. Flag this result (possibly by returning a -1 for $C_{T L}$) and exit this procedure.
$\mathrm{T} 24 / 8$: Compute the reduced temperature at $60^{\circ} \mathrm{F}, T_{r, 60}$:

$$
T_{r, 60}=\frac{519.67}{1.8 T_{c}}
$$

T24/9: From Table 1 Table 2 critical compressibility factors, Z_{c}, and critical densities, ρ_{c}, calculate the scaling factor, h_{2} :

$$
h_{2}=\frac{Z_{c, 1} \times \rho_{c, 1}}{Z_{c, 2} \times \rho_{c, 2}}
$$

T24/10: Calculate the saturation density for both reference fluids at $60^{\circ} \mathrm{F}$ using the 60° reduced temperature, $T_{r, 60}$. For each fluid, the equations to calculate the saturation density at any reduced temperature T_{r} are:

$$
\begin{gathered}
\tau=1-T_{r} \\
\rho^{\text {sat }}=\rho_{c}\left(1+\frac{\left(k_{1} \times \tau^{0.35}\right)+\left(k_{3} \times \tau^{2}\right)+\left(k_{4} \times \tau^{3}\right)}{1+\left(k_{2} \times \tau^{0.65}\right)}\right)
\end{gathered}
$$

where the k_{1}, k_{2}, k_{3}, and k_{4} parameters are different for each reference fluid and are listed in Fable 4 Table 2. Refer to the calculated density for the first reference fluid as $\rho_{60,1}^{\text {sat }}$
and for the second reference fluid as $\rho_{60,2}^{\text {sat }}$.

T24/11: Calculate the interpolating factor X :

$$
X=\frac{\rho_{60,1}^{\text {sat }}}{1+\delta\left[\left(\frac{\rho_{60,1}^{\text {sat }}}{h_{2} \times \rho_{60,2}^{\text {sat }}}\right)-1\right]}
$$

T24/12: Obtain the saturation density for both reference fluids at reduced observed temperature $T_{r, x}$ using the procedure in Step T24/10. Refer to the calculated density for the first reference fluid as $\rho_{x, 1}^{\text {sat }}$ and that for the second reference fluid ast $\rho_{x, 2}^{\text {sat }}$.

T24/13: Calculate the Temperature Correction Factor at the observed temperature, $C_{T L}$:

$$
C_{T L}=\frac{\rho_{x, 1}^{\text {sat }}}{X\left[1+\delta\left(\frac{\rho_{x, 1}^{\text {sat }}}{h_{2} \times \rho_{x, 2}^{\text {sat }}}-1\right)\right]}
$$

T24/14: Round the Temperature Correction Factor $C_{T L}$ to the nearest 0.00001 . Exit this procedure.

Fable 1Table 2: Reference Fluid Parameters

No.	Fluid Name	γ_{60}	T_{c}	Z_{c}	ρ_{c}	k_{1}	k_{2}	k_{3}	k_{4}
1	EE (68/32) ${ }^{(1)}$	0.325022	298.11	0.27998	6.250	2.54616855327	-0.058244177754	0.803398090807	-0.745720314137
2	Ethane	0.355994	305.33	0.28220	6.870	1.89113042610	-0.370305782347	-0.544867288720	0.337876634952
3	EP $(65 / 35)^{(2)}$	0.429277	333.67	0.28060	5.615	2.20970078464	-0.294253708172	-0.405754420098	0.319443433421
4	EP $(35 / 65)^{(3)}$	0.470381	352.46	0.27930	5.110	2.25341981320	-0.266542138024	-0.372756711655	0.384734185665
5	Propane	0.507025	369.78	0.27626	5.000	1.96568366933	-0.327662435541	-0.417979702538	0.303271602831
6	i-Butane	0.562827	407.85	0.28326	3.860	2.04748034410	-0.289734363425	-0.330345036434	0.291757103132
7	n-Butane	0.584127	425.16	0.27536	3.920	2.03734743118	-0.299059145695	-0.418883095671	0.380367738748
8	i-Pentane	0.624285	460.44	0.27026	3.247	2.06541640707	-0.238366208840	-0.161440492247	0.258681568613
9	n-Pentane	0.631054	469.65	0.27235	3.200	2.11263474494	-0.261269413560	-0.291923445075	0.308344290017
10	i-Hexane	0.657167	498.05	0.26706	2.727	2.02382197871	-0.423550090067	-1.152810982570	0.950139001678
11	n-Hexane	0.664064	507.35	0.26762	2.704	2.17134547773	-0.232997313405	-0.267019794036	0.378629524102
12	n-Heptane	0.688039	540.15	0.26312	2.315	2.19773533433	-0.275056764147	-0.447144095029	0.493770995799

Table Notes:
γ_{60} is the fluid relative density at $60^{\circ} \mathrm{F}$ and saturation pressure
T_{c} is the fluid critical temperature in Kelvin
Z_{c} is the fluid critical compressibility factor
ρ_{c} is the fluid critical density in gram-moles per liter
k_{1}, k_{2}, k_{3}, and k_{4} are saturation density fitting parameters
(1) EE (68/32) denotes a 68 mole \% ethane $+32 \%$ ethylene mixture
(2) EP (65/35) denotes a 65 mole $\%$ ethane $+35 \%$ propane mixture
(3) EP (35/65) denotes a 35 mole \% ethane $+65 \%$ propane mixture

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the

Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\qquad

5.1.1.4 Examples for Section 5.1.1 (Table 24E)

(See Table 1Table 2 for properties of the Reference Fluids)

Example 24/1 - UtilizeUse EE (68/32) and Ethane

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned	
Formatted: Font: Italic	
Formatted: Font: Italic, Subscript	
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25{ }^{\prime \prime}$ + 3.75"	
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned	
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"	
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned	
Formatted: Font: Lucida Console	
Formatted	[1]
Formatted	[2]
Formatted	[3]
Formatted	... [4]
Formatted: Font: Italic	
Formatted: Font: Italic, Subscript	
Formatted	[5]
Formatted	[6]
Formatted: Font: Italic	
Formatted: Font: Italic, Subscript	
Formatted: Subscript	
Formatted	[7]
Formatted	... [8]
Formatted: Font: Italic	
Formatted: Subscript	
Formatted	.. [9]
Formatted	... [10]
Formatted	.. [11]
Formatted	.. [12]
Formatted	.. [13]
Formatted	... [14]
Formatted	... [15]
Formatted	... [16]
Formatted: Font: Italic	
Formatted	... [17]
Formatted	... [18]
Formatted: Font: Italic, Subscript	
Formatted	... [19]

```
Sat den fluid 1 at obs. temp. \(L \rho_{x, 1}^{\text {sat }}\) L___16.490243357324
Sat den fluid 2 at obs. temp. \(L \rho_{x, 2}^{\text {sat }} L_{\square} 16.012272020935\)
T24/13
\(C_{\text {IL }} \ldots \ldots \ldots \ldots \ldots\)
\(\ldots\)
    T24/14
CTL rounded \(\underline{C}_{\text {TLI }}(\) rounded) \(\ldots 1.37417\)
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/2 - UtilizeUse Ethane and EP (65/35)

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

```
Taufor fluid at obs. temp. ( }\mp@subsup{\tau}{x}{})\ldots....Tau for fluid at obs. temp.....
0.164688126724
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat }})\mathrm{ . Sat den fluid 1 at obs. temp...
14.572475327916
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp...}
12.816926793350
    T24/13
C
1.100764647588
    T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...

- $\quad \begin{aligned} & \text { Formatted: Tab stops: 3.2", Right,Leade } \\ & \text { + 3.7", Decimal aligned + Not at } 3.25 "+ \\ & 3.75 "\end{aligned}$
Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7" , Decimal aligned + Not at 3.25"
3.75"

3.

4 Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/3 - UtilizeUse EP (65/35) and EP (35/65)

T24/9

1.103940309258
T24/10
Tau for fluid at $60^{\circ} \mathrm{F} \quad(\tau)$
Fau for fluid at $60^{\circ} \mathrm{F}$
0.160321947326
Sat den fluid 1 at $60^{\circ} \mathrm{F}\left(\rho_{60,1}^{\text {sat }}\right)$
\qquad Sat den fluid 1 at $60^{\circ} \mathrm{F}$ \qquad
12. 739470807395
Sat den fluid 2 at $60^{\circ} \mathrm{F}\left(\rho_{60,2}^{\text {sat }}\right)$
\qquad Sat den fluid 2 at $60^{\circ} \mathrm{F}$ \qquad
11. 668538966703
T24/11
Interpolating factor (X). Interpolating factor $X \ldots .$.
12.815798776833
T24/12

	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ..
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ..
(6 Formatted: Tab stops: 3.2", Right,Leader: .
$(3)+3.7^{\prime \prime}$, Decimal aligned + Not at $3.25^{\prime \prime}+$
,
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
Formatted: Tab stops: 3.2", Right,Leader:
Formatted: Tab stops: 3.2", Right,Leader: ..
+3.7" Decimal aligned + Not at 3.251 +
Formatted: Tab stops: 3.2", Right,Leader: ..
Formatted: Tab stops: 3.2", Right,Leader: .

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 3.25" + 3.75"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

```
Tau for fluid at obs. temp. ( }\mp@subsup{\tau}{x}{}\mathrm{ ) ..... Tau for fluid at obs. temp.....
0.116049276894
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat }).\mathrm{ . Sat den fluid 1 at obs. temp...}
11.880371290411
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp...}
10.885682581443
    T24/13
C
    T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...
4. $\begin{aligned} & \text { Formatted: Tab stops: 3.2", Right,Leade } \\ & \text { + 3.7", Decimal aligned + Not at } 3.25^{\prime \prime}+ \\ & 3.75 "\end{aligned}$
Formatted: Tab stops: 3.2", Right,Leader: ...
tigne + Not at $3.2 \mathrm{~J}^{2}$
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
$3.75{ }^{\prime \prime}$
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $2^{\prime \prime}$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\qquad

Example 24/4 - UilizeUse EP (35/65) and Propane

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
(3 5 Formatted: Tab stops: 3.2", Right,Leader: ...
op an + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

- Formatted: Tab stops: 3.2", Right,Leader: ...

4. $\quad \begin{aligned} & \text { 3.7"', Decimal aligned }+ \text { Not at } 3.25 "+ \\ & 3.75 "\end{aligned}$
3.7" Ded: Tab stops. 3.2 , Right,Leader: ...

- Formatted: Tab stops: 3.2", Right,Leader: ..
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/5 - UtilizeUse Propane and i-Butane

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

```
Tau for fluid at obs. temp. ( }\mp@subsup{\tau}{x}{}\mathrm{ )..... Taufor fluid at obs. temp.....
0.129483413247
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat }})\mathrm{ . Sat den fluid 1 at obs. temp...
10.227566043346
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp._.}
8.025028872910
    T24/13
C
C
    T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...

Formatted: Tab stops: 3.2", Right,Leader: ...

- + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
ormatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 2"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/6 - UtilizeUse i-Butane and n-Butane

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ... 3.7 , Decimal aligned

Fonted: Tab stops. 3.2, Right,Leader: 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . 7", Decimal aligned

3.75"

Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
,

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader:

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: ..
+3.7" Decimal aligned + Not at 3.251 +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: . +3.7 ., Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. 3.7 , Decimal aligned + Not at $3.25{ }^{\prime \prime}+$

+ 3.7", Decimal aligned

```
Taufor fluid at obs. temp. ( }\mp@subsup{\tau}{x}{})\ldots....Tau for fluid at obs. temp.....
0.378651836975
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat }})\mathrm{ . Sat den fluid 1 at obs. temp...
10.367065629858
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp...}
10.4968159494474
    T24/13
C
1.062314380669
    T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned

4. $\begin{aligned} & \text { Formatted: Tab stops: 3.2", Right,Leade } \\ & +3.7^{\prime \prime}, \text { Decimal aligned + Not at } 3.25 "+ \\ & 3.55^{\prime \prime}\end{aligned}$

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

4 Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+
3.75

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $2^{\prime \prime}$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/7 - UtilizeUse n-Butane and i-Pentane

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Tab stops: 3.2", Right,Leader: ...

- $\quad+3.7{ }^{\prime \prime}$, Decimal aligned + Not at $3.255^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 2"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/8 - UilizeUse i-Pentane and n-Pentane

 T24/3
 I nput data within range
T24/4

Computed Data - Iast digit is rounded
T24/1
Input Data - rounded

T24/2
$I_{x} \quad \mathrm{Kelvin}$
349.816666666667
T24/5
Delta (δ)
Delta 0.105628600975
T24/6

461.412839414980
T24/7

0.758142463288
Tx, Kelvi-170.0

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...
+3.7", Decimal aligned

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .
+ 3.7" , Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned
Pe $n t$ Formatted: Tab stops: 3.2", Right,Leader:
3.75
,
\qquad

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $2^{\prime \prime}$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/9 - UilizeUse n-Pentane and i-Hexane

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .
+3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

```
Tau for fluid at obs. temp.( (\taux) ....Taufor fluid at obs. temp.....
0.481192758094
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat }})\mathrm{ . Sat den fluid 1 at obs. temp...
9.321161815695
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp...}
7.929963121410
    T24/13
C
1.057304685863
    T24/14
```



```
Sat den fluid 1 at obs. temp. \(\left(\rho_{x, 1}^{\text {sat }}\right)\). Sat den fluid 1 at obs. temp...
9. 321161815695
Sat den fluid 2 at obs. temp. \(\left(\rho_{x, 2}^{\text {sat }}\right)_{\text {. . Sat den fluid } 2 \text { at obs. temp... }}^{\text {I }}\)
7. 929963121410
T24/13
1. 057304685863
T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...
4 $\quad+3.7^{\prime \prime}$, Decimal aligned + Not at $3.25^{\prime \prime}+$
$+$
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $2^{\prime \prime}$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\qquad

Example 24/10 - UtilizeUse i-Hexane and n-Hexane

Formatted: Tab stops: 3.2", Right,Leader: ..
 + 3.7", Decimal aligned
 Formatted: Tab stops: 3.2", Right,Leader: ..
 + 3.7", Decimal aligned + Not at 3.25" +
 3.75"
 Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned
 Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7" , Decimal aligned + Not at $3.25^{\prime \prime}+$
 3.75"
 Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned
 Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned + Not at 3.25" +
 3.75"
 Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned
 He x \ddagger Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7" , Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7" , Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 3.25" + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

```
Taufor fluid at obs. temp. ( }\mp@subsup{\tau}{x}{})\ldots....Tau for fluid at obs. temp.....
0.295224821630
Sat den fluid 1 at obs. temp. ( }\mp@subsup{\rho}{x,1}{\mathrm{ sat })\mathrm{ . Sat den fluid 1 at obs. temp...}
6.925133823039
Sat den fluid 2 at obs. temp. ( }\mp@subsup{\rho}{x,2}{\mathrm{ sat L. Sat den fluid 2 at obs. temp._.}
6.945363609083
    T24/13
C
    T24/14
```


Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned 3 . ${ }^{\prime \prime}$, Right,Leader: ...
-

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $2^{\prime \prime}$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/11 - UtilizeUse n-Hexane and n-Heptane

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned	
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	```Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"```
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.25{ }^{\prime \prime}$ + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
	Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader:

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..
Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned + Not at 3.25" +

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader:

3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
Formatted: Tab stops: 3.2", Right,Leader: ..
+3.7" Decimal aligned + Not at 3.251 +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ..
Formatted: Tab stops: 3.2", Right,Leader: .

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
Formatted: Tab stops: 3.2", Right,Leader: .
+3.7 , Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. 3.7 , Decimal aligned + Not at $3.25^{\prime \prime}+$

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...
4 \quad 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
Formatted: Tab stops: 3.2", Right,Leader: ...
. + 3.7", Decimal aligned

- Formatted: Tab stops: 3.2", Right,Leader: ...

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at 3.25 " + 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned + Not at 2"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\qquad

Example 24/12 - Reduced Ttemperature $\left(T_{i}, \underline{x}\right.$) Ggreater Tthan 1.0

```
    Input Data
Relative density @ 600 F (%60)......... Relative density @ 600% RD60_.. 0. 3501180
Observed temperature, 咋 ( }\mp@subsup{T}{T}{
                            observed temperature Tf, of,\ldots,195.025
    Computed Data - Iast digit is rounded
    T24/1
        Input Data - rounded
```



```
IF
    T24/2
```



```
\frac{x}{3}\mp@code{< Kelvin n5555%}
    T24/3 4
Input data within range
T24/4
```



```
    T24/5
```



```
Delta(\delta)\ldots....
    T24/6
Critical temperature (TG) ............ Critical temperature TC ...... 
303.979338757587
```



```
1.196481172181
Reduced temperature Input dataTr,* greater than 1.0,is no solutionoutside the
correlation range of the standard
T24/3
Reduced observed temp. (Tr,x).......... Reduced observed temp. Tr,x,...
    Tx, Kelvin
        . . ...................................
```

(68 Formatted: Tab stops: 3.2", Right,Leader: ...

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...
 + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"
hank + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
Formatted: Tab stops: 3.2 , Right,Leader
$+3.7^{\prime \prime}$, Decimal aligned + Not at 3.25 +

3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
+3.7
$3.75 "$
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
Formatted: Tab stops:
+3.7 ", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $2^{\prime \prime}$

```
Example 24/13 - Observed Temperature (T}\mp@subsup{\boldsymbol{T}}{\mathbb{E}}{\mathbf{f}}\mathbf{L}<<\underline{Llower Rrange Llimit
    Input Data
Relative density @ 600}\textrm{F}(\mp@subsup{\gamma}{60}{})\ldots.......Relative density @ 600% RD60 ... 0.500000
0bserved temperature, 生 F (TF) ....... Observed temperature Tf, 0F_... - 50.8500
    Computed Data - Iast digit is rounded
    T24/1
        I nput Data - rounded
660 rounded to 0.0001\ldots............................. 500, rounded to 0.0001 5000
IE
    T24/2
```



```
227.094444444444
    T24/3
Ix_Tx less than 227.15, is outside the input range of the standardno solution
```

Observed temperature, ${ }^{\circ} \mathrm{F}$ (T_{F}
or 50.8500
 nded T24/1

Input Data - rounded
 T24/2

227.094444444444
A1 2

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ...

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Font: Not Italic
Formatted: Tab stops: 3.2", Right,Leader:

+ 3.7", Decimal aligned

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E \qquad
43

Formatted: Font: Bold
Formatted: Font: Times New Roman, Bold
Formatted: Not Superscript/ Subscript
Formatted: Tab stops: 3.2", Right,Leader: ..
$+3.7^{\prime \prime}$, Decimal aligned

Computed Data - Iast digit is rounded
T24/1
I nput Data - rounded

IF round
$I_{x}, \quad \mathrm{Kelvin}$

```
    T24/3
Z60_RD60 i s Less than 0.3500, outside the input range of the standardno solution
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... +3.7 ", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 2"

Example 24/15 - Observed Temperature $\left(T_{E}\right)^{T f}$ > Upper Range Limit

Formatted: Font: Italic

Input Data

Computed Data - last digit is rounded
T24/1
Input Data - rounded

T24/2
$T_{x,} \mathrm{Kelvin}$
366.205555555556

T24/3
Ix Tx greater than 366.15, is outside the input range of the standardno solution

Formatted: Tab stops: 3.2", Right,Leader: ... $+3.7^{\prime \prime}$, Decimal aligned + Not at 3.25" + 3.75"
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... $+3.7 "$, Decimal aligned + Not at 2"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E \qquad
45

Example 24/16 - Relative Density @ $60^{\circ} \mathrm{F}\left(\gamma_{60}\right)$ RD $60>$ Upper Range Limit

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

T24/1
Input Data - rounded

IE $\frac{\text { round }}{T 24 / 2}$
T_{x} Kelvin
T24/3
RD60 is greater than 0.6880 , outside the input range of the standardno sol ution
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: . + 3.7", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/17 - Observed Temperature (Tf T_{F}) a\&nd Relative Density @ $60^{\circ} \mathrm{F}\left(y_{60}\right)$ RD $60=$ Upper Range Limits
I nput Data

Observed temperature, ${ }^{\circ} \mathrm{F}\left(\bar{T}_{F}\right)$
Observed temperature Tf, of
199.440
24/1
Input Data - rounded
6_{60} rounded to 0.0001
RD60, rounded to 0.000
0.6880
T_{F} rounded to 0.1 Tf, of, rounded to 0.1

T Kelv \qquad Tx, Kelvin \qquad 199. 4
366.150000000000
T24/3
Input data within range
T24/4
Reference Fluid 1.................... Reference Fluid
Reference Fluid 2
T24/5
Delta (δ)
0.998373305527

T24/6

540.096644421272

T24/7

Reduced observed temp. ($T_{r, x}$).......... Reduced observed temp. Tr, x....
0.677934224887

T24/8

Reduced temp. at $60^{\circ} \mathrm{F}\left(T_{r, 60}\right) \ldots$. Reduced temp. at $60^{\circ} \mathrm{F}$ Tr, $60 \ldots$
0.534544249696

T24/9

T24/10

0.465455750304
Sat den fluid 1 at $60^{\circ} \mathrm{F}\left(\rho_{60,1}^{\text {sat }}\right)$ \qquad Sat den fluid 1 at $60^{\circ} \mathrm{F}$ \qquad
7.876480858049
Sat den fluid 2 at $60^{\circ} \mathrm{F} 1 \rho_{60,2}^{\text {sat }}$ \qquad Sat den fluid 2 at $60^{\circ} \mathrm{F}$ \qquad
6. 859355371549
T24/11
Interpolating factor (X). Interpolating factor $X \ldots \ldots$
8.148529834765

T24/12

Formatted: Font: 10 pt
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Subscript

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$ 3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted	\ldots [20]

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted

[21]
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E \qquad

47	
Tau for fluid at obs. temp. (τ_{x}) 0.322065775113	
Sat den fluid 1 at obs. temp. $\left(\rho_{x, 1}^{\text {sat }}\right)$. Sat den fluid 1 at obs. temp. .	
7.103375621618	
Sat den fluid 2 at obs. temp. $\left(\rho_{x, 2}^{\text {sat }}\right)$.	Sat den fluid 2 at obs. temp...
6.176601533604 - -	
T24/13	
T24/14 $\underline{C}_{\text {TL }}($ rounded)	\ldots O....................0047

Formatted: Tab stops: 3.2", Right,Leader: ...
Formatted: Tab stops: $3.2^{\prime \prime}$, Right,Leader
$+3.7^{\prime \prime}$, Decimal aligned + Not at $3.25^{\prime \prime}+$
7.103375621618

Sat den fluid 2 at obs. temp. $\left(\rho_{x, 2}^{\text {sat }}\right)$. Sat den fluid 2 at obs. temp...
6.176601533604

Formatted: Tab stops: 3.2", Right,Leader: ..

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 24/18 - Observed Temperature (T_{E}) aTf \&

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.25{ }^{\prime \prime}+$
$3.75^{\prime \prime}$
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at 3.25" +
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
3.7, Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ..
+3.7", Decimal aligned + Not at 3.25 " +
Formatted: Tab stops: 3.2", Right,Leader: ...
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at 3.25 " +
3.75"
T24/10

0.050100432248
Sat den fluid 1 at $60^{\circ} \mathrm{F}\left(\rho_{60,1}^{\text {sat }}\right)$ \qquad
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: .. + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}$ +
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned
Sat den fluid 2 at $60^{\circ} \mathrm{F}\left(\rho_{60,2}^{\text {sat }}\right) \ldots . .$. Sat den fluid 2 at $60^{\circ} \mathrm{F} \ldots .$.
Formatted: Tab stops: 3.2", Right,Leader: + 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$ 3.75"
T24/11
Interpolating factor $(X) \ldots$.

10. 772124448866

T24/12

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E \qquad

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.255^{\prime \prime}+$
Formatted: Tab stops: 3.2", Right,Leader: ..
+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25 " +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned + Not at $3.25^{\prime \prime}+$
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ...

+ 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" +
3.75"

Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Formatted: Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 2"

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

5.1.2 Implementation Procedure for Table 23E ($60^{\circ} \mathrm{F}$ Basis)

This section presents the implementation procedure T23 for calculating the relative densities of NGLs and LPGs at abase conditionsa base condition of $60^{\circ} \mathrm{F}$ from known temperatures and densities.

In the past, a hydrometer correction option was allowed so as to be able-to correct for the expansion of the glass comprising a hydrometer stem. The hydrometer correction previously took the following form:

Observed densities determined by a glass hydrometer require correction for the effect of temperature on the instrument. Readings from most density meters do not. If the density was determined with a glass hydrometer, then a correction for the expansion or contraction of the glass must be made. Call the rounded observed relative density the uncorrected relative density γ_{x}^{*}. Calculate the corrected relative density, γ_{x}, from:

$$
\gamma_{x}=\left[1-0.00001278\left(T_{F}-60\right)-0.0000000062\left(T_{F}-60\right)^{2}\right] \gamma_{x}^{*}
$$

The value of γ_{x} was not rounded prior to use ${ }^{[10]}$.
Density readings must be corrected for the effect of temperature on the instrument prior to entering the density into the following implementation procedure.

```
5.1.2.1 Inputs and Outputs
Inputs: Relative density at observed temperature, }\mp@subsup{\gamma}{x}{
        Observed temperature, T
Output: Relative density at 60 % F, }\mp@subsup{\gamma}{60}{
```


5.1.2.2 Outline of Calculations

The calculations are performed using an extended two-fluid corresponding states equation. Two reference fluids are found that are slightly denser and slightly less dense than the observed fluid by comparing their densities at the observed temperature. Iteration must be performed to determine the value of the fluid's relative density at $60^{\circ} \mathrm{F}$ such that when the Temperature Correction Factor is applied, the observed relative density is obtained. The "guessed" value for the fluid's relative density at $60^{\circ} \mathrm{F}$ is constrained to lie between the relative densities at $60^{\circ} \mathrm{F}$ of these two reference fluids (as upper and lower bounds). As the iterations progress, these upper and lower bounds are "brought together" based upon intermediate calculations.

See Figure 2 for a general flow chart of the calculation procedure.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

5.1.2.3 T23 Implementation Procedure

T23/Step Number Operation/Procedure at that step

$\mathrm{T} 23 / 1$: Round the relative density γ_{x} to the nearest 0.0001 and round the observed temperature T_{F} to the nearest $0.1^{\circ} \mathrm{F}$.

Temperature rounding examples follow: -0.05 rounds to $-0.1 ;-0.049$ rounds to 0.0 , -0.051 rounds to -0.1 . Density rounding examples follow: 0.35555 rounds to 0.3556 , 0.355549 rounds to $0.3555,0.40289$ rounds to 0.4029 .

T23/2: Convert the rounded observed temperature to units of Kelvin, T_{x} :

$$
T_{x}=\frac{T_{F}+459.67}{1.8}
$$

T23/3: Check the values of temperature and relative density to ensure that they are in the proper range. The observed temperature T_{x} and relative density γ_{x} must fall within the following boundariesranges:

Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to $93^{\circ} \mathrm{C}$, or -50.8 to $199.4^{\circ} \mathrm{F}$)
Relative density between 0.2100 and 0.7400 inclusive.
If these values do not fall in these ranges, then the standard does not apply. Flag this result (possibly by returning a -1 for γ_{60}) and exit this procedure.

T23/4: Reference fluids must be chosen to perform the density calculations. As written here, this is done in two separate steps: T23/4 to compute the density for each reference fluid at the observed temperature and T23/5 to determine which two reference fluids are to be used. However, Steps 4 and 5 could be combined into a single step (e.g., using a binary search technique).

The reference fluids' densities are to be calculated at the observed temperature, T_{χ}. Use the reference fluids' parameter values from Table 1Table 2. First, use each reference fluid's critical temperature, $T_{c, \text { ref }}$, to compute its reduced observed temperature, $T_{r, x}$:

$$
T_{r, x}=\frac{T_{x}}{T_{c, \text { ref }}}
$$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

If $T_{r, x} \leq 1$, calculate the saturation density for this reference fluid at this reduced temperature $T_{r, x}$. Use the procedure as described in Section 5.1.1.3 Step T24/10. Refer to this calculated density for the reference fluid as $\rho_{x, \text { ref }}^{s a t}$. Repeat this for $60^{\circ} \mathrm{F}$ using the reduced temperature $T_{r, 60}$:

$$
T_{r, 60}=\frac{519.67}{1.8 T_{c, r e f}}
$$

Refer to this calculated density as $\rho_{60, \text { ref }}^{\text {sat }}$. Finally, calculate its relative density at the observation temperature, $\gamma_{x, \text { ref }}$, as:

$$
\gamma_{x, r e f}=\gamma_{60, \text { ref }}\left(\frac{\rho_{x, \text { ref }}^{s a t}}{\rho_{60, r e f}^{s a t}}\right)
$$

where $\gamma_{60, \text { ref }}$ is the reference fluid's relative density at $60^{\circ} \mathrm{F}$
If $T_{r, x}>1$, this reference fluid will not be a liquid at this observed temperature and no value of $\gamma_{x, \text { ref }}$ can be calculated. It is suggested that this type of "no value" case be flagged by returning a-1 1 any negative value for $\gamma_{x, \text { ref., such }}$ as the additive inverse of $\gamma_{60, \text { ref }}$ (by multiplying $\gamma_{60, \text { ref }}$ by -1).

T23/5: Determine the two adjacent reference fluids to be used for the calculations. Choose the lowest density reference fluid that has a density value greater than γ_{x} and refer to this fluid using the subscript " 2 ". AlsoAlso, use the next lowest density reference fluid and refer to this fluid using the subscript " 1 " (even though this reference fluid may not exist as a liquid at the observation temperature). If γ_{x} is below that for "EE 68/32" (the least dense reference fluid), then set "EE 68/32" as fluid " 1 " and "ethane" as fluid " 2 ". If γ_{x} is above that for " n-heptane" (the most dense reference fluid), then set " n-hexane" as fluid " 1 " and " n-heptane" as fluid " 2 ".

T23/6: Initialize the boundaries on the iteration for the observed fluid's $60^{\circ} \mathrm{F}$ relative density. For most cases, the observed fluid's $60^{\circ} \mathrm{F}$ relative density should be between the two reference fluids " 1 " and " 2 ", $\gamma_{60,1}$ and $\gamma_{60,2}$.

Initialize the upper boundary for the observed fluid's $60^{\circ} \mathrm{F}$ relative density, $\gamma_{60, \text { high }}$, as:

$$
\gamma_{60, h i g h}=\gamma_{60,2}
$$

and the corresponding relative density at the observed temperature, $\gamma_{x, \text { high }}$, as:

$$
\gamma_{x, h i g h}=\gamma_{x, 2}
$$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

However, if the relative density γ_{x} is greater than the reference fluid " 2 " relative density at the observed temperature $\gamma_{x, 2}$, then no answer exists. If this is the case, then $\gamma_{x, 60}$ should be flagged (perhaps by being set to -1) and exit this procedure.

Initialize the lower boundary for the observed fluid's $60^{\circ} \mathrm{F}$ relative density, $\gamma_{60, \text { low }}$, as:

$$
\gamma_{60, \text { low }}=\gamma_{60,1}
$$

and the corresponding relative density at the observed temperature, $\gamma_{\chi, l o w}$, as:

$$
\gamma_{x, \text { low }}=\gamma_{x, 1}
$$

However, if reference fluid " 1 " is not a liquid at the observed temperature (i.e., $T_{r, \chi}>1$ for the reference fluid), then set the lower boundary convergence $60^{\circ} \mathrm{F}$ relative density by the following equation:

$$
\gamma_{60, \text { low }}=\left[\frac{T_{x}-T_{c, 1}}{T_{c, 2}-T_{c, 1}}\right]\left(\gamma_{60,2}-\gamma_{60,1}\right)+\gamma_{60,1}
$$

Note that this equation was derived from equations in Section 5.1 at a reduced temperature of 1.0 .

If $\gamma_{60, \text { low }}$ is less than 0.3500 , then set it equal to 0.3500 .
If $\gamma_{60, \text { low }}$ has been reset using the preceding technique then recalculate the corresponding $\gamma_{x, \text { low }}$ value. Use the procedure in Section 5.1.1.3 Steps T24/4 through T24/13 to calculate its Temperature Correction Factor, CTL. Skip Step 24/14 to avoid rounding the output CTL. The relative density at the observed temperature will be:

$$
\gamma_{x, \text { low }}=C_{T L} \times \gamma_{60, \text { low }}
$$

At this point, upper and lower convergence boundaries have been set. After one more check, the iterative process to determine a $60^{\circ} \mathrm{F}$ relative density γ_{60} can begin. If the observed relative density γ_{x} is less than the lower limit $\gamma_{x, \text { low }}$, then no answer exists. If this is the case, then γ_{60} should be flagged (perhaps by being set to -1) and exit this procedure.

T23/7: Calculate an intermediate $60^{\circ} \mathrm{F}$ relative density value, $\gamma_{60, \text { mid }}$ If a value for $\gamma_{60, \text { low }}$ exists, then calculate $\gamma_{60, \text { mid }}$ from:

$$
\delta=\frac{\gamma_{x}-\gamma_{x, \text { low }}}{\gamma_{x, \text { high }}-\gamma_{x, \text { low }}}
$$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

If δ is less than 0.001 then set it equal to 0.001 ; if δ is greater than 0.999 then set it equal to 0.999 . Calculate the intermediate $60^{\circ} \mathrm{F}$ relative density value:

$$
\gamma_{60, \text { mid }}=\gamma_{60, \text { low }}+\delta\left(\gamma_{60, \text { high }}-\gamma_{60, \text { low }}\right)
$$

However, if a value for $\gamma_{x, \text { low }}$ does not exist, then calculate $\gamma_{60, \text { mid }}$ from:

$$
\gamma_{60, \text { mid }}=\frac{\gamma_{60, \text { high }}+\gamma_{60, \text { low }}}{2}
$$

Calculate the Temperature Correction Factor, $C_{T L}$, using this value of $\gamma_{60, \text { mid }}$ and T_{x}, unrounded, and the procedure from Section 5.1.1.3 Steps T24/5 to T24/13. (Do not round this $C_{T L}$ value.) The relative density, $\gamma_{x, m i d}$, at observed temperature, T_{x}, will be:

$$
\gamma_{x, m i d}=C_{T L} \times \gamma_{60, \text { mid }}
$$

T23/8: Check for convergence of the $60^{\circ} \mathrm{F}$ relative density. The calculations will be considered converged if either occurs:

- If γ_{x} is between $\gamma_{x, \text { low }}$ and $\gamma_{\chi, \text { mid }}$ and the difference between $\gamma_{60, \text { low }}$ and $\gamma_{60, \text { mid }}$ is less than $0.00000001\left(10^{-8}\right)$.
- If γ_{x} is between $\gamma_{x, \text { high }}$ and $\gamma_{x, \text { mid }}$ and the difference between $\gamma_{60, \text { high }}$ and $\gamma_{60, \text { mid }}$ is less than $0.00000001\left(10^{-8}\right)$.

If convergence has been achieved, set:

$$
\gamma_{60}=\gamma_{60, \text { mid }}
$$

and skip to Step T23/12.
T23/9: There are three pairs of relative density values: $\left(\gamma_{x, \text { low }}, \gamma_{60, \text { low }}\right),\left(\gamma_{x, \text { mid }}, \gamma_{60, \text { mid }}\right)$ and $\left(\gamma_{x, h i g h}, \gamma_{60, h i g h}\right)$. A quadratic equation can be fit through these three points. This quadratic equation should be a good approximation to the actual relationship between γ_{x} and γ_{60}. Using the value of the observed relative density γ_{x} in the quadratic equation should give a very good estimate to γ_{60}.

Calculate the parameters for the quadratic equation by:

$$
\begin{gathered}
\alpha=\left(\gamma_{60, \text { high }}-\gamma_{60, \text { low }}\right) \\
\beta=\gamma_{x, \text { high }}^{2}-\gamma_{x, \text { low }}^{2}
\end{gathered}
$$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

$$
\begin{gathered}
\phi=\frac{\gamma_{x, \text { high }}-\gamma_{x, \text { low }}}{\gamma_{x, \text { mid }}-\gamma_{x, \text { low }}} \\
A=\frac{\alpha-\phi\left(\gamma_{60, \text { mid }}-\gamma_{60, \text { low }}\right)}{\beta-\phi\left(\gamma_{x, \text { mid }}^{2}-\gamma_{x, \text { low }}^{2}\right)} \\
B=\frac{\alpha-A \beta}{\gamma_{x, \text { high }}-\gamma_{x, \text { low }}} \\
C=\gamma_{60, \text { low }}-B \gamma_{x, \text { low }}-A \gamma_{x, \text { low }}^{2}
\end{gathered}
$$

Using these values of A, B, and C, calculate the associated value $\gamma_{60, \text { trial }}$ using:

$$
\gamma_{60, \text { trial }}=A \gamma_{x}^{2}+B \gamma_{x}+C
$$

This value of $\gamma_{60, \text { trial }}$ may have to be adjusted if it goes outside of the range of $\gamma_{60, \text { low }}$ or $\gamma_{60, \text { high }}$. If $\gamma_{60, \text { trial }}<\gamma_{60 \text {,low }}$, then reset the value as:

$$
\gamma_{60, \text { trial }}=\gamma_{60, \text { low }}+\frac{\left(\gamma_{60, \text { mid }}-\gamma_{60, \text { low }}\right)\left(\gamma_{x}-\gamma_{x, \text { low }}\right)}{\left(\gamma_{x, \text { mid }}-\gamma_{x, \text { low }}\right)}
$$

If $\gamma_{60, \text { trial }}>\gamma_{60, \text { high }}$ then reset the value as:

$$
\gamma_{60, \text { trial }}=\gamma_{60, \text { mid }}+\frac{\left(\gamma_{60, \text { high }}-\gamma_{60, \text { mid }}\right)\left(\gamma_{x}-\gamma_{x, \text { mid }}\right)}{\left(\gamma_{x, \text { high }}-\gamma_{x, \text { mid }}\right)}
$$

Finally, calculate the Temperature Correction Factor, $C_{T L}$, using the value of $\gamma_{60, \text { trial }}$ and the procedure from Section 5.1.1.3 Steps T24/4 to T24/13. Skip Step 24/14 to avoid rounding the output $C_{T L}$. The relative density at observed temperature, $\gamma_{x, \text { trial }}$, will be:

$$
\gamma_{x, \text { trial }}=C_{T L} \times \gamma_{60, \text { trial }}
$$

T23/10: Check for convergence of the $60^{\circ} \mathrm{F}$ relative density. The calculations will be considered converged if the absolute difference between $\gamma_{x, \text { trial }}$ and γ_{x} is less than $0.00000001\left(10^{-8}\right)$. If converged, set:

$$
\gamma_{60}=\gamma_{60, \text { trial }}
$$

and skip to Step T23/12.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

T23/11: The calculation has not yet converged, so the iteration boundaries must be updated.
If $\gamma_{x, \text { trial }}>\gamma_{x}$ then reset the upper boundaries to:

$$
\begin{gathered}
\gamma_{x, \text { high }}=\gamma_{x, \text { trial }} \\
\gamma_{60, \text { high }}=\gamma_{60, \text { trial }}
\end{gathered}
$$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Also, if $\gamma_{x, \text { mid }}<\gamma_{x}$ then reset the lower boundaries to:

$$
\begin{aligned}
\gamma_{x, \text { low }} & =\gamma_{x, \text { mid }} \\
\gamma_{60, \text { low }} & =\gamma_{60, \text { mid }}
\end{aligned}
$$

Or if $\gamma_{x, \text { trial }}<\gamma_{x}$ then reset the lower boundaries to:

$$
\begin{aligned}
\gamma_{x, \text { low }} & =\gamma_{x, \text { trial }} \\
\gamma_{60, \text { low }} & =\gamma_{60, \text { trial }}
\end{aligned}
$$

Also, if $\gamma_{x, \text { mid }}>\gamma_{x}$ then reset the upper boundaries to:

$$
\begin{aligned}
\gamma_{x, \text { high }} & =\gamma_{x, \text { mid }} \\
\gamma_{60, \text { high }} & =\gamma_{60, \text { mid }}
\end{aligned}
$$

Return to Step T23/7 and continue iterations. Do at most 10 iterations. If 10 iterations are reached, then no solution can be found. Flag this result (possibly by returning a -1 for γ_{60}) and exit this procedure.

Note: At this time, all known cases have been found to require less than 10 iterations.
T23/12: Round the $60^{\circ} \mathrm{F}$ relative density value γ_{60} to the nearest 0.0001 . If the value is less than 0.3500 or greater than 0.6880 , then the result is outside the scope of this standard. Flag result (possibly by returning a -1 for γ_{60}). Exit this procedure.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Figure 2. Flow Chart of Implementation Procedure for Table 23

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

5.1.2.4 Examples for Section 5.1.2 (Table 23E)

(See Table 1Table 2 for properties of the Reference Fluids)

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Formatted: Font: 7.5 pt
Formatted: Font: 7.5 pt
Formatted: Tab stops: 2.3", Right,Leader: + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.25^{\prime \prime}+2.63^{\prime \prime}+4^{\prime \prime}$ + 5" + 6" $^{\prime \prime}$
Formatted: Tab stops: 2.3", Right,Leader: + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted: Font: 7.5 pt
Formatted: Font: 7.5 pt
Formatted: Font: Not Italic
Formatted: Font: Not Italic
Formatted: Font: Italic, Subscript
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Font: Italic, Subscript
Formatted: Font: Italic, Subscript

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of ngl and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E
61

Input Data

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted	. [22]
Formatted	... [23]
Formatted	. [24]
Formatted	... [25]
Formatted	[26]
Formatted	... [27]
Formatted	... [28]
Formatted	[29]
Formatted	... [30]
Formatted	... [31]
Formatted	... [32]
Formatted	... [33]
Formatted	... [34]
Formatted	. [35]
Formatted	[36]
Formatted	[37]
Formatted	[38]
Formatted	. [39]
Formatted	... [40]
Formatted	.. [41]
Formatted	.. [42]
Formatted	[43]
Formatted	... [44]
Formatted	.. [45]
Formatted	... [46]
Formatted	.. [47]
Formatted	[48]
Formatted	... [49]
Formatted	... [50]
Formatted	[51]
Formatted	... [52]
Formatted	... [53]
Formatted	. [54]
Formatted	... [55]
Formatted	... [56]
Formatted	... [57]
Formatted	... [58]
Formatted	... [59]
Formatted	... [60]
Formatted	... [61]
Formatted	... [62]

Formatted: Font: Italic
Formatted: Tab stops: 2.3", Right,Leader: ... + $2.6^{\prime \prime}$, Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ $+66^{\prime \prime}$

Formatted: Tab stops: 2.3", Right,Leader: ... $+2.6^{\prime \prime}$, Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9",
Decimal aligned

Formatted: Tab stops: 2.3", Right,Leader: .. $+2.6^{\prime \prime}$, Decimal aligned $+3.7^{\prime \prime}$, Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9"',
Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ Decim
$+6 "$

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted	[63]
Formatted	... [64]
Formatted	... [65]
Formatted	[66]
Formatted	... [67]
Formatted	... [68]
Formatted	... [69]
Formatted	... [70]
Formatted	... [71]
Formatted	[... [72]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E


```
    T23/10 Continue
    T23/11
Reset boundaries
RDTf \(\gamma_{x}\),high ............................................................................... 222560381708
```



```
RDTf \(\gamma_{x, 10 w}\)............................................................................... 222399973249
```



```
    T23/12
```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/5 - Relative Density at Observed Temperature (T23/6, χ_{\perp} L RD\& $<$ Lower Boundary

z observed RDt observed is less than lower boundary RDt f, no solutionoutside the boundary of the standard γ_{x} observed is outside the correlation range of the standard

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$	
Formatted: Tab stops: 2.3", Right,Leader: + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5 \prime$ + $3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$	
Formatted	.. [169]
Formatted	... [170]
Formatted	.. [171]
Formatted	... [172]
Formatted	... [173]
Formatted	... [174]
Formatted	... [175]
Formatted	... [176]
Formatted	[177]
Formatted	[178]
Formatted	... [179]
Formatted	... [180]
Formatted	... [181]
Formatted	... [182]
Formatted [... [183]	
Formatted	... [184]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/6 -_T23/6, Relative Density at Observed Temperature (γ_{χ} L RD世f $>$ Upper Boundary

Input Data

RDtf and Tf are within range, continueqx and T_{E} are within range, continue

Tr,x for Fluid 2... 0.444495870489
Ir, 60 for Fluid 1... 0.569046132957
Tr. 60 for Fluid 2.. for Fluid 234491447849
T23/6
γ_{x} observed is outside the boundary of the standard
roobserved is outside the correlation range of the standard
uol observed is greater than. Fluid 2 RDtf, no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/7 - Test Binary Search Routine ât Low End

γx observed is outside the boundary of the standardRDtf observed is less than lower boundary RDtf, no soluti
γ_{x} observed is outside the correlation range of the standard

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ $+6 "$	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5 "+3 "+4 "+5 "$ + 6"	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned	
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5 "+3 "+4 "+5 "$ + $6^{\prime \prime}$	
Formatted	.. [189]
Formatted	... [190]
Formatted	... [191]
Formatted	... [192]
Formatted	... [193]
Formatted	... [194]
Formatted	... [195]
Formatted	.. [196]
Formatted	... [197]
Formatted	... [198]
Formatted	.. [199]
Formatted	... [200]
Formatted	... [201]
Formatted	... [202]
Formatted	... [203]
Formatted	... [204]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/8 - Relative Density at Observed Temperature ($\operatorname{T23/6} \gamma_{\chi_{x}}$) RDUf near $\gamma_{x, \text { low }}$ RDlowTf, T23/11 Reset Lower/Unner Boundaries

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/9 - T23/11, ŕReset Upper/Lower Boundaries Using Ethane \& And EP(65/35)

	Formatted	... [254]					
	Formatted	... [255]					
	Formatted	... [256]					
	Formatted	... [257]					
	Formatted	... [258]					
i_{1}	Formatted	... [259]					
$\\|_{1} \mu_{1}$	Formatted	... [260]					
$\begin{aligned} & " m_{1} \\|_{1} \\ & n_{1} u_{1} \end{aligned}$	Formatted	... [261]					
$\begin{aligned} & \left\\|\left\\|_{1}\right\\|_{1}\right\\|_{1} \\ & \mu_{1}, \\|_{1} \end{aligned}$	Formatted	... [262]					
	Formatted	... [263]					
$\begin{aligned} & \text { nin } \\ & y_{1}, l_{1}, l_{1} \end{aligned}$	Formatted	... [264]					
IIII (IIIII	Formatted	... [265]					
	Formatted	... [266]					
$\begin{aligned} & \text { IIIN} \\ & \text { IIN} \end{aligned}$	Formatted	... [267]					
-	Formatted	... [268]					
	Formatted	... [269]					
Inm(1)	Formatted	... [270]					
$\begin{aligned} & \left(1 /(1)(1)_{1}, 1,1\right. \end{aligned}$	Formatted	... [271]					
	Formatted	... [272]					
$\begin{aligned} & n_{11}, 1_{1} \\ & l_{1} \end{aligned}$	Formatted	... [273]					
$\begin{aligned} & \text { IIIII, }_{1} \\ & i_{11}, 1_{1} \end{aligned}$	Formatted	... [274]					
$\begin{aligned} & u_{1}^{\prime \prime} \\ & i_{11} \end{aligned}$	Formatted	... [275]					
$\begin{aligned} & 1111,1 \\ & \\ & 111,1 \end{aligned}$	Formatted	... [276]					
教	Formatted	... [277]					
4	Formatted	... [278]					
¢'1	Formatted	... [279]					
	Formatted	... [280]					
00000000	Formatted	... [281]					
38790997	Formatted	... [282]					
+	Formatted	... [283]					
+	Formatted	... [284]					
Cant inue	Formatted	... [285]					
+	Formatted	... [286]					
${ }^{4}$	Formatted	... [287]					
	Formatted	... [288]					
	Formatted	... [289]					
- ${ }^{\prime \prime}$	Formatted	... [290]					
\pm	Formatted	... [291]					
+	Formatted	... [292]					
4	Formatted	... [293]					
38811230	Formatted	... [294]					
0 O068109	Formatted	... [295]					
+-	Formatted	... [296]					

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of ngl and lpg tables 23E, 24E, 53E, 54E, 59E, and 60E

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of ngl and lpg tables 23E, 24E, 53E, 54E, 59E, and 60E

75
T23/11 Reset boundaries $\underbrace{}_{0, \ldots212063030760^{-}}$
T23/12 $\gamma_{60}\left(\gamma_{60, \text { Trial }} \text { rounded }\right)$

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/11 __T23/11, Reset Upper Boundary Only

Input Data

$\frac{T_{F_{1}} F_{1} . .}{T 23 / 2}$
Ix, Kelvin................................ 1500000000000
T23/3

T23/6

	Formatted	.. [348]	
	Formatted	.. [349]	
	Formatted	.. [350]	
	Formatted	.. [351]	
	Formatted	.. [352]	
	Formatted	... [353]	
	Formatted	[354]	
$\\|_{1 / 1 / 1}$	Formatted	... [355]	
$\ln _{1} \mu_{1}$	Formatted	... [356]	
	Formatted	... [357]	
$m_{1 / 1} \\|_{1}$	Formatted	... [358]	
	Formatted	... [359]	
IIIIII)	Formatted	... [360]	
$\begin{aligned} & \lim _{1} \mu_{1}, l_{1} \end{aligned}$	Formatted	[361]	
	Formatted	... [362]	
Minfinis	Formatted	... [363]	
	Formatted	. [364]	
	Formatted	... [365]	
	Formatted	... [366]	
$m_{1 \prime \prime}^{\prime \prime \prime} I_{1}$	Formatted	.. [367]	
${ }^{\prime \prime \prime} / 1 / 1,1$	Formatted	... [368]	
	Formatted	... [369]	
	Formatted	... [370]	
$\begin{aligned} & \left(1 i_{1}\right) \end{aligned}$	Formatted	... [371]	
	Formatted	... [372]	
$1 /$	Formatted	... [373]	
111	Formatted	.. [374]	
Pas'sil	Formatted	... [375]	
	Formatted	... [376]	
000000000	Formatted	... [377]	
629,36534	Formatted	... [378]	
$1 / 1$	Formatted	... [379]	
-111	Formatted	... [380]	
1	Formatted	... [381]	
	Formatted	... [382]	
	Formatted	... [383]	
$12 z 443006$	Formatted	... [384]	
	Formatted	... [385]	
+	Formatted	... [386]	
	Formatted	... [387]	
197,62248	Formatted	[388]	
94810831	Formatted	... [389]	
46457370	Formatted	... [390]	
404578573	Formatted	... [391]	
	Formatted	[392]	

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Temperature Correction for the Volume of NGL and LPG Tables 23E, 24E, 53E, 54E, 59E, and 60E
77

Formatted: Tab stops: 2.3", Right,Leader: .. $+2.6^{\prime \prime}$, Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/12 - T23/10 dDetects Solution iIn One Pass, Using I-Hexane

Input Data

$\frac{F_{F_{1}}}{T 23 / 2}$ \qquad
T23/3

Ir, 60 for Fluid 2... for Fluid 269046132957
T23/6

	Formatted	... [393]
	Formatted	... [394]
	Formatted	... [395]
	Formatted	... [396]
	Formatted	... [397]
	Formatted	... [398]
11	Formatted	... [399]
n_{1}	Formatted	... [400]
In minif	Formatted	... [401]
"IIn (1)	Formatted	... [402]
IIf (in) in	Formatted	... [403]
frillisini	Formatted	... [404]
	Formatted	... [405]
	Formatted	... [406]
	Formatted	... [407]
In mintin,	Formatted [408]
-	Formatted	... [409]
	Formatted	... [410]
	Formatted	... [411]
隹位",	Formatted	... [412]
	Formatted	... [413]
IIIIII,	Formatted [414]
(IIII,",	Formatted	... [415]
$\mu_{1}^{\prime \prime} \mu_{11},$	Formatted	... [416]
MiIIIII	Formatted	... [417]
$\begin{array}{ll} 1 / 11 \\ I_{1} \\ \hline 11 \end{array}$	Formatted	... [418]
	Formatted	... [419]
IIIII,	Formatted	... [420]
IIIII)	Formatted	[... [421]
$\left.{ }_{1}^{\prime \prime \prime} I_{1}^{\prime} i_{1}\right)_{1}$	Formatted	... [422]
$\begin{aligned} & \prime \prime \prime 111 \\ & \hline \end{aligned}$	Formatted	... [423]
111_{11}	Formatted	... [424]
- 1	Formatted	... [425]
$\begin{array}{ll} 11 \\ \vdots \\ 11 \end{array}$	Formatted	... [426]
111	Formatted	... [427]
- $11 /$	Formatted	[... [428]
4	Formatted	[... [429]
\pm	Formatted	[... [430]
\pm	Formatted	[... [431]
4	Formatted	... [432]
\pm	Formatted	... [433]
4	Formatted	... [434]
4	Formatted [435]
+	Formatted	... [436]
	Formatted [437]
	Formatted [438]
	Formatted [439]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9",
Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 23/13 -_Calculated Relative Density @ $60^{\circ} \mathbf{F}\left(\gamma_{60}\right)$ RD60 equals $\mathbf{0 . 6 8 8 0}=$ Upper Range Limit

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted
Formatted

T23/11 not needed, convergence already achieved T23/12
$\gamma_{60}\left(\gamma_{60, \text { Trial }}\right.$ rounded) 0.6880

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

	Formatted	[488]	
	Formatted	... [489]	
	Formatted	... [490]	
	Formatted	... [491]	
	Formatted	... [492]	
	Formatted	... [493]	
	Formatted	[494]	
$\begin{aligned} & 1 / 1 / 1 / 1 \\ & u_{1} \end{aligned}$	Formatted	[495]	
$\text { in in in } 1$	Formatted	.. [496]	
$\text { IIn } \\|_{1}$	Formatted	... [497]	
	Formatted	... [498]	
	Formatted	... [499]	
	Formatted	[500]	
$\begin{aligned} & \text { (1)/1, } \\ & n_{1}, l_{1} \end{aligned}$	Formatted	[501]	
"14,	Formatted	[502]	
	Formatted	... [503]	
$m_{1} m_{1} I_{1},$	Formatted	.. [504]	
${ }^{(1)}\left(1, I_{1}, l_{1}\right)$	Formatted	... [505]	
	Formatted	... [506]	
- $11 /$	Formatted	.. [507]	
${ }^{\prime \prime \prime} 1111$	Formatted	... [508]	
	Formatted	... [509]	
+	Formatted	... [510]	
(1)	Formatted	... [511]	
4	Formatted	... [512]	
-	Formatted	... [513]	
	Formatted	[514]	
629503273	Formatted	... [515]	
4	Formatted	.. [516]	
210261	Formatted	[517]	
7683421,55	Formatted	... [518]	
	Formatted	... [519]	
18518	Formatted	... [520]	
4	Formatted	... [521]	
4	Formatted	... [522]	
	Formatted	... [523]	
866682512	Formatted	... [524]	
31746183	Formatted	... [525]	
014400191	Formatted	... [526]	
309773699	Formatted	... [527]	
142295111	Formatted	[528]	
594045409	Formatted	... [529]	
	Formatted	... [530]	

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved


```Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6",Decimal aligned + 3.7",}\mathrm{ Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned```	
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4 "+5^{\prime \prime}$ + $6^{\prime \prime}$
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5 " $+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$
	Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 23/15 - Relative Density at Observed Temperature (T23/3, $\gamma_{x}$ ) RDtf $<$ Lower Range Limit

Input Data
Relative density @ obs. temp. ( $\gamma_{x}$ ) .. Relative density @obs. temp... 0.20993
observed temperature, ${ }^{\circ} \mathrm{F}\left(T_{F}\right) \ldots \ldots$ observed temperature $T f,{ }^{\circ} \mathrm{F} \ldots . .187 .94$
computed Data - Iast digit is rounded
T23/1


T23/3
RDTf $\underset{\sim}{ }$-in__ is outside the input range of the standardless than 0.2100 , no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 23/16 -_T23/3, Relative Density at Observed Temperature ( $\gamma_{\mathrm{x}}$ LRDtf $>$ Upper Range Limit

```
 Input Data
Relative density @ obs.temp. (}\gammax\mathrm{) .. Relative density @ obs. temp.,._ 0.74005
 Observed temperature, 生 (TF)\ldots.....observed temperature Tf, 㨁,...-28.48
 Computed Data - Iast digit is rounded
 T23/1
 nput Data - rounded
```



```
 TF,
```



```
 T23/3
RDTf_xx in i_is outside the input range of the standardgreater than 0.7400, no solution
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 23/17 - Relative Density at Observed Temperature $\left(\gamma_{x}\right)$ RD $\mathbf{t f}=\geq$ Upper range-Boundary Limit, fails T23/6


$\qquad$
T23/3
Rotf
T23/4 and $T f$ are within range, continueqx and $T_{E}$ are within range, cont inue

$\gamma_{x}$ for Fluid 2........................................................... for Fluid 28661816297


T23/6
$\gamma_{x}$ observed is outside the boundary of the standard
$\frac{\gamma x}{}$ observed is outside the correlation range of the standard
RDtf observed is greater than Fluid 2 RDtf, no solution

Formatted: Tab stops: 2.3", Right,Leader: ... $+2.6^{\prime \prime}$, Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9" Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + 6"

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9" Decimal aligned + Not at $2.5 "+3^{\prime \prime}+4 "+5^{\prime \prime}$ $+6^{\prime \prime}$
4. . - Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 23/18 - Observed Temperature ( $\mathbf{T} 23 / 3, \underline{T}_{E L}$ Tf $=$ Lower Range Limit




Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ +6 "	
Formatted	. [535]
Formatted	. [536]
Formatted	... [537]
Formatted	... [538]
Formatted	... [539]
Formatted	... [540]
Formatted	... [541]
Formatted	... [542]
Formatted	... [543]
Formatted	... [544]
Formatted	... [545]
Formatted	... [546]
Formatted	... [547]
Formatted	... [548]
Formatted	... [549]
Formatted	... [550]
Formatted	... [551]
Formatted	... [552]
Formatted	... [553]
Formatted	... [554]
Formatted	... [555]
Formatted	... [556]
Formatted	... [557]
Formatted	... [558]
Formatted	... [559]
Formatted	... [560]
Formatted	... [561]
Formatted	... [562]
Formatted	... [563]
Formatted	... [564]
Formatted	... [565]
Formatted	... [566]
Formatted:	
Formatted	... [567]
Formatted	... [568]
Formatted	... [569]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved


Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4 "+5^{\prime \prime}$ $+6^{\prime \prime}$

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9",
Decimal aligned

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4 "+5^{\prime \prime}$ $+6^{\prime \prime}$

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decima aligned + 4.8", Decimal aligned + 5.9" Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ $+6^{\prime \prime}$
Formatted: Tab stops: 2.3", Right,Leader: .. + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ $+6 "$
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at $2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5^{\prime \prime}$ + $6^{\prime \prime}$
Formatted: Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Formatted ... [570]
Formatted ... [571]
Formatted ... [572]
Formatted ... [573]
Formatted ... [574]
Formatted ... [575]
Formatted [... [576]
Formatted ... [577]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 23/19-Observed Temperature (T23/3, $\underline{T}_{\underline{E}} \mathbf{T f}$ < Lower Range Limit

```
 Input Data
Relative density @ obs.temp. (}\mp@subsup{\gamma}{x}{}\mathrm{) .. Relative density @ obs. temp....
 computed Data - iast digit is rounded
 T23/1
 Input Data - rounded
```



```
 T\mp@subsup{F}{1}{}
```



```
 T23/3
 IxT* is outside the input range of the standardtess than 227.15, no solution
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

### 5.2 CTL (Table 54) and Density (Table 53) for NGL and LPG using a $15^{\circ} \mathrm{C}$ Base Temperature

### 5.2.1 Implementation Procedure for Table 54E ( $15^{\circ} \mathrm{C}$ Basis)

This section presents the implementation procedure T54 for the computation of Temperature Correction Factor, $C_{T L}$. The $C_{T L}$ is used to calculate volumes of fluid at the base temperature from volumes at some known temperature. The fluids are characterized by the specification of density at the base temperature, $15^{\circ} \mathrm{C}$.

### 5.2.1.1 Inputs and Outputs

Inputs: $\quad$ Density at $15^{\circ} \mathrm{C}, \rho_{15}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
Observed temperature, $T_{F}\left({ }^{\circ} \mathrm{C}\right)$
Output: $\quad$ Temperature Correction Factor, $C_{T L}\left(\right.$ from $T_{F}$ to $\left.T_{B}\right)$

### 5.2.1.2 Outline of Calculations

The calculations are performed using an extended two-fluid corresponding states equation. By comparing densities at $60^{\circ} \mathrm{F}$, two reference fluids are selected so that one is slightly more dense and one that is slightly less dense than the observed fluid. The densities of these reference fluids are then scaled to the observed reduced temperature (reduced by the critical temperature of the fluid of interest). The Temperature Correction Factor is then computed from the reference fluid densities. See Figure 3 for a general flow chart of the calculation procedure.

### 5.2.1.3 T54 Implementation Procedure

## T54/Step Number Operation/Procedure at that step

T54/1: Round the density $\varrho \rho_{15}$ to the nearest 0.1 and round the observed temperature $T_{F}$ to the nearest $0.05^{\circ} \mathrm{C}$.

T54/2: Convert the rounded observed temperature to units of Kelvin, $T_{x}$ :

$$
T_{x}=T_{F}+273.15
$$

T54/3: The resultant temperature $T_{x}$ and density $\varrho_{15} \rho_{15}$ must fall within the following boundariesranges:

Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to $93^{\circ} \mathrm{C}$, or -50.8 to $199.4^{\circ} \mathrm{F}$ )

[^9]
## Density between 351.7 and $687.8 \mathrm{~kg} / \mathrm{m}^{3}$ inclusive

If these values do not fall in these ranges, then the standard does not apply. Flag this result (return a -1 for $C_{T L}$ ) and exit this procedure.

Note: The density boundaries-ranges tested in this step slightly exceed the boundaries ranges used within the T24 implementation procedure ( 0.3500 to 0.6880 relative density at $60^{\circ} \mathrm{F}$ ) that act as the true limits for this method.

T54/4: Convert the $15^{\circ} \mathrm{C}$ density to relative density, relative to the density of water at $60^{\circ} \mathrm{F}$

$$
\gamma_{T B}=\frac{\rho_{15}}{\rho_{w 60}}
$$

At the time of the writing of this standard, the value for the relativeabsolute density of
water at $60^{\circ} \mathrm{F}\left(\rho_{w 60}\right)$ was $999.016 \mathrm{~kg} / \mathrm{m}^{3}$. This wasis the value used for $\rho_{\text {w60 }}$ in the
examples. Refer to API MPMS Chapter 11.4.1 for the most current value of $\rho_{w 60}$

T54/5: Use the procedure described in Section 5.1.2 for Table 23 to compute a relative density at $60^{\circ} \mathrm{F}$ from the known relative density at $15^{\circ} \mathrm{C}$. Enter the procedure at Step $\mathrm{T} 23 / 4$ so as to avoid additional rounding of the input values. Inputs to implementation procedure T 23 are the values of $T_{B K}$ and $\gamma_{T B}$, where $T_{B K}$ is the base temperature $15^{\circ} \mathrm{C}$ in Kelvin ( 288.15 K ) and $\gamma_{T B}$ is the density at the base temperature $15^{\circ} \mathrm{C}$. Implementation procedure T 23 is exited after Step T23/11 so as not to round the output values. The converged output from Step T23/11 is $\gamma_{60}$.

T54/6: The resultant density $\gamma_{60}$, if it were rounded to the nearest 0.0001 , must fall within 0.3500 and 0.6880 inclusive. Test $\gamma_{60}$ to ensure it is within the following boundaries:

Relative density greater than or equal to 0.34995 and less than 0.68805
If the relative density does not fall in this range, then the standard does not apply. Flag this result (return a -1 for $C_{T L}$ ) and exit this procedure.

T54/7: Use the procedure described in Section 5.1.1 for Table 24 to compute the Temperature Correction Factor ( $C_{T L 1}$ ) from $60^{\circ} \mathrm{F}$ to the observed temperature, $T_{x}$. This step provides the factor used to reduce an observed volume at $T_{x}$ to a volume at $60^{\circ} \mathrm{F}$ when the relative density at $60^{\circ} \mathrm{F}, \gamma_{60}$, is known. Enter implementation procedure T24 with $T_{x}$ and $\gamma_{60}$ at Step T24/4 to avoid double rounding of the inputs. On exit skip Step T24/14 to avoid rounding the output, $C_{T L 1}$.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

By definition:

$$
C_{T L 1}=\frac{V_{60}}{V_{T X}}=\frac{\gamma_{T x}}{\gamma_{60}}
$$

T54/8: Use the procedure described in Section 5.1.1 for Table 24 to compute the Temperature Correction Factor ( $C_{T L 2}$ ) from $60^{\circ} \mathrm{F}$ to the new base temperature $15^{\circ} \mathrm{C}$. This step provides the factor used to reduce an observed volume at $15^{\circ} \mathrm{C}$ to a volume at $60^{\circ} \mathrm{F}$ if the relative density at $60^{\circ} \mathrm{F}, \gamma_{60}$, is known. Enter implementation procedure T24 at Step T24/4 to avoid double rounding of the inputs. The inputs are $T_{B K}$ and $\gamma_{60}$, where $T_{B K}$ is the base temperature $15^{\circ} \mathrm{C}$ in Kelvin (288.15 K). On exit skip Step T24/14 to avoid rounding of the output $C_{T L 2}$.

By definition:

$$
C_{T L 2}=\frac{V_{60}}{V_{15}}=\frac{\gamma_{T B}}{\gamma_{60}}
$$

T54/9: Compute the desired $C_{T L}$ to reduce volume from the observed temperature, $T_{F}$, to the base condition of $15^{\circ} \mathrm{C}$. The defining formulas show that the calculation is made by computing the ratio $C_{T L 1} / C_{T L 2}$.

$$
\begin{gathered}
\frac{C_{T L 1}}{C_{T L 2}}=\frac{\left(\frac{V_{60}}{V_{T X}}\right)}{\left(\frac{V_{60}}{V_{15}}\right)}=\frac{V_{15}}{V_{T X}} \\
C_{T L}=\frac{V_{15}}{V_{T x}}=\frac{\gamma_{T x}}{\gamma_{15}}
\end{gathered}
$$

T54/10: Perform error check to ascertain that only positive $C_{T L}$ is used. If $C_{T L}$ is less than or equal to 0 , set an error flag (such as $C_{T L}=-1$ ) and quit.

T54/11: Round the Temperature Correction Factor $C_{T L}$ to the nearest 0.00001 .

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved


### 5.2.1.4 Examples for Section 5.2.2 (Table 54E)

## (See Table 1Table 2 for properties of the Reference Fluids)

## Example 54/1 - UtilizeUse EE (68/32) and Ethane

```
 Input Data to Implementation Procedure T54
Density (kg/m}\mp@subsup{}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{}\mathrm{ Den15) . 352.59
Observed temperature IFTf, }\mp@subsup{}{}{\circ}\textrm{C}\ldots..-45.02
 Computed Data - |ast digit is rounded
 T54/1
 Input Data - rounded
@15Den15, rounded to 0.1
```

```
 352.6 352.6
IETf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.0
```

```45.00 T54/2
IxTx, Kelvin15
T54/3
\(\underline{I}_{x} T_{x}\) and \(\varrho_{15}\) Den 15 are within range, continue
T54/4
\(\varrho_{15}\) Den 15 relativeto \(60^{\circ} \mathrm{F}\) water \(\ldots 0.352947300143\)
T54/5, Call Table 23 procedure to obtain relative density at \(60^{\circ} \mathrm{F}\)
Y60RD60 from Table \(23 \ldots 0.350947981104\)
T54/6
Y60RD60 is within range, continue
T54/7, Call Table 24 Procedure with \(I_{x} T *\) and \(\gamma_{60} R D 60\)
```





```
Reference Fluid 1 Reference Fluid 1...................EE (68/32
Reference Fluid 2 Reference Fluid 2 Ethane
\(C_{\text {ILZ }} 15^{\circ} \mathrm{Cto60}{ }^{\circ} \mathrm{F} \ldots 1.005696910034\)
T54/9 \(C_{T L} C T L=C_{T L 1} \subset T L 1 / C_{T L 2} C T L 2\)
\(\mathrm{C}_{\text {IL }}\), IX \(_{x}\) TX \(\mathrm{t} 015^{\circ} \mathrm{C} \ldots\)
1. 366462039245
T54/10
\(C_{T L} C T L\) is positive, continue
T54/11 CTL_CTL_rounded
\(\underline{C}_{\text {IL_C }} C T L\) (rounded)
1. 36646
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Font: Lucida Console

Formatted: Font: Lucida Console

Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Subscript
Formatted: Font: Italic
Formatted: Font: Italic, Subscript
Formatted: Subscript
Formatted: Font: Italic
Formatted: Font: Italic, Subscript

## Example 54/2 - UtilizeUse Ethane and EP (65/35)

```
 Input Data to Implementation Procedure T54
Density (kg/m}\mp@subsup{)}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\primeDen15) . 399.55
Observed temperature IE IF,}\mp@subsup{}{}{\circ}\textrm{C}\cdots,-3.92
 Computed Data - I ast digit is rounded
 T54/1
 Input Data - rounded
@15Den15, rounded to 0.1 _..... 399.6
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{C}, rounded to 0.05 \ldots.....-3.9
 T54/2
```



```
 T54/3
IxTx and @15Den15 are within range, continue
 T54/4
@15 en15 relative to 600% water —. 0.399993593696
 T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{q}{60RD60 from Table 230.398679750427}{0}
 T54/6
%60RD60 is within range, continue
 T54/7, Call Table 24 Procedure with I_T* and y60RD60
```





```
 T54/8, Call Table 24 Procedure with 15 ' C and r60RD60
Reference Fluid, 1, Ethane
Reference Fluid 2 Reference Fluid 2..................Ethatem(65 35)
\mp@subsup{C}{TL2 CTL2, 150'C to 600}{}\mp@code{F}\ldots.......... 1.003295485330
 T54/9 C CTL CTL = CTL1 CTL1/ C CTL2 CTL2
C_TL_GTL, I_
 T54/10
CTL CTL is positive, continue
T54/11 CTL_ETL_rounded
\mp@subsup{C}{IL_CTL (rounnded) \ldots..................... 1.09812}{l}
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 54/3 - UtilizeUse EP (65/35) and EP (35/65)

```
 I nput Data to Implementation Procedure T54
Density (kg/m) @ 150}\textrm{C}\mathrm{ (@15Den15).451.09
 Observed temperature IETf=,}\mp@subsup{}{}{\circ}\textrm{C}\ldots..30.77
 Computed Data - Iast digit is rounded
 T54/1
 Input Data - rounded
@15Den15, rounded to 0.1 \ldots......451.1
 TFTf,}\mp@subsup{}{}{0}\mp@subsup{}{}{C}\mathrm{ C, rounded to 0.05 %... 30.75
 T54/2
```



```
 T54/3
```



```
 T54/4
@15Den15 relative to 600% water -. 0.451544319610
 T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 \ldots............0.450522856945
 T54/6
760RD60 is within range, continue
 T54/7, Call Table 24 Procedure with I_ I* and _60RD60
Reference Fluid 1 Reference Fluid 1\ldots...........EP (65/35)
Reference Fluid 2 _Reference Fl uid 2 EP (35/65)
```



```
 T54/8, Call Table 24 Procedure with 15 ' C and y60R60
Reference Fluid 1 EP (65/35)
Reference Fluid 2 Reference Fluid 2,E.EP (35/65
\mp@subsup{C}{TL2 CTL2, 150}{}\mp@code{C to 600% F.........1.002267286478}
 T54/9 CTTL CTL = C CTL1 CTL1/ CTLL2 CTL2
\mp@subsup{C}{TLL}{LCTL, I_ I}\mp@subsup{|}{}{\top}+
 T54/10
CTLCTL is positive, continue
 T54/11 CTL CTL_rounded
```



This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 54/4 - UtilizeUse EP (35/65) and Propane

```
 Input Data to Implementation Procedure T54
Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\primeDen15) . 489.92
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}\ldots.%84.97
 Computed Data - I ast digit is rounded
 T54/1
 Input Data - rounded
@15Den15, rounded to 0.1 \ldots.......489.9
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{C}, rounded to 0.05 \ldots.... 85.0
 T54/2
```



```
 T54/3
IxTx and @15Den15 are within range, continue
 T54/4
@15
 T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
260RD60 from Table 23 \ldots.............0.489511777456
 T54/6
q60RD60 is within range, continue
 T54/7, Call Table 24 Procedure with I_T* and r60RD60
Reference Fluid 1 Reference-Fluid 1.............EP(35/65)
```



```
Reference Fluid 2
 T54/8, Cal| Table 24 Procedure with 15 ' C and r60RD6O
```





```
 T54/9 CTL CTL= CTL1 GTL1/ CTLL CTL2
```



```
 T54/10
CTL CTL is positive, continue
T54/11 CTL ETL_rounded
```



This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

## Example 54／5－UtilizeUse Propane and i－Butane

```
 I nput Data to Implementation Procedure T54
Density (kg/m}\mp@subsup{)}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{}Den15) . 539.4
 Observed temperature IETf=,}\mp@subsup{}{}{\circ}\textrm{C}\ldots668.36
 Computed Data - Iast digit is rounded
 T54/1
 Input Data - rounded
@15Den15, rounded to 0.1 \ldots.....539.5
 TFTf,}\mp@subsup{}{}{0}\mp@subsup{}{}{C}\mathrm{ C, rounded to 0.05 %....68.35
 T54/2
IxT*, Kelvin\ldots.................................
 T54/3
IXT* and @⿴囗⿱一一⿰亻⿱丶⿻工二十
 T54/4
@15Den15 relative to 600% water -. 0.540031390889
 T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 \ldots............ 0.539309445177
 T54/6
760RD60 is within range, continue
 T54/7, Call Table 24 Procedure with I_T* and \mp@subsup{\gamma}{60RD60}{\primeO}
Reference Fluid 1 Reference Fluid 1_.............propane
```




```
 T54/8, Call Table 24 Procedure with 15 ' C and y60R60
```




```
\mp@subsup{C}{TL2 CTL2, 150}{}\mp@code{C to 600% F.........1.001338650108}
 T54/9 CTTL CTL = C CTL1 CTL1/ CTTL2 CTL2
C}\mp@subsup{\}{TLL}{LCTL,}\mp@subsup{I}{X}{\primeF
 0.849171482446
 T54/10
CTLCTL is positive, continue
 T54/11 CTL CTL_rounded
\mp@subsup{C}{TL_CTL}{C}

This document is not an API／ASTM／GPA Standard；it is under consideration within an API technical committee but has not received all approvals required to become an API／ASTM／GPA Standard．It shall not be reproduced or circulated or quoted，in whole or in part，outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction．Copyright API／ASTM／GPA．All rights reserved

\section*{Example 54/6 - UtilizeUse i-Butane and n-Butane}
```

    Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\primeDen15) . 569.42
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···..16.09
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···......569.4
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{C}, rounded to 0.05···.....-16.1
T54/2

```

```

    T54/3
    I_Tx and @15Den15 are within range, continue
T54/4
@15 en15 relative to 600% water —. 0.569960841468
T54/5, Call Table 23 procedure to obtain relative density at 600
260RD60 from Table 23 %........... 0.569305082960
T54/6
260RD60 is within range, continue
T54/7, Call Table 24 Procedure with I_ T* and _ %60RD60

```


```

Reference Fl uid 2
T54/8, Call Table 24 Procedure with 15 ' C and r %60RD60

```


```

\mp@subsup{C}{TL2}{CTL2, 15* C to 600}
T54/9 CTL CTL= CTL1 GTL1/ CTLL CTL2

```

```

    T54/10
    CTL CTL is positive, continue
T54/11 CTL ETL_rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/7 - UtilizeUse n-Butane and i-Pentane}
```

    I nput Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{)}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{}Den15) . 599.3
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···..43.36
Computed Data - Iast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 %......599.4
TFTf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···.... 43.3
T54/2
IxT*, Kelvin···.................................
T54/3

```

```

    T54/4
    @_15Den15 relative to 600% water -.. 0.5999990390544
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
%60RD60 from Table 23 ···............ 0.599396660576
T54/6
\mp@subsup{\gamma}{60}{\primeRD60 is within range, continue}
T54/7, Call Table 24 Procedure with IxT* and r60RD60

```

```

Reference Fluid 2 Reference Fluid 2, R'M Pentane

```

```

    T54/8, Call Table 24 Procedure with 15 ' C and %60R00
    ```



```

    T54/9 CTTL CTL = C CTL1 CTL1/ CTLL2 CTL2
    \mp@subsup{C}{TLL}{LCTL, I}
0.947338473281
T54/10
C_TL CTL is positive, continue
T54/11 CTL CTL_rounded
C_TL_CTL_(rounded
0.94734

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/8 - UtilizeUse i-Pentane and n-Pentane}
```

        Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···76.65
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···........624.4
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{}{}{C}, rounded to 0.05 ···..... 76.6
T54/2

```

```

    T54/3
    IxTx and @15Den15 are within range, continue
T54/4
@15
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
260RD60 from Table 23 ···.............0. 024458073820
T54/6
%60RD60 is within range, continue
T54/7, Call Table 24 Procedure with I_T* and y60RD60

```

```

Reference Fluid 2 Reference Fluid 2, n-Pentane
Reference FIuld 2
T54/8, Cal| Table 24 Procedure with 15 ' C and r60RD6O
Reference Fluid, 1, i. Pentane

```

```

\mp@subsup{C}{TL2 CTL2, 150'C to 600}{}\mp@code{F}···.......... 1.000891878859
T54/9 CTLL CTL = CTL1 CTL1/ C CTL2 CTL2
C_TL_ETL, I_
T54/10
CTL CTL is positive, continue
T54/11 CTL_ETL_rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/9 - UtilizeUse n-Pentane and i-Hexane}
```

    I nput Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{)}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{}Den15) . 639.4
Observed temperature IETf=,}\mp@subsup{}{}{\circ}\textrm{C}···..-24.46
Computed Data - Iast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···......639.4
TFTf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···.....-24.4
T54/2

```

```

    T54/3
    ```

```

    T54/4
    @15Den15 relative to 600% water -. 0.640029789313
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{\gamma}{60RD60 from Table 23 ···.............0.0.09504496457}{0}
T54/6
Y60RD60 is within range, continue
T54/7, Call Table 24 Procedure with IxT* and r60RD60
Reference Fluid 1 Reference Fluid 1 ...........n-Pentane
Reference Fluid 2 Reference Fluid 2,.... Hexane

```

```

    T54/8, Call Table 24 Procedure with 15 ' C and %60R00
    Reference Fluid 1 neference Fl uid 1 ...........n- pentane

```

```

\mp@subsup{C}{TL2 CTL2, 150}{}\mp@code{C to 600% F..........1.000821406041}
T54/9 CTTL CTL = C CTL1 CTL1/ CTLL2 CTL2
\mp@subsup{C}{TLL}{\primeCTL, I_}\mp@subsup{I}{X}{TX}\mathrm{ to 150}\textrm{C}···..........
1.056558957827
T54/10
CTLCTL is positive, continue
T54/11 CTL CTL_rounded
\mp@subsup{C}{TL_CTL (rounded) ···....................... 1.05656}{}

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/10 - UtilizeUse i-Hexane and n-Hexane}
```

    Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\prime2}+15) . 659.3
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···.
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···......659.4
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{}{}{C}, rounded to 0.05 ···..... 80.6
T54/2

```

```

    T54/3
    IxTx and @15Den15 are within range, continue
T54/4
@15
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
260RD60 from Table 23 ···.............0. 059551831579
T54/6
q60RD60 is within range, continue
T54/7, Call Table 24 Procedure with I_T* and r60RD60

```

```

Reference Fluid 2 Reference_Fluid 2, n-Hexane
Reference FIuld 2
T54/8, Cal| Table 24 Procedure with 15 ' C and r60RD6O
Reference Fluid l I R Hexane

```

```

\mp@subsup{C}{TL2CTL2, }{15}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to 600}\textrm{F}···.........1.000754538301
T54/9 CTL CTL= CTL1 GTL1/ CTLL CTL2
C_TL_ETL, I_XN to 150'C
T54/10
CTL CTL is positive, continue
T54/11 CTL ETL_rounded
\mp@subsup{C}{IL_CTL (rounded) ···....................0521}{l}

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/11 - UtilizeUse n-Hexane and n-Heptane}
```

        Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{}{}{3}) @ 150'C (\mp@subsup{@}{15}{}Den15) . 669.3
    Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}\ldots.
        Computed Data - Iast digit is rounded
    T54/1
            Input Data - rounded
    @15Den15, rounded to 0.1 ···......669.4
TFIf, }\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 %···.... 82.8
T54/2

```

```

    T54/3
    ```

```

    T54/4
    @15Den15 relative to 600% water -. 0.670059338389
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
%60RD60 from Table 23 ···............0.0.09573371528
T54/6
760RD60 is within range, continue
T54/7, Call Table 24 Procedure with IxT* and r60RD60

```

```

Reference Fluid 2 Reference Fluid 2 ne.n.Heptane

```

```

    T54/8, Call Table 24 Procedure with 15 ' C and y60R60
    ```

```

Reference Fluid 2, Reference Fluid 2,...........................ntane

```

```

    T54/9 C CTL CTL = CTTL1 CTL1/ CTL2 CTL2
    \mp@subsup{C}{TLL}{L}
0.906527536662
T54/10
CTL CTL is positive, continue
T54/11 CTL CTL_rounded
C_TL_CTL_(rounded
0.90653

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/12 - Reduced Temperature (\(T_{b, x} X\) X Greater Than 1.0}

Formatted: Font: Italic
Formatted: Font: Italic, Subscript
```

        Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\primeDen15) . 399.83
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···90.57
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 _...... 399.8
TFTf,}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{C}, rounded to 0.05 ···..... 90.5
T54/2

```

```

    T54/3
    IxTx and @15Den15 are within range, continue
T54/4
@15 15 relative to 600
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{q}{60RD60 from Table 23 ............0.398881468881}{n}
T54/6
_60RD60 is within range, continue
T54/7, Call Table 24 Procedure with IXTx and r60RD60
Reference Fluid 1 Reference EFuid 1%.%.........Ethane
Reference Fluid 2 Reference.Fluid 2 EP (65/35)
Reduced temperature If.n|put data greater than i.o, no solutionils outside the cor
range of the standard
\mp@subsup{C}{TLI}{CTL1, IXX}T* to 600}\textrm{I
Value from Table 24 not valid, no solutionis outside the correlation range of thel standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/13 - Observed Temperature (\(T_{E} \mathbf{T f}\)) < Lower Range Limit}
```

    I nput Data to Implementation Procedure T54
    Density (kg/m) @ 15 % C ( @15Den15).449.56
Observed t emperature IETf,}\mp@subsup{}{}{\circ}\textrm{C}\cdots-46.03
Computed Data - | àst digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···.....449.6

```

```

    T54/2
    ```

```

    T54/3
    F* Input data is outside the range of the standardtess than 227.15, no solution

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/14 - Density at \(15^{\circ} \underline{C}\left(\underline{\rho}_{\underline{1}}\right)<\) Lower Range Limit}
```

    I nput Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{\primeDen15) . 349.59
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···........349.6
TFTf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···..... 4.4
T54/2

```

```

T54/3
Density Input data i s outside the range of the standardless than 351.7, no solut|on

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/15 - Observed Temperature (\(\left.T_{E} \mathbf{T f}\right)>\) Upper Range Limit}
```

    Input Data to Implementation Procedure T54
    Density (kg/m) @ 15 % C ( @15Den15).449.56
Observed temperature \mp@subsup{I}{E}{}Tf=,}\mp@subsup{}{}{\circ}\textrm{C}\cdots...93.03
Computed Data - Iast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···......449.6
TFTf, }\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05···..... 93.0
T54/2

```

```

    T54/3
    Tx Input data is outside the range of the standardgreater than 366.15, no solution

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/16 - Density at \(15^{\circ} \mathrm{C}\left(\rho_{15}\right)>\) Upper Range Limit}
nout Data to Implementation Procedure T54
Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right) @ 15^{\circ} \mathrm{C}\left(\rho_{15} \ln 15\right)\). 687.85
Observed temperature \(T_{E}\) Tf \({ }^{\circ}{ }^{\circ} \mathrm{C} \cdots-17.780\)
Computed Data - I \(\overline{\text { a }}\) t digit is rounded
T54/1
Input Data - rounded
\(\varrho_{15}\) Den 15, rounded to 0.1 \(\ldots . . .687 .9\)
IETf, \({ }^{\circ}{ }^{C}\), rounded to \(0.05 \ldots \ldots-17.80\)
T54/2
I_I*, Kelvin 255.35
T54/3
Denl5lnput data is outside the range of the standardgreater than 687.8, no solut|on

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/17 - Observed Temperature (\(\left.T_{F} \Psi \nsubseteq\right)\) \&and Density at \(15^{\circ} \mathrm{C}\left(\rho_{15}\right)\) Den15 \(=\) Upper range Boundary Limits}
```

        Input Data to Implementation Procedure T54
    Density (kg/m}\mp@subsup{}{}{3})@15\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{15}{}Den15) . 687.8
Observed temperature IE Tf, }\mp@subsup{}{}{\circ}\textrm{C}···..93.02
Computed Data - Iast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 %......687.8

```

```

    T54/2
    ```

```

    T54/3
    ```

```

    T54/4
    @15Den15 relative to 600% water -. 0.688477461822
T54/5, Call Table 23 procedure to obtain relative density at 600
\mp@subsup{r}{60RD60 from Table 23···...............088010661267}{0}
T54/6
%60RD60 is within range, continue
T54/7, Call Table 24 Procedure with I_T* and \mp@subsup{\gamma}{60RD60}{\primeO}

```

```

ReferenceFluid 2 Reference Fluid 2 R_M-Heptane

```

```

    T54/8, Call Table 24 Procedure with 15 ' C and %60R00
    Reference Fluid 1 nemenemane

```

```

\mp@subsup{C}{TL2 CTL2, 15* C to 600% F.......... 1.000678478666}{}
T54/9 CTTL CTL = C CTL1 CTL1/ CTTL2 CTL2
C_TL_CTL, 暞TX to 150
T54/10
CTLCTL is positive, continue
T54/11 CTL CTL rounded
\mp@subsup{C}{TL_ CTL (rounded}{*}
0.89986

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 54/18 - Observed Temperature (\(\left.T_{F} \Psi f\right)\) \&and Density at \(15^{\circ} \mathrm{C}\left(\rho_{15}\right)\) Den15 \(=\) Lower range Boundary Linhits}
```

    Input Data to Implementation Procedure T54
    Density (kg/m3) @ 150'C (\rho15 ( men15) . 351.67
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C
Computed Data - I ast digit is rounded
T54/1
Input Data - rounded
@15Den15, rounded to 0.1 ···.........351.7
IEFF, }\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···.....-46.00
T54/2

```

```

    T54/3
    I_Tx and @15Den15 are within range, continue
T54/4
@15 15 relative to 600% water —. 0.352046413671
T54/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 23 ···.......... 0.350027377993
T54/6
260RD60 is within range, continue
T54/7, Call Table 24 Procedure with IXT* and r60RD60
Reference Fluidl1 Reference_Fluid d 1 %...........EE(68/32)

```

```

Reference Fluid 2
T54/8, Call Table 24 Procedure with 15 ' C and y60RD60
Reference Fluid 1 E E (68/32)
Reference Fluid 2 Reference Fl uid 2,.................Ethanemen

```

```

    T54/9 CTL CTL = CTL1 CTL1/ CTL2 CTL2
    ```

```

    T54/10
    CTL CTL is positive, continue
T54/11 CTL ETL_rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\subsection*{5.2.2 Implementation Procedure for Table 53E (\(15^{\circ} \mathrm{C}\) Basis)}

This section presents the implementation procedure T53 for calculating the densities of NGLs and LPGs at a base conditionsa base condition of \(15^{\circ} \mathrm{C}\) from known measurement temperatures and densities.

Density readings must be corrected for the effect of temperature on the instrument prior to entering the density into the following implementation procedure.

\subsection*{5.2.2.1 Inputs and Outputs}

Inputs: \(\quad\) Density at observed temperature, \(\rho_{x}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)\) Observed temperature, \(T_{F}\left({ }^{\circ} \mathrm{C}\right)\)

Output: \(\quad\) Density at \(15^{\circ} \mathrm{C}, \rho_{15}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)\)

\subsection*{5.2.2.2 Outline of Calculations}

The calculations are done using an extended two-fluid corresponding states equation. Two reference fluids are found that are slightly denser and slightly less dense than the observed fluid by comparing their densities at the observed temperature. Iteration must be performed to determine the value of the fluid's relative density at \(60^{\circ} \mathrm{F}\) such that when the Temperature Correction Factor is applied, the observed relative density is obtained. The "guessed" value for the fluid's relative density at \(60^{\circ} \mathrm{F}\) is constrained to lie between the relative densities at \(60^{\circ} \mathrm{F}\) of these two reference fluids (as upper and lower bounds). As the iterations progress, these upper and lower bounds are "brought together" based upon intermediate calculations. The relative density at \(15^{\circ} \mathrm{C}\) is then computed from the \(60^{\circ} \mathrm{F}\) relative density by using scaling factors between the properties of the two reference fluids.

See Figure 4 for a general flow chart of the calculation procedure.

\subsection*{5.2.2.3 T53 Implementation Procedure}

T53/Step Number Operation/Procedure at that step
T53/1: Round the density \(\rho_{x}\) to the nearest 0.1 and round the observed temperature \(T_{F}\) to the nearest \(0.05^{\circ} \mathrm{C}\).

T53/2: Convert the rounded observed temperature to units of Kelvin, \(T_{x}\) :
\[
T_{x}=T_{F}+273.15
\]

T53/3: Convert the density, \(\rho_{x}\), to relative density, \(\gamma_{\chi}\), relative to the density of water at \(60^{\circ} \mathrm{F}\) :
\[
\gamma_{x}=\frac{\rho_{x}}{\rho_{w 60}}
\]

At the time of the writing of this standard, the value for the absoluterelative density of water at \(60^{\circ} \mathrm{F}\left(\rho_{660} \rho_{60}\right)\) was \(999.016 \mathrm{~kg} / \mathrm{m}^{3}\). This wasis the value used for \(\rho_{w 60 \rho^{2}}\) in the examples. Refer to API MPMS Chapter 11.4.1 for the most current value of \(\rho_{w 60} \mathcal{E}_{w 60}\)

T53/4:__Check the values of temperature and relative density to ensure that they are in * the proper range. The observed temperature \(T_{x}\) and relative density \(\gamma_{x}\) must fall within the following boundariesranges:

Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to \(93^{\circ} \mathrm{C}\), or -50.8 to \(199.4^{\circ} \mathrm{F}\))
Relative density, if it were rounded to the nearest 0.0001 , must fall within 0.2100 and 0.7400 inclusive. Test \(\gamma_{x}\) to ensure it is within the following boundariesranges:

Relative density greater than or equal to 0.20995 and less than 0.74005
If these values do not fall in these ranges, then the standard does not apply. Flag this result (possibly by returning -1 for the density) and exit this procedure.

T53/5: Compute the relative density at \(60^{\circ} \mathrm{F}, \gamma_{60}\), from the temperature and the relative density at the measurement condition, \(\gamma_{x}\). Use the procedure described in Section 5.2.1 for Table 23 to perform this step. Enter the procedure with \(\gamma_{x}\) and \(T_{x}\) at Step T23/4 so as toto avoid additional rounding of the input values. Exit after Step T23/11 to avoid rounding the result.

T53/6: Compute the relative density at \(15^{\circ} \mathrm{C}, \gamma_{15}\), from the relative density at \(60^{\circ} \mathrm{F}\). This is performed by using the procedure described in Section 5.1.1 for Table 24. Enter implementation procedure T24 with \(\gamma_{60}\) and \(T_{x}=288.15\) (e.g. \(273.15+15.00\)). Enter at Step T24/4 to avoid double rounding of the inputs. The \(C_{T L}\) for the conversion between \(\gamma_{60}\) and \(\gamma_{15}\) will be returned without rounding from Step T24/13. Compute \(\gamma_{15}\) :
\[
\gamma_{15}=C_{T L} \times \gamma_{60}
\]

T53/7: Insure that only valid values came from Steps T53/5 and T53/6. If the \(\gamma_{60}\) obtained from Section 5.2 .1 for Table 23 is greater than -1 , then proceed. If not, set the fluid density at \(15^{\circ} \mathrm{C}\) to some flag value such as -1 and quit. If the \(C_{T L}\) from Step T53/6 is negative, then set the fluid density at \(15^{\circ} \mathrm{C}\) to the error flag condition and exit this procedure.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

T53/8: Calculate the fluid density at \(15^{\circ} \mathrm{C}\) from the relative density at \(15^{\circ} \mathrm{C}\).
\[
\rho_{15}=\gamma_{15} \times 999.016
\]

T53/9: Round the fluid density, \(\rho_{15}\), to the nearest 0.1 . Exit this procedure.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\subsection*{5.2.2.4 Examples for Section 5.2.2 (Table 53E)}

\section*{(See Table 1Table 2 for properties of the Reference Fluids)}

\section*{Example 53/1 - UtilizeUse EP (65/35) \&and EP (35/65)}
```

    I nput Data to Implementation Procedure T53
    Density @ obs. temp. (kg/ m}\mp@subsup{}{3}{\prime}) -. 532.5
Observed Temperature IFTf ( }\mp@subsup{}{}{\circ}\textrm{C}) [.- -44.12
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···.... 532.6
Temperature rounded to 0.05 \cdots..-44.10
T53/2
TxT*, Kelvin _................... 229.05
T53/3
Density relative to 600}\mathrm{ water .. 0.533124594601
T53/4
I_I* and rel ative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 ···............ 0.440515294609
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600 F to 15 C

```

```

Relative density at 15 ' C %.... 0.441586840944
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})······.....441.15231949233
T53/9
Density at 15 ' C (rounded) ···...441.2

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/2 - UtilizeUse n-Pentane \&and i-Hexane}
```

    Input Data to Implementation Procedure T53
    Density @ obs. temp. (kg/m3) —.673.66
Observed Temperature IETF ( }\mp@subsup{}{}{\circ}\textrm{C}) [- -23.33
Computed Data - Iast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···....673.7
Temperature rounded to 0.05 ···..-23.35
T53/2
IxF*, Kelvin ···....................49.80
T53/3
Density relative to 600}\mathrm{ water }~0.67436357375
T53/4
I_T* and rel ative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 23 ···..............0. 0.63538685930
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 15 % C

```

```

Relative density at 15 C C.... 0.639065532694
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···.....638.43669220997
T53/9
Density at 15 ' C (rounded) ···...638.4

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/3 - UtilizeUse EP (35/65) \& and Propane}
```

    I nput Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) -. 245.49
Observed Temperature IETf ( }\mp@subsup{}{}{\circ}\textrm{C}
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···..... 245.5
Temperature rounded to 0.05 % 87.75
T53/2
TxT*, Kelvin ···..................................
T53/3
Density relative to 600}\mathrm{ water .- 0. 245741809941
T53/4
Ix Tx and rel ative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 ···............0.488795025411
T53/6, Cal| Table 24 Procedure to obtain CTL CTL from 600% to 15 % C
\mp@subsup{C}{TL_CTL from Table 24···................ 1.001786178364}{7}
Relative density at 15 ' C %... 0.489668100510
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 '0
T53/9
Density at 15 ' C (rounded) ···...4 489.2

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/4 - UtilizeUse n-Butane \& and i-Pentane}
```

    Input Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) _ 499.55
Observed Temperature TFTf ( }\mp@subsup{}{}{\circ}\textrm{C})···87.82
Computed Data - Iast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···.....499.6
Temperature rounded to 0.05 ···}87.8
T53/2

```

```

    T53/3
    Density relative to 600 water }~0.50009209061
T53/4
I_T* and rel ative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 23 ···........... 0.591794896225
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 15 % C
C_IL_CTL from Table 24···..................1.010}
Relative density at 15 C C.... 0. 592402359180
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···.....591.81943525879
T53/9
Density at 15 ' C (rounded) ···...591.8

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/5 - UtilizeUse Ethane \& and EP (65/35)}
```

    I nput Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) -. 395.09
Observed Temperature IE TF ( }\mp@subsup{}{}{\circ}\textrm{C})\quad=15.43
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···......395.1
Temperature rounded to 0.05 %..15.45
T53/2

```

```

    T53/3
    Density relative to 600}\mathrm{ water - 0.395489161335
T53/4
IxT* and relative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 ···...............0. 0. 395233433716
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 15 % C

```

```

Relative density at 15 ' C ..... 0.396574294447
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})~396.18406534156
T53/9
Density at 15 ' C (rounded) ···...396.2

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/6 - UtilizeUse i-Butane \& and n-Butane}
```

    Input Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) _ 449.59
Observed Temperature IFTf ( }\mp@subsup{}{}{\circ}\textrm{C}) [. 93.02
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···.... 449.6
Temperature rounded to 0.05 ···.. 93.00
T53/2

```

```

    T53/3
    Density relative to 600 water }~0.45004284215
T53/4
I_T* and rel ative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600%
Z60RD60 from Table 23 ···............ 0.565490291365
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 15 % C

```

```

Relative density at 15 ' C ···.... 0.566155458114
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···....565.59836114272
T53/9
Density at 15 ' C (rounded) ···... 565.6

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/7 - UtilizeUse i-Hexane \&and n-Hexane}
```

    I nput Data to Implementation Procedure T53
    Density @ obs. temp. (kg/ m}\mp@subsup{}{3}{3}
Observed Temperature IFTf ( }\mp@subsup{}{}{\circ}\textrm{C})
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···....600.7
Temperature rounded to 0.05 %.. 80.65
T53/2

```

```

    T53/3
    Density relative to 600}\mathrm{ water _- 0.601291671004
T53/4
IxT* and relative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 ···..........0.662699711760
T53/6, Call Table 24 Procedure to obtain CTL CTL from 600 F to 15 C
\mp@subsup{C}{TL_CTL from Table 24 ···.............. 1.000745}{\}797303
Relative density at 15 ' C _... 0.663193951418
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})~662.54136856993
T53/9
Density at 15 ' C (rounded) ···...662.5

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/8 __Calculated Relative Density @ \(60^{\circ} \mathrm{F}\left(\gamma_{60}\right)\) RD60 Near 0.6880 Upper Boundary Limit Using N-Hexane \&and NHeptane}
```

    Input Data to Implementation Procedure T53
    Density @obs. temp. (kg/m}\mp@subsup{)}{}{3})\cdots736.8
Observed Temperature IFTf ( }\mp@subsup{}{}{\circ}\textrm{C})\quad-\quad-44.23
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···....736.8
Temperature rounded to 0.05 ···-44.25
T53/2

```

```

    T53/3
    Density relative to 600}\mathrm{ water =- 0.737525725314
T53/4
IXT* and relative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 23 ............0.687974688885
T53/6, Cal| Table 24 Procedure to obtain CTL CTL_from 600 F to 15 ' C
C_IL_CTL from Table 24···................000678561307
Relative density at 15 ' C ···... 0.688441521889
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 *}\mp@subsup{}{}{\circ}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···....687.76409543126
T53/9
Density at 15 ' C (rounded) ···...687.8

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/9 __Calculated Relative Density @ 60 \({ }^{\circ} \mathrm{F}\left(\gamma_{60}\right)\) RD60 Near 0.3500 Lower Boundary Limit Using EE (68/32) á\& \(\underline{\text { nd }}\) Ethane}
```

    Input Data to Implementation Procedure T53
    Density@obs.temp.(kg/m}\mp@subsup{|}{}{3}
Observed Temperature IEFF ( }\mp@subsup{}{}{\circ}\textrm{C})\cdots\quad30.68
Computed Data - Iast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1
224.6
Temperature rounded to 0.05 % 30.70
T53/2
IxT*, Kelvin ................... 303.85
T53/3
Density relative to 600 water - 0.224821224084
T53/4
IXT* and relative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600 F
\mp@subsup{V}{60RD60 from Table 23 ............ 0.350001829424}{0}
T53/6, Call Table 24 Procedure to obtain CTL GTL_from 600 F to 15 ' C

```

```

Relative density at }1\mp@subsup{5}{}{\circ}\textrm{C}···...0.35202142057
T53/7, Values returned from Tables 23 \&and 24 valid, continue
T53/8
Density at 15 '0
T53/9
Density at }1\mp@subsup{5}{}{\circ}\textrm{C}(rounded) ···... 351.

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
```

Example 53/10 - Relative Density at Observed Temperature ( }\mp@subsup{~}{x}{}\mathrm{ T23/6, RDtf L< Lower Boundary Using EE (68/32) \&and
Ethane

```
```

    I nput Data to |mplementation Procedure T53
    ```
 I nput Data to |mplementation Procedure T53
Density@ @obs. temp. (kg/mm) — 339.63
Density@ @obs. temp. (kg/mm) — 339.63
Observed Temperature IFTf (}\mp@subsup{}{}{\circ}\textrm{C})\cdots\quad18.13
Observed Temperature IFTf (}\mp@subsup{}{}{\circ}\textrm{C})\cdots\quad18.13
 Computed Data - Iast digit is rounded
 Computed Data - Iast digit is rounded
 T53/1
 T53/1
 Input Data - rounded
 Input Data - rounded
Density, rounded to 0.1 \ldots.... 339.6
Density, rounded to 0.1 \ldots.... 339.6
Temperature rounded to 0.05 \ldots 18.15
Temperature rounded to 0.05 \ldots 18.15
 T53/2
```

    T53/2
    ```


```

    T53/3
    ```
 T53/3
Density relative to 600}\mathrm{ water - 0.339934495544
Density relative to 600}\mathrm{ water - 0.339934495544
 T53/4
 T53/4
I_T* and relative density are within range, continue
I_T* and relative density are within range, continue
 T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
 T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
z60RD60 from Table 23 \ldots............ - 1.0
z60RD60 from Table 23 \ldots............ - 1.0
Hnput data-Data is outside the fange-correl ation range of Fable 23, no solutionthe standard
```

Hnput data-Data is outside the fange-correl ation range of Fable 23, no solutionthe standard

```
Formatted: Font: Italic, Subscript

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
 Heptane
```

    Input Data to Implementation Procedure T53
    Density @obs. temp. (kg/m}\mp@subsup{}{}{3})\cdots727.8
Observed Temperature IEFF ( }\mp@subsup{}{}{\circ}\textrm{C})=-\quad-33.07
Computed Data - |ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···.....727.9
Temperature rounded to 0.05 ···... - 3.05
T53/2
I_T*, Kelvin ···.......................40
T53/3
Density relative to 600}\mathrm{ water - 0.728616959088
T53/4
I_I* and relative density are within range, continue
T53/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{7}{60}{\primeRD60 from Table 23···............. - 1.0}
Hnput data-Data is outside the fangecorrelation range of Fable 23, no solutionthe standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\(\qquad\)

\section*{Example 53/12 - Density-Input Density < Input Range Limit}
```

    Input Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) —. 209.74
Observed Temperature IE TF ( }\mp@subsup{}{}{\circ}\textrm{C}) =. 11.53
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···.... 209.7
Temperature rounded to 0.05 ···..11.55
T53/2
IxT*, Kelvin _................ 284.70
T53/3
Density relative to 600}\mathrm{ water =.0.209906548043
T53/4
Relative density is Hess than 0.210020995, no solutionoutside the input range of \& he

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/13 - Input Density > Input Range Limit}

I nput Data to Implementation Procedure T53
Density @ obs. temp. (kg/m²) 739.3235
Observed Temperature \(I_{F}\) Ff \(\left({ }^{\circ} \mathrm{C}\right) \ldots 11.530\)
Computed Data - I ast digit is rounded
T53/1
I nput Data - rounded
Density, rounded to 0.1 \(\ldots 739.34\)
Temperature rounded to \(0.05 \ldots 11.55\)
T53/2

T53/3
Density relativeto \(60^{\circ}\) water -0.7401282862340 .740028187737
T53/4
Relative density is outside the input range of the standardgreater than or equal to
0.74005 , no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/14 - Input Temperature < Input Range Limit}
```

    Input Data to Implementation Procedure T53
    Density @ obs. temp. (kg/mm) —.645.62
Observed Temperature TFTf ( }\mp@subsup{}{}{\circ}\textrm{C}) _. -46.03
Computed Data - I ast digit is rounded
T53/1
Input Data - rounded
Density, rounded to 0.1 ···....645.6
Temperature rounded to 0.05 ···..-46.05
T53/2
TxI*, Kelvin ···...................... 227.10
T53/3
Density relative to 600}\mathrm{ water .. 0.646235896122
T53/4
Ix}\mp@subsup{|}{*}{*}\mathrm{ Less than 227.15, no solutioni s outside the input range of the standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 53/15 - Input Temperature > Input Range Limit}

I nput Data to Implementation Procedure T53
Density @ obs. temp. (kg/m³) —. 645.62
Observed Temperature IE TF \(\left({ }^{\circ} \mathrm{C}\right) \Longrightarrow \quad 93.070\)
Computed Data - I ast digit is rounded
T53/1
I nput Data - rounded
Density, rounded to \(0.1 \ldots 645.6\)
Temperature rounded to \(0.05 \ldots 93.05\)
T53/2
IxT*, Kelvin 366.20
T53/3
Density relative to \(60^{\circ}\) water \(-\quad 0.646235896122\)
T53/4
I \(\underline{x}^{T *}\) is outside the input range of the standardgreater than 366.15, no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\subsection*{5.3 CTL (Table 60) and Density (Table 59) for NGL and LPG using a \(20^{\circ} \mathrm{C}\) Base Temperature}

\subsection*{5.3.1 Implementation Procedure for Table 60E (\(20^{\circ} \mathrm{C}\) Basis)}

This section presents the implementation procedure T60 for the computation of Temperature Correction Factors, \(C_{T L}\). The \(C_{T L} S\) are used to calculate volumes of fluid at the base temperature from volumes at some known temperature. The fluids are characterized by the specification of density at the base temperature, \(20^{\circ} \mathrm{C}\).

\subsection*{5.3.1.1 Inputs and Outputs \\ Inputs: \(\quad\) Density at \(20^{\circ} \mathrm{C}, \rho_{20}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)\) \\ Observed temperature, \(T_{F}\left({ }^{\circ} \mathrm{C}\right)\) \\ Output: \(\quad\) Temperature Correction Factor, \(C_{T L}\) (from \(T_{F}\) to \(T_{B}\))}

\subsection*{5.3.1.2 Outline of Calculations}

The calculations are performed using an extended two-fluid corresponding states equation. By comparing densities at \(60^{\circ} \mathrm{F}\), two reference fluids are selected so that one is slightly more dense and one that is slightly less dense than the observed fluid. The densities of these reference fluids are then scaled to the observed reduced temperature (reduced by the critical temperature of the fluid of interest). The Temperature Correction Factor is then computed from the reference fluid densities. See Figure 5 for a general flow chart of the calculation procedure.

\subsection*{5.3.1.3 T60 Implementation Procedure}

T60/Step Number Operation/Procedure at that step
T60/1: Round the density \(\varrho_{\rho_{20}}\) to the nearest 0.1 and round the observed temperature \(T_{F}\) to the nearest \(0.05^{\circ} \mathrm{C}\).

T60/2: Convert the rounded observed temperature to units of Kelvin, \(T_{x}\) :
\[
T_{X}=T_{F}+273.15
\]

T60/3: The resultant temperature \(T_{x}\) and \(\rho \rho_{20}\) must fall within the following boundariesranges:
Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to \(93^{\circ} \mathrm{C}\), or -50.8 to \(199.4^{\circ} \mathrm{F}\))

Density between 331.7 and \(683.6 \mathrm{~kg} / \mathrm{m}^{3}\) inclusive
If these values do not fall in these ranges, then the standard does not apply. Flag this result (possibly by returning a -1 for \(C_{T L}\)) and exit this procedure.

Note: The density boundaries ranges tested in this step slightly exceed the boundaries ranges used within the T24 implementation procedure (0.3500 to 0.6880 relative density at \(60^{\circ} \mathrm{F}\)) that act as the true limits for this method.

T60/4: Convert the \(20^{\circ} \mathrm{C}\) density to relative density, relative to the density of water at \(60^{\circ} \mathrm{F}\) :
\[
\gamma_{T B}=\frac{\rho_{20}}{999.016}
\]

T60/5: Use the procedure described in Section 5.1.2 for Table 23 to compute a relative density at \(60^{\circ} \mathrm{F}\) from the known relative density at \(20^{\circ} \mathrm{C}\). Enter the procedure at Step \(\mathrm{T} 23 / 4\) so as toto avoid additional rounding of the input values. Inputs to Procedure T23 are the values of \(T_{B K}\) and \(\gamma_{T B}\), where \(T_{B K}\) is the base temperature \(20^{\circ} \mathrm{C}\) in Kelvin (293.15 K) and \(\gamma_{T B}\) is the density at the base temperature \(20^{\circ} \mathrm{C}\). Implementation procedure T 23 is exited after Step T23/11 so as not to round the output values. The converged output from Step T23/11 is \(\gamma_{60}\).

T60/6: The resultant density \(\gamma_{60}\), if it were rounded to the nearest 0.0001 , must fall within 0.3500 and 0.6880 inclusive. Test \(\gamma_{60}\) to ensure it is within the following boundariesranges:

Relative density greater than or equal to 0.34995 and less than 0.68805
If the relative density does not fall in this range, then the standard does not apply. Flag this result (return a -1 for \(C_{T L}\)) and exit this procedure.

T60/7: Use the procedure described in Section 5.1.1 for Table 24 to compute the Temperature Correction Factor (\(C_{T L 1}\)) from \(60^{\circ} \mathrm{F}\) to the observed temperature, \(T_{x}\). This step provides the factor used to reduce an observed volume at \(T_{x}\) to a volume at \(60^{\circ} \mathrm{F}\) when the relative density at \(60^{\circ} \mathrm{F}, \gamma_{60}\), is known. Enter implementation procedure T24 with \(T_{x}\) and \(\gamma_{60}\) at Step T24/4 to avoid double rounding of the inputs. On exit skip Step T24/14 to avoid rounding the output \(C_{T L 1}\).

By definition:
\[
C_{T L 1}=\frac{V_{60}}{V_{T X}}=\frac{\gamma_{T X}}{\gamma_{60}}
\]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

T60/8: Use the procedure described in Section 5.1.1 for Table 24 to compute the Temperature Correction Factor (\(C_{T L 2}\)) from \(60^{\circ} \mathrm{F}\) to the new base temperature \(20^{\circ} \mathrm{C}\). This step provides the factor used to reduce an observed volume at \(20^{\circ} \mathrm{C}\) to a volume at \(60^{\circ} \mathrm{F}\) when the relative density at \(60^{\circ} \mathrm{F}\), \(\gamma_{60}\), is known. Enter implementation procedure T24 at Step T24/4 to avoid double rounding of the inputs. The inputs are \(T_{B K}\) and \(\gamma_{60}\), where \(T_{B K}\) is the base temperature \(20^{\circ} \mathrm{C}\) in Kelvin (293.15 K). On exit skip Step T24/14 to avoid double rounding of the output \(C_{T L 1}\).

By definition:
\[
C_{T L 2}=\frac{V_{60}}{V_{20}}=\frac{\gamma_{T B}}{\gamma_{60}}
\]

T60/9: Compute the desired \(C_{T L}\) to reduce volume from the observed temperature, \(T_{x}\), to the base condition of \(20^{\circ} \mathrm{C}\). The defining formulas show that the calculation is made by computing the ratio \(C_{T L 1} / C_{T L 2}\).
\[
\begin{aligned}
& \frac{C_{T L 1}}{C_{T L 2}}=\frac{\left(\frac{V_{60}}{V_{T x}}\right)}{\left(\frac{V_{60}}{V_{20}}\right)}=\frac{V_{20}}{V_{T x}} \\
& C_{T L 1}=\frac{V_{20}}{V_{T x}}=\frac{\rho_{T x}}{\rho_{20}}
\end{aligned}
\]

T60/10: Perform error check to ascertain that only positive \(C_{T L}\) is used. If \(C_{T L}\) is less than or equal to 0 , set an error flag (such as \(C_{T L}=-1\)) and exit this procedure.

T60/11: Round the Temperature Correction Factor \(C_{T L}\) to the nearest 0.00001 . Exit this procedure.

\(\qquad\)

\subsection*{5.3.1.4 Examples for Section 5.3.1 (Table 60)}

\section*{(See Table 1Table 2 for properties of the Reference Fluids)}

\section*{Example 60/1 - UtilizeUse EE (68/32) and Ethane}

Input Data to Implementation Procedure T60
Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right) ~ @ ~ 20^{\circ} \mathrm{C}\left(\rho_{p e n 20}\right) .332 .69\)
Observed temperature \(I_{E}\) If, \({ }^{\circ} \mathrm{C} \ldots-5.020\)
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
\(\rho_{20}\) Den 20 , rounded to \(0.1 \ldots 332.7\)
 T60/2
I_ I*, Kelvin \(\ldots \ldots \ldots\) 268.15 T60/3
\(I_{x}{ }^{T} x\) and \(\varrho_{20} D e n 20\) are within range, continue
T60/4
@20Den20 relative to \(60^{\circ} \mathrm{F}\) water .-. 0.333027699256
T60/5, Call Table 23 procedure
y 60 RD60 from Table \(23 \ldots 0.10 .1050810339452\)
T60/6
z60060 is within range, continue
T6017, Call Table 24 Procedure with \(I_{x} T^{*}\) and \(y_{60 \text { RDGO }}\)
Reference Fluid 1 Reference Fluid 1.................EE (68/32)

CTL2CTL2, \(20^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{F} \ldots\).
T60/9 \(C_{T L} C T L=C_{T L 1} C T L 1 / C_{T L 2} C T L 2\)

T60/10
\(C_{T L}\) CTL is positive, continue
T60/11 CTL CTL-rounded
\(C_{\text {TL_ }} \in T L(\) rounded \() \ldots 1.22648\)

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/2 - UtilizeUse Ethane and EP (65/35)}
```

    I nput Data to Implementation Procedure T60
    Density (kg/m3) @ 200}\textrm{C}(\mp@subsup{\textrm{m}}{20}{\prime}Den20) . 399.55
Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}······-3.92
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 %........399.6
TFTf,}\mp@subsup{}{}{0}\mp@subsup{C}{1}{\prime}, rounded to 0.05 ···.....-3.9
T60/2

```

```

    T60/3
    IXT** and \varrho20Den20 are within range, continue
T60/4
@zoden20 relative to 600}\textrm{F}\mathrm{ water -. 0.3999993593696
T60/5, Call Table 23 procedure
_60RD60 from Table 23 ···............0.410257484971
T60/6
Y60RD60 is within range, continue
T60/7, Call Table 24 Procedure with Ix}\mp@subsup{I}{x}{\prime
Reference Fluid 1 Reference Fluid 1...........E.Ethane
Reference Fluid 2 Reference Fluid 2 EMEM(65/35)

```

```

    T60/8, Call Table 24 Procedure with 200}\textrm{C}\mathrm{ and %60R60
    Reference Fluid 1 Reference Fl uid l 1..............Ethane
Reference Fluid 2 Reference Fluid 2_E.E.E.E(65/35)
\mp@subsup{C}{TL2 CTL2, 200}{}\mp@code{C to 600% F......... 0.974981830112}
T60/9 CTTL CTL = C CTL1 CTL1/ CTTL2 CTL2
C}\mp@subsup{C}{TL_CTL,}{\prime}\mp@subsup{I}{X}{}\mp@subsup{T}{X}{\prime}+0 2\mp@subsup{0}{}{\circ}\textrm{C}···.
1.122316862527
T60/10
CTLCTL is positive, continue
T60/11 CTL CTL rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/3 - UtilizeUse EP (65/35) and EP (35/65)}
```

    Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20}{\primeO
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···.
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···......451.1
IETf,}\mp@subsup{}{}{\circ}\mp@subsup{C}{}{C}, rounded to 0.05 ···.... 30.7
T60/2

```

```

    T60/3
    I_Tx and g2oDen20 are within range, continue
T60/4
\rho20Den20 relative to 600
T60/5, Call Table 23 procedure
\mp@subsup{q}{60RD60 from Table 23 ........... 0.459584427423}{0}
T60/6
_60RD60 is within range, continue
T6017, Call Table 24 Procedure with IXT* and r60RD60
Reference Fluid 1 Reference FFluid 1_...........EP (65/35)

```


```

    T60/8, Call Table 24 Procedure with 20 % C and %60RD60
    Reference Fluid,1

```

```

\mp@subsup{C}{TL2CTL2,}{}20\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to 600}\textrm{F}···..........0.982505700078
T60/9 C CTL CTL = CTL1 CTL1/ CTLL CTL2

```

```

    T60110
    CTL CTL is positive, continue
T60/11 CTL ETL_rounded
C_IL_CTL_(rounnded) ···.....................05341

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/4 - UtilizeUse EP (35/65) and Propane}
```

    I nput Data to Implementation Procedure T60
    Density (kg/m3) @ 200}\textrm{C}(\mp@subsup{\textrm{m}}{20}{\prime}Den20).489.92,
Observed temperature IE If=, }\mp@subsup{}{}{\circ}\textrm{C}···84.97
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 %.....489.9
TETf, 吅员, rounded to 0.05 ······........00
T6012

```

```

    T60/3
    IXT* and @20Den20 are within range, continue
T60/4
@2oDen20 relative to 600}\textrm{F}\mathrm{ water -.. 0.490382536416
T60/5, Call Table 23 procedure
_60RD60 from Table 23···..............0.497272599314
T60/6

```

```

Reference Fluid 1 Reference Fluid 1···...........EP(35/65)
Reference Fluid 2 Reference Fluid 2, mPropane

```

```

    T60/8, Call Table 24 Procedure with 20 % C and %60RD60
    ```


```

\mp@subsup{C}{TL2}{CTL2, 200}\textrm{C}\mathrm{ t 0 600}\textrm{F}······.......0.986144294080
T60/9 CTTL CTL = C CTL1 CTL1/ CTLL2 CTL2

```

```

    0.668310154886
    T60/10
    CTLCTL is positive, continue
T60/11 CTLLCTL rounded
\mp@subsup{C}{TL_ CTL (rounded)}{*}
0.66831

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/5 - UtilizeUse Propane and i-Butane}
```

    Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20}{\primeO
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···..68.36
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1···........539.5

```

```

    T60/2
    ```

```

    T6013
    Ix}\mp@subsup{|}{}{7
T60/4
@20Den20 relative to 600% water -- 0.540031390889
T60/5, Call Table 23 procedure
\mp@subsup{q}{60RD60 from Table 23 ........... 0.545748636061}{0}
T60/6
260RD60 is within range, continue
T6017, Call Table 24 Procedure with IXT* and r60RD60

```


```

Reference FIuld 2
T60/8, Call Table 24 Procedure with 20 % and r60RD60

```



```

    T6019 CTLGTL = CTL1 GTLH/ CTLLETLZ
    ```

```

    T60/10
    CTL CTL is positive, continue
T60/11 CTL_ETL rounded
C_IL_CTL_(roünded) ···.....................06567

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/6 - UtilizeUse i-Butane and n-Butane}
```

        Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{}{}{3}) @ 200'C (@2oDen20) . 569.4
Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}···..-16.09
Computed Data - Iast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···...... 569.4
IFIf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···....-16.1
T60/2

```

```

    T60/3
    IxT* and @20Den20 are within range, continue
T60/4
@zoDen20 relative to 600% water -.. 0.569960841468
T60/5, Call Table 23 procedure
_60RD60 from Table 23 ···............0.575142670956
T60/6
Y60RD60 is within range, continue
T6017, Call Table 24 Procedure with IXT* and r60RD60
Reference Fluid 1 Reference Fluid 1_.........i.But - Bane

```


```

    T60/8, Call Table 24 Procedure with 200}\textrm{C}\mathrm{ and %60R60
    ```

```

Reference Fluid 2
T60/9 CTTL CTL = C CTL1 CTL1/ CTTL2 CTL2
\mp@subsup{C}{TL}{*}CTL,}\mp@subsup{I}{X}{}\mp@subsup{T}{X}{\prime}\mathrm{ to 200
1.070376606170
T60/10
CTLCTL is positive, continue
T60/11 CTL CTL rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/7 - UtilizeUse n-Butane and i-Pentane}
```

    Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20}{\primeO
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···43.36
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1···599.4
IETf,, }\mp@subsup{}{}{\circ}\textrm{C},\quad\mathrm{ rounded to 0.05 %.... 43.35
T60/2

```

```

    T6013
    I_Tx and g2oDen20 are within range, continue
T60/4
@20Den20 relative to 600% water -- 0.599990390544
T60/5, Call Table 23 procedure
\mp@subsup{q}{60RD60 from Table 23 ........... 0.604700215005}{0}
T60/6
260RD60 is within range, continue
T60/7, Call Table 24 Procedure with I_ TX and y60RDGO

```


```

Reference Fluid 2
T60/8, Call Table 24 Procedure with 200}\textrm{C}\mathrm{ and % %60RD60

```


```

\mp@subsup{C}{TL2 CTL2, }{20}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to 600}\textrm{F}···..............0. 0. 92211317977
T6019 CTL GTL = CTL1 GTLH\ CTLL GTLZ

```

```

    T60/10
    CTL CTL is positive, continue
T60/11 CTL ETL rounded
C_IL_CTL_(rounnded) ···.....................05706

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/8 - UtilizeUse i-Pentane and n-Pentane}
```

        I nput Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{}{}{3}) @ 200'C (@2oDen20) . 624.4
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···..76.65
Computed Data - Iast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···......624.4
TFTf, '0}\textrm{C}, rounded to 0.05··· 76.6
T60/2
I_T*, Kelvin···..................................
T60/3
IxT* and @20Den20 are within range, continue
T60/4
g2oden20 relative to 600% water -. 0.625015014775
T60/5, Call Table 23 procedure
_60RD60 from Table 23···....................0293888813227
T60/6
Y60RD60 is within range, continue
T6017, Call Table 24 Procedure with IXT* and r60RD60
Reference Fluid 1 Reference Fluid 1 ...........i-i - Pentane
Reference Fluid 2, Reference Fluid 2,...n-Pentane

```

```

    T60/8, Call Table 24 Procedure with 200'C and %60R00
    ```

```

Reference Fluid 2 Reference Fluid 2 ...........n- nentane
\mp@subsup{C}{TL2 CTL2, 200}{}\mp@code{C to 600% F.......... 0.993050721018}
T60/9 C CTL CTL = CTTL1 CTL1/ CTL2 CTL2
CTLGTL, TXT* to }2\mp@subsup{0}{}{\circ}\textrm{C
0.903183990019
T60/10
CTLCTL is positive, continue
T60/11 CTL CTL rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/9 - UtilizeUse n-Pentane and i-Hexane}
```

    Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20}{\primeO
Observed temperature IE IF,}\mp@subsup{}{}{\circ}\textrm{C}\cdots,-24.46
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1···........639.4
TFFf,, }\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···....-24.4
T60/2

```

```

    T60/3
    I_Tx and g2oDen20 are within range, continue
T60/4
\rho20Den20 relative to 600
T60/5, Call Table 23 procedure
\mp@subsup{q}{60RD60 from Table 23 ........... 0.644192277735}{0}
T60/6
q60RD60 is within range, continue
T60/7, Call Table 24 Procedure with IXT* and r60RD60

```

```

Reference FIuid 2 Reference Fluid 2 H. Hexane
Reference flleTL1, I_
T60/8, Call Table 24 Procedure with 20 % C and %60RD60
Reference Fluid 1, n- pentane

```


```

    T60/9 CTL GTL = CTL1 GTLH1 CTLLGTLZ
    ```

```

    T60/10
    CTL CTL is positive, continue
T60/11 CTL ETL rounded
\mp@subsup{C}{IL_CTL (rounded) ···...................... 1.06325}{l}

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/10 - UtilizeUse i-Hexane and n-Hexane}
```

    I nput Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{)}{}{3})@2\mp@subsup{0}{}{\circ}\textrm{C}(\mp@subsup{@}{20Den20) . 659.38}{0
    Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}\ldots.
        Computed Data - Iast digit is rounded
    T60/1
    Input Data - rounded
    @20Den20, rounded to 0.1 ···......659.4
TFTf, '0}\mp@subsup{}{}{\circ}\mathrm{ C, rounded to 0.05 %.... 80.60
T60/2

```

```

    T60/3
    IxT* and @20Den20 are within range, continue
T60/4
g2oDen20 relative to 600% water % 0. 0.660049488697
T60/5, Call Table 23 procedure
\mp@subsup{\gamma}{60}{\primeRD60 from Table 23 ···..........0.0.064004852143}
T60/6
760RD60 is within range, continue
T60/7, Call Table 24 Procedure with I_T* and \mp@subsup{y}{60}{\prime}D60
Reference Fluid 1 Reference Fluid 1 ···..........i-Hexane

```


```

    T60/8, Call Table 24 Procedure with 200'C and %60R00
    ```

```

Reference Fluid 2 Reference Fluid 2 ................n-Hexane
\mp@subsup{C}{TL2 CTL2, 200}{}\mp@code{C to 600% ···......... 0.994043170870}
T60/9 C CTL CTL = CTTL1 CTL1/ CTL2 CTL2
\mp@subsup{C}{TL}{L}
T60/10
CTL_CTL is positive, continue
T60/11 CTL CTL rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/11 - UtilizeUse n-Hexane and n-Heptane}
```

    Input Data to Implementation Procedure T60
    Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20}{\primeO
Observed temperature IE TF, }\mp@subsup{}{}{\circ}\textrm{C}···82.79
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···.....669.4
IEFf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···.... 82.8
T60/2

```

```

    T60/3
    I_Tx and g2oDen20 are within range, continue
T6014
\rho20Den20 relative to 600
T60/5, Call Table 23 procedure
_60RD60 from Table 23 ···......... 0.673917506957
T60/6
_60RD60 is within range, continue
T60/7, Call Table 24 Procedure with IXT* and y60RD60

```


```

Reference flleTL1, I_
T6018, Call Table 24 Procedure with 20 % and r60RD6O
Reference FIuid 1, n- Hexane

```


```

    T60/9 CTLL CTL = CTL1 CTL1/ CTTL CTL2
    ```

```

    T60110
    CTL CTL is positive, continue
T60/11 CTL_ETL_rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/12 - Reduced Temperature \(\left(T_{i} \times x\right)\) Greater Than 1.0}
```

        Input Data to Implementation Procedure T60
    Density (kg/m3) @ 200}\textrm{C}(\mp@subsup{\textrm{m}}{2}{\prime}Den20) . 399.83
    Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}\ldots..990.57
            Computed Data - Iast digit is rounded
        T60/1
            Input Data - rounded
    @20Den20, rounded to 0.1

```
\(\qquad\)
``` 399.8
TFTf, '0}\mp@subsup{}{}{\circ},\quad\mathrm{ rounded to 0.05 %.... 90.55
    T60/2
IxT*, Kelvin\ldots..................................
    T60/3
IxT* and @20Den20 are within range, continue
    T60/4
@2oDen20 relative to 600% water -.. 0.400193790690
    T60/5, Call Table 23 procedure
_60RD60 from Table 23 \ldots............0.410447384415
    T60/6
Y60RD60 is within range, continue
    T60/7, Call Table 24 Procedure with I_I* and _60RD60
Reference Fluid 1 Reference Fluid 1 .............E.Ethane
Reference Fluid 2 Reference Fluid 2 EP (65/35)
Reduced temperature Tr, x greater than 1.0, no solutionis outside the range of the standard
C
Value from Table 24 is outside the correlation range of the standardnot valid, no solution
```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\qquad

Example 60/13 - Observed Temperature (T_{E} LT $\mathrm{Tf}<$ Lower Range Limit

Formatted: Font: Times New Roman, Bold
Formatted: Not Superscript/ Subscript

```
    Input Data to Implementation Procedure T60
Density (kg/m}\mp@subsup{}{}{3})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{2}{\primeO
Observed temperature IETf, }\mp@subsup{}{}{\circ}\textrm{C
    Computed Data - I ast digit is rounded
    T60/1
    Input Data - rounded
@20Den20, rounded to 0.1 \ldots......449.6
IEFf,}\mp@subsup{}{}{\circ}\mp@subsup{}{}{C}\mathrm{ , rounded to 0.05 _.....-46.05
    T60/2
Ix I*, Kelvin \ldots....................227.10
T60/3
IxT* is outside the input range of the standardtess than 227.15, no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/14 - Density at \(20^{\circ} \mathrm{C}\left(\rho_{20}\right)<\) Lower Range Limit}
```

 I nput Data to Implementation Procedure T60
 Density (kg/m}\mp@subsup{\textrm{m}}{}{3})@2\mp@subsup{0}{}{\circ}\textrm{C}(\mp@subsup{\rho}{20Den20) . 331.59}{0
Observed temperature IETf=,}\mp@subsup{}{}{\circ}\textrm{C}\cdots%64.44
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···........331.6
IEFf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···...64.4
T60/2
I_T*, Kelvin···..................................
T60/3
Density-Density at 200}\textrm{C}\mathrm{ i s outside the input range of the standardless than 331.7, no

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/15 - Observed Temperature ( \(\boldsymbol{T}_{\text {EL }}\) Tf \(>\) Upper Range Limit}
```

 I nput Data to Implementation Procedure T60
 Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@20\mp@subsup{}{}{\circ}\textrm{C}(\mp@subsup{\rho}{2}{\primeODen20) . 449.56
Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}···..99.03
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1 ···......449.6
IEFf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05 ···..... 93.0
T60/2

```

```

-T60/3
I_}\mp@subsup{|}{*}{*}\mathrm{ is outside the input range of the standardgreater than 366.15, no solution

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 60/16 - Density at \(\mathbf{2 0}^{\circ} \mathrm{C}>\) Upper Range Limit}
```

 Input Data to Implementation Procedure T60
 Density (kg/m}\mp@subsup{)}{}{3})@2\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ (g2oDen20) . 683.65
Observed temperature IETf=, }\mp@subsup{}{}{\circ}\textrm{C}···..-17.78
Computed Data - Iast digit is rounded
T60/1
Input Data - rounded
@20Den20, rounded to 0.1
···.......683.7
CEF, rounded to 0.05 ···....-17.80
T60/2

```

```

 T60/3
 Density at 2 20 C is outside the input range of the standardgreater than 683.6, no solution

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\(\qquad\)

\section*{Example 60/17 - Observed Temperature ( \(\left.T_{E} \mp \mp\right)\) \& and Density at \(20^{\circ} \mathrm{C}\left(\rho_{20}\right)=\) Upper Range Limits}
```

 I nput Data to Implementation Procedure T60
 Density (kg/m}\mp@subsup{\textrm{m}}{}{\prime})@2\mp@subsup{0}{}{\circ}\textrm{C}(\mp@subsup{\varrho}{20}{}Den20).683.6
Observed temperature TE
Computed Data - I ast digit is rounded
T60/1
Input Data - rounded
\rho20Den20, rounded to 0.1 %.......683.6
IEFf,}\mp@subsup{}{}{\circ}\textrm{C}, rounded to 0.05···9.%.0
T60/2

```

```

 T60/3
 I}T* and \mp@subsup{\rho}{20Den20 are within range, continue}{
T60/4
\rho2oDen20 relative to 600
T60/5, Call Table 23 procedure
%60060 from Table 23···.............0.688015480920
T60/6
%60RD60 is within range, continue
T60/7, Call Table 24 Procedure with I
Reference Fluid 1 Reference Fl uid 1n- Hexane
Reference Fluid 2 _Reference fluid 2,...............n-Heptane

```

```

 T6018, Call Table 24 Procedure with 200}\textrm{C}\mathrm{ and %60R00
 Reference Fluid 1 Reference fluid 1 ···..............n-Hexane

```


```

 T60/9 C CTL CTL = C CTL1 CTL1/ CTTL2 CTL2
 \mp@subsup{C}{TL~}{LCTL,}
T60/10
CTL_CTL is positive, continue
T60/11 CTL_CTL_rounded

```


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Formatted: Font: Times New Roman, Bold Formatted: Subscript

\section*{Example 60/18 - Observed Temperature \(\left(T_{E} \Psi f\right)\) \&and Density at \(20^{\circ} \mathrm{C}\left(\rho_{20}\right)=\) Lower Range Limits}
```

 Input Data to Implementation Procedure T60
    ```

```

 Observed temperature IETfF,}\mp@subsup{}{}{\circ}\textrm{C}\ldots..46.02
 Computed Data - |ast digit is rounded
 T60/1
 Input Data - rounded
 @20Den20, rounded to 0.1
···............331.7
Cf, rounded to 0.05 <.<.<.00
T60/2

```

```

 T60/3
 Ix}\mp@subsup{~}{~}{*}\mathrm{ and @2oDen20 are within range, continue
T60/4
g2oDen20 relative to 600% water F. 0.332026714287
T60/5, Call Table 23 procedure
760RD60 from Table 23 ···......... -1.0
I nput data is outside the range of Fable 23, no solutionthe standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\subsection*{5.3.2 Implementation Procedure for Table 59E ( \(20^{\circ} \mathrm{C}\) Basis)}

This section presents the implementation procedure T59 for calculating the densities of NGLs and LPGs at a base conditionsa base condition of \(20^{\circ} \mathrm{C}\) from known temperatures and densities.

Density readings must be corrected for the effect of temperature on the instrument prior to entering the density into the following implementation procedure.

\subsection*{5.3.2.1 Inputs and Outputs}

Inputs: \(\quad\) Density at observed temperature, \(\rho_{x}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)\)
Observed temperature, \(T_{F}\left({ }^{\circ} \mathrm{C}\right)\)
Output: \(\quad\) Density at \(20^{\circ} \mathrm{C}, \rho_{20}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)\)

\subsection*{5.3.2.2 Outline of Calculations}

The calculations are done using an extended two-fluid corresponding states equation. Two reference fluids are found that are slightly denser and slightly less dense than the observed fluid by comparing their densities at the observed temperature. Iteration must be performed to determine the value of the fluid's relative density at \(60^{\circ} \mathrm{F}\) such that when the Temperature Correction Factor is applied, the observed relative density is obtained. The "guessed" value for the fluid's relative density at \(60^{\circ} \mathrm{F}\) is constrained to lie between the relative densities at \(60^{\circ} \mathrm{F}\) of these two reference fluids (as upper and lower bounds). As the iterations progress, these upper and lower bounds are "brought together" based upon intermediate calculations. The relative density at \(20^{\circ} \mathrm{C}\) is then computed from the \(60^{\circ} \mathrm{F}\) relative density by using scaling factors between the properties of the two reference fluids.

See Figure 6 for a general flow chart of the calculation procedure.

\subsection*{5.3.2.3 T59 Implementation Procedure}

T59/Step Number Operation/Procedure at that step
T59/1: Round the density \(\rho_{x}\) to the nearest 0.1 and round the observed temperature \(T_{F}\) to the nearest \(0.05^{\circ} \mathrm{C}\).

T59/2: Convert the rounded observed temperature to units of Kelvin, \(T_{x}\) :
\[
T_{X}=T_{F}+273.15
\]

T59/3: Convert the density, \(\rho_{x}\), to relative density, \(\gamma_{x}\), relative to the density of water at \(60^{\circ} \mathrm{F}\).
\[
\gamma_{x}=\frac{\rho_{x}}{999.016}
\]

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

T59/4: Check the values of temperature and relative density to ensure that they are in the proper range. The observed temperature \(T_{x}\) and relative density \(\gamma_{x}\) must fall within the following boundariesranges:

Temperature between 227.15 and 366.15 K , inclusive (equivalent to -46 to \(93^{\circ} \mathrm{C}\), or -50.8 to \(199.4^{\circ} \mathrm{F}\) )
Relative density, if it were rounded to the nearest 0.0001 , must fall within 0.2100 and 0.7400 inclusive. Test \(\gamma_{x}\) to ensure it is within the following boundariesranges:

Relative density greater than or equal to 0.20995 and less than 0.74005
If these values do not fall in these ranges, then the standard does not apply. Flag this result (possibly by returning -1 for the density) and exit this procedure.

T59/5: Compute the relative density at \(60^{\circ} \mathrm{F}, \gamma_{60}\), from the temperature and the relative density at the measurement condition, \(\gamma_{x}\). Use the procedure described in Section 5.1.2 for Table 23 to perform this step. Enter the implementation procedure with \(\gamma_{x}\) and \(T_{x}\) at Step T23/4 so as toto avoid additional rounding of the input values. Exit after Step T23/11 to avoid rounding the result.

T59/6: Compute the relative density at \(20^{\circ} \mathrm{C}, \gamma_{20}\), from the relative density at \(60^{\circ} \mathrm{F}\). This is performed by using the procedure described in Section 5.1.1 for Table 24. Enter implementation procedure T24 with \(\gamma_{60}\) and \(T_{x}=293.15\) (e.g. \(273.15+20\) ). Enter at Step T24/4 to avoid double rounding of the inputs. The \(C_{T L}\) for the conversion between \(\gamma_{60}\) and \(\gamma_{20}\) will be returned without rounding from Step T24/13. Compute \(\gamma_{20}\) :
\[
\gamma_{20}=C_{T L} \times \gamma_{60}
\]

T59/7: Insure that only valid values came from Steps T59/5 and T59/6. If the \(\gamma_{60}\) obtained from Section 5.2.1 for Table 23 is greater than -1 , then proceed. If not, set the fluid density at \(20^{\circ} \mathrm{C}\) to some flag value such as -1 and quit. If the \(C_{T L}\) from Step T59/6 is negative, then set the fluid density at \(20^{\circ} \mathrm{C}\) to the error flag condition and exit this procedure.

T59/8: Calculate the fluid density at \(20^{\circ} \mathrm{C}\) from the relative density at \(20^{\circ} \mathrm{C}\).
\[
\rho_{20}=\gamma_{20} \times 999.016
\]

T59/9: Round the fluid density, \(\rho_{20}\), to the nearest 0.1 . Exit this procedure.


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\subsection*{5.3.2.4 Examples for Section 5.3.2 (Table 59E)}

\section*{(See Table 1Table 2 for properties of the Reference Fluids)}

\section*{Example 59/1 - Relative Density at Observed Temperature (T23/6- \(\psi_{2}\) ) RD世 ( \(35 / 65\) E (68/32) \&-and PropaneEthane}
```

 nput Data to I mplementation Procedure T59
 Density at obs. temp. (kg/mm})=210.0
Observed Temperature IETf((}\mp@subsup{}{}{\circ}\textrm{C})=-44.50
Computed Data - I àst digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 210.0
Temperature rounded to 0.05 ···-44.50
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water - 0. 210206843534
T59/4
I_T* and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
z60RD60 from Table 23···...........0
I nput data is outside the range correlation range of Fable 23, no solutionthe stahdard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/2 - UtilizeUse EP (65/35) \&and EP (35/65)}

I nput Data to Implementation Procedure T59
Density at obs. temp. \(\left(\mathrm{kg} / \mathrm{m}^{3}\right) \quad\) - 532.57
Observed Temperature \(\underline{I}_{E} T f\left({ }^{\circ} \mathrm{C}\right) \quad-\quad-44.120\)
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to \(0.1 \ldots 532.6\)
Temperature rounded to \(0.05 \ldots-44.10\)
T59/2
TxTx, Kelvin ............................. 229.05
T59/3
Density relative to \(60^{\circ}\) water -0.533124594601
T59/4
IXT* and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at \(60^{\circ} \mathrm{F}\)

T59/6, Call Table 24 Procedure to obtain \(C_{T L} C T L\) from \(60^{\circ} \mathrm{F}\) to \(20^{\circ} \mathrm{C}\)

\(20 \mathbf{-}^{\circ} \mathrm{C}\) relative density \(\ldots \quad 0.431703986876\)
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at \(20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right) \ldots 431.279190152813\)
T59/9
Density at \(20^{\circ} \mathrm{C}(\) rounded \() \ldots 431.3\)

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/3 - UtilizeUse n-Pentane \&and i-Hexane}
```

 I nput Data to Implementation Procedure T59
 Density at obs. temp. (kg/mm) -673.66
Observed Temperature IFTf((}\mp@subsup{}{}{\circ}\textrm{C}) -. - 23.33
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···.....673.7
Temperature rounded to 0.05 ···-23.35
T59/2
Ix T*, Kelvin ···.....................49.80
T59/3
Density relative to 600}\mathrm{ water .. 0.674363573757
T59/4
I_T* and rel ative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600%
q60RD60 from Table 23 ···............0.638538685930
T59/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 200'C

```


```

 T59/7, Values returned from Tables 23 &and 24 valid, continue
 T59/8
 Density at 200}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···....633.679686748900
T59/9
Density at 20'C (rounded) ···...633.7

```

\section*{Example 59/4 - UtilizeUse EP (35/65) \& and Propane}

I nput Data to Implementation Procedure T59
Density at obs. temp. (kg/m \(\left.{ }^{3}\right)=245.49\)

Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to \(0.1 \ldots 245.5\)
Temperature rounded to \(0.05 \ldots 87.75\)
T59/2

T59/3
Density relative to \(60^{\circ}\) water -0.245741809941
T59/4
IXX and rel ative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at \(60^{\circ} \mathrm{F}\)
Y60RD60 from Table \(23 \ldots . .\).
T59/6, Call Table 24 Procedure to obtain \(C_{T L} C T L\) from \(60^{\circ} \mathrm{F}\) to \(20^{\circ} \mathrm{C}\)
\(\underline{C}_{\text {TL }}\) CTL from Table \(24 \ldots \ldots . . \ldots 0.985452958065\)
\(\underline{20^{\circ} \mathrm{C} 20{ }^{\circ} \mathrm{C}-\mathrm{relative} \text { density } \ldots .+\ldots 81684503679}\)
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at \(20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right) \ldots 481.210526127346\)
T59/9
Density at \(20^{\circ} \mathrm{C}(\) rounded \() \ldots 481.2\)

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/5 - UtilizeUse n-Butane \&and i-Pentane}
```

 Input Data to Implementation Procedure T5g
 Density at obs. temp. (kg/m3) - 499.55
Observed Temperature IFTf((}\mp@subsup{}{}{\circ}\textrm{C}) [. 87.82
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···....499.6
Temperature rounded to 0.05 ···}87.8
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water .. 0.500092090617
T59/4
I_T* and rel ative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
_60RD60 from Table 23 ···............0.591794896225
T59/6, Call Table 24 Procedure to obtain CTLL CTL from 600% to 200'C

```

```

20}\mp@subsup{}{}{\circ}\textrm{C}20\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ relative density %...... 0.586899117828
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at 20*}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···......586.32160909577
T59/9
Density at 20' C (rounded) ···...586.3

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/6 - UtilizeUse Ethane \& and EP (65/35)}

I nput Data to Implementation Procedure T59
Density at obs. temp. \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\) - 395.09
Observed Temperature IFTf( \(\left.{ }^{\circ} \mathrm{C}\right) \ldots 15.430\)
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to \(0.1 \ldots 395.1\)
Temperature rounded to \(0.05 \ldots 15.45\)
T59/2
TxTx, Kelvin .............................. 288.60
T59/3
Density relative to \(60^{\circ}\) water \(-\quad 0.395489161335\)
T59/4
IXT* and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at \(60^{\circ} \mathrm{F}\)
z60RD60 from Table \(23 \ldots \ldots . .\).
T59/6, Call Table 24 Procedure to obtain \(C_{T L}\) CTL from \(60^{\circ} \mathrm{F}\) to \(20^{\circ} \mathrm{C}\)


T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at \(20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right) \ldots 383.634104534331\)
T59/9
Density at \(20^{\circ} \mathrm{C}(\) rounded \() \ldots 383.6\)

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/7 - UtilizeUse i-Butane \& and n-Butane}
```

 Input Data to Implementation Procedure T59
 Density at obs. temp. (kg/mm})=449.5
Observed Temperature IFTf((}\mp@subsup{}{}{\circ}\textrm{C}) -.. 93.02
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···....449.6
Temperature rounded to 0.05 ···.. 93.00
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water .. 0.450042842157
T59/4
I_T* and rel ative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 23 ···........... 0.565490291365
T59/6, Call Table 24 Procedure to obtain CTL CTL from 600% to 200'C
C_IL_CTL from Table 24···.................00501113383
20\circ}\textrm{C}20\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ relative density %...... 0.560118763204
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at 200}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···559.56760634119
T59/9
Density at 20'C (rounded) ···.. 559.6

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/8 - UtilizeUse i-Hexane \&and n-Hexane}

I nput Data to Implementation Procedure T59
Density at obs. temp. \(\left(\mathrm{kg} / \mathrm{m}^{3}\right) ~ \lessdot 600.74\)

Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
```

Density, rounded to 0.1 ···....600.7

```
Temperature rounded to \(0.05 \ldots 80.65\)
    T59/2

T59/3
Density relative to \(60^{\circ}\) water -0.601291671004
T59/4
IXX and rel ative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at \(60^{\circ} \mathrm{F}\)
K60RD60 from Table \(23 \ldots . .\).
T59/6, Call Table 24 Procedure to obtain \(C_{T L} C T L\) from \(60^{\circ} \mathrm{F}\) to \(20^{\circ} \mathrm{C}\)
\(\underline{C}_{\text {IL_CTL }}\) from Table \(24 \ldots . . .\).
\(\underline{20^{\circ} \mathrm{C} 20{ }^{\circ} \mathrm{C}-\mathrm{rel} \text { ative density } \quad 0.658733069163}\)
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at \(20^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right) \ldots 658.084875823243\)
T59/9
Density at \(20^{\circ} \mathrm{C}(\) rounded \() \ldots 658.1\)

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/9 - Calculated Relative Density @ \(60^{\circ} \mathrm{F}\left(\gamma_{60}\right)\) RD60 Near 0.6880 Upper Boundary Using n-Hexane \& and n-Heptane}
```

 I nput Data to Implementation Procedure T59
 Density at obs. temp. (kg/m}\mp@subsup{\textrm{m}}{}{3})=736.8
Observed Temperature IEFff (}\mp@subsup{}{}{\circ}\textrm{C})=-44.23
Computed Data - | ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···....736.8
Temperature rounded to 0.05 ···...-44.25
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water =- 0.737525725314
T59/4
I_T* and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
Z60RD60 from Table 230.687974688885
T59/6, Call Table 24 Procedure to obtain CTL CTL_from 600% to 2000
C_[L_CTL from Table 24 ···............... 0.994560181470
20-0}\mp@subsup{}{}{\circ}\mathrm{ r relative density _...... 0.684232231424
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at 200}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})···.....683.55894690805
T59/9
Density at 20' C (rounded) ···...683.6

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/10 - Calculated Relative Density @ 60 \({ }^{\circ}\) ( \(\left(\gamma_{60}\right)\) RD60 Near 0.3500 Lower Boundary using EE (68/32) \&and Ethane}
```

 Input Data to Implementation Procedure T5g
 Density at obs. temp. (kg/mm})=224.5
Observed Temperature IEFF (}\mp@subsup{}{}{\circ}\textrm{C}
Computed Data - Iast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1
224.6
Temperature rounded to 0.05 ··· 30.70
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water % 0.224821224084
T59/4
I_}\mp@subsup{I}{*}{*}\mathrm{ and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{\gamma}{60RD60 from Table 23 ···...........0. 0.350001829424}{*}
T59/6, Cal| Table 24 Procedure to obtain C CL CTL_from 600% to 2000

```

```

20-0}\mp@subsup{}{}{0}\mathrm{ r relative density _..... 0.332032610649
T59/7, Values returned from Tables 23 \&and 24 valid, continue
T59/8
Density at 200}\textrm{C}(\textrm{kg}/\mp@subsup{\textrm{m}}{}{3})······331.70589056061
T59/9
Density at 200}\textrm{C}(\mathrm{ rounded) %... 331.7

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/11 - Relative Density at Observed Temperature (T23/6, \(\chi_{\Sigma}\) L RD\& \(<\) Lower Boundary Using EE (68/32) \& Ethane}
```

 Input Data to Implementation Procedure T59
 Density at obs. temp. (kg/m}\mp@subsup{m}{}{3})=339.6
Observed Temperature IFTf (}\mp@subsup{}{}{\circ}\textrm{C}) [.-18.13
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···.... 339.6
Temperature rounded to 0.05 %18.15
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water =. 0.339934495544
T59/4
IXF* and relative density are within range, continue density at 600}\textrm{F
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
z60RD60 from Table 23 ···.............0
Input data is outside the fange-correlation range of Fable 23, no solutionthe stahdard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

Example 59/12 - Relative Density at Observed Temperature (T23/6, \(\gamma_{\mathbf{\chi}}\) ) RDtf \(>\) Upper Boundary Using n-Hexane \& nHeptane
```

 I nput Data to I mplementation Procedure T59
 Density at obs. temp. (kg/mm})=727.8
Observed Temperature IFTf (}\mp@subsup{}{}{\circ}\textrm{C})=-\quad-33.07
Computed Data - |ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1
727.9
Temperature rounded to 0.05 ···. 33.05
T59/2
I_T*, Kelvin40
T59/3
Density relative to 60}\mathrm{ water -. 0.728616959088
T59/4
Ix T* and relative density are within range, continue
T59/5, Call Table 23 procedure to obtain relative density at 600}\textrm{F
\mp@subsup{\gamma}{60}{\primeRD60 from Table 23···............. - 1.0}
Input data is outside the fange-correlation range of Fable 23, no solutionthe standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/13 - Density Input Density < Input Range Limit}
```

 I nput Data to Implementation Procedure T59
 Density at obs. temp. (kg/m}\mp@subsup{m}{}{3})=209.7
Observed Temperature IETff (}\mp@subsup{}{}{\circ}\textrm{C}) ~._11.53
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···.... 209.7
Temperature rounded to 0.05 \cdots...11.55
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water =. 0.209906548043
T59/4
Relative density is Less than 0.2100, no solutionoutside the i nput range of the skandard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/14 - Input Density > Input Range Limit}

I nput Data to Implementation Procedure T59
Density at obs. temp. (kg/m²) -739. 3235
Observed Temperature \(\underline{I}_{F} \mp f\left({ }^{\circ} \mathrm{C}\right) \quad \ldots \quad 11.530\)
Computed Data - I ast digit is rounded
T59/1
I nput Data - rounded
Density, rounded to 0.1 \(\ldots 739.34\)
Temperature rounded to \(0.05 \ldots 11.55\)
T59/2

T59/3
Density relativeto \(60^{\circ}\) water \(-\quad 0.7401282862340 .740028187737\)
T59/4
Relative density is greater than or equal to \(0.7400 \underline{5}\), no solutionoutside the input range
of the standard

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/15 - Input Temperature < Input Range Limit}
```

 I nput Data to Implementation Procedure T59
 Density at obs. temp. (kg/m m})=645.6
Observed Temperature TFTf (}\mp@subsup{}{}{\circ}\textrm{C}) -. -46.03
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to 0.1 ···....645.6
Temperature rounded to 0.05 ···..-46.05
T59/2

```

```

 T59/3
 Density relative to 600}\mathrm{ water =. 0.646235896122
T59/4
Ix Ft $^{\prime}$ Less than 227.15, no solutionis outside the input range of the standard

```

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{Example 59/16 - Input Temperature > Input Range Limit}

I nput Data to Implementation Procedure T59
Density at obs. temp. \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\)-645.62
Observed Temperature \(\underline{I}_{E} T f\left({ }^{\circ} \mathrm{C}\right) \quad \therefore \quad 93.070\)
Computed Data - I ast digit is rounded
T59/1
Input Data - rounded
Density, rounded to \(0.1 \ldots 645.6\)
Temperature rounded to \(0.05 \ldots 93.05\)
T5912

T59/3
Density relative to \(60^{\circ}\) water \(-\quad 0.646235896122\)
T59/4
I IX \({ }^{T}\) * is outside the input range of the standardgreater than 366.15, no solution

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{6 Sample Sections of Printed Tables}

Sample tables based on all the implementation procedures are found on the following pages. These tables are representative of the format and appearance of the printed tables, but complete or partial sets of printed tables may be produced in any reasonable set of variable increments required. Note, these printed tables are not the Standard; the implementation procedures are the Standard.

Even though the implementation procedures are the standard, printed tables can be used. Interpolation should not be used with any printed table since the \(C_{T L}\) equations are not necessarily linear.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{TABLE 24E - FOR NGL \& AND LPG LIQUIDS TEMPERATURE VOLUME CORRECTION TO \(60{ }^{\circ} \mathrm{F}\)} \\
\hline \multicolumn{10}{|c|}{RELATIVE DENSITY 60/60 DEGREES \({ }^{\circ} \mathrm{F}\)} \\
\hline \[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
\] & 0.4000 & 0.4001 & 0.4002 & 0.4003 & 0.4004 & 0.4005 & 0.4006 & 0.4007 & TEMP. ( \({ }^{\circ} \mathrm{F}\) ) \\
\hline & & FACTOR & FOR COR & RECTING & VOLUME TO & \(060^{\circ} \mathrm{F}\) & & & \\
\hline 50.0 & 1.03140 & 1.03137 & 1.03135 & 1.03133 & 1.03130 & 1.03128 & 1.03125 & 1.03123 & 50.0 \\
\hline 50.1 & 1.03110 & 1.03107 & 1.03105 & 1.03102 & 1.03100 & 1.03098 & 1.03095 & 1.03093 & 50.1 \\
\hline 50.2 & 1.03079 & 1.03077 & 1.03075 & 1.03072 & 1.03070 & 1.03068 & 1.03065 & 1.03063 & 50.2 \\
\hline 50.3 & 1.03049 & 1.03047 & 1.03044 & 1.03042 & 1.03040 & 1.03037 & 1.03035 & 1.03033 & 50.3 \\
\hline 50.4 & 1.03019 & 1.03017 & 1.03014 & 1.03012 & 1.03010 & 1.03007 & 1.03005 & 1.03003 & 50.4 \\
\hline 50.5 & 1.02989 & 1.02986 & 1.02984 & 1.02982 & 1.02979 & 1.02977 & 1.02975 & 1.02973 & 50.5 \\
\hline 50.6 & 1.02958 & 1.02956 & 1.02954 & 1.02952 & 1.02949 & 1.02947 & 1.02945 & 1.02942 & 50.6 \\
\hline 50.7 & 1.02928 & 1.02926 & 1.02924 & 1.02921 & 1.02919 & 1.02917 & 1.02915 & 1.02912 & 50.7 \\
\hline 50.8 & 1.02898 & 1.02896 & 1.02893 & 1.02891 & 1.02889 & 1.02887 & 1.02884 & 1.02882 & 50.8 \\
\hline 50.9 & 1.02867 & 1.02865 & 1.02863 & 1.02861 & 1.02859 & 1.02856 & 1.02854 & 1.02852 & 50.9 \\
\hline 51.0 & 1.02837 & 1.02835 & 1.02833 & 1.02830 & 1.02828 & 1.02826 & 1.02824 & 1.02822 & 51.0 \\
\hline 51.1 & 1.02807 & 1.02804 & 1.02802 & 1.02800 & 1.02798 & 1.02796 & 1.02794 & 1.02791 & 51.1 \\
\hline 51.2 & 1.02776 & 1.02774 & 1.02772 & 1.02770 & 1.02768 & 1.02765 & 1.02763 & 1.02761 & 51.2 \\
\hline 51.3 & 1.02746 & 1.02744 & 1.02742 & 1.02739 & 1.02737 & 1.02735 & 1.02733 & 1.02731 & 51.3 \\
\hline 51.4 & 1.02715 & 1.02713 & 1.02711 & 1.02709 & 1.02707 & 1.02705 & 1.02703 & 1.02701 & 51.4 \\
\hline 51.5 & 1.02685 & 1.02683 & 1.02681 & 1.02679 & 1.02676 & 1.02674 & 1.02672 & 1.02670 & 51.5 \\
\hline 51.6 & 1.02654 & 1.02652 & 1.02650 & 1.02648 & 1.02646 & 1.02644 & 1.02642 & 1.02640 & 51.6 \\
\hline 51.7 & 1.02624 & 1.02622 & 1.02620 & 1.02618 & 1.02616 & 1.02614 & 1.02612 & 1.02610 & 51.7 \\
\hline 51.8 & 1.02593 & 1.02591 & 1.02589 & 1.02587 & 1. 02585 & 1.02583 & 1.02581 & 1.02579 & 51.8 \\
\hline 51.9 & 1.02563 & 1.02561 & 1.02559 & 1.02557 & 1.02555 & 1.02553 & 1.02551 & 1.02549 & 51.9 \\
\hline 52.0 & 1.02532 & 1.02530 & 1.02528 & 1.02526 & 1. 02524 & 1.02522 & 1.02520 & 1.02518 & 52.0 \\
\hline 52.1 & 1.02501 & 1.02499 & 1.02497 & 1.02495 & 1.02494 & 1.02492 & 1.02490 & 1.02488 & 52.1 \\
\hline 52.2 & 1.02471 & 1.02469 & 1.02467 & 1.02465 & 1.02463 & 1.02461 & 1.02459 & 1.02457 & 52.2 \\
\hline 52.3 & 1.02440 & 1.02438 & 1.02436 & 1.02434 & 1.02432 & 1.02430 & 1.02429 & 1.02427 & 52.3 \\
\hline 52.4 & 1.02409 & 1.02407 & 1.02406 & 1.02404 & 1.02402 & 1.02400 & 1.02398 & 1.02396 & 52.4 \\
\hline 52.5 & 1. 02379 & 1.02377 & 1.02375 & 1.02373 & 1.02371 & 1.02369 & 1.02367 & 1.02366 & 52.5 \\
\hline 52.6 & 1.02348 & 1.02346 & 1.02344 & 1.02342 & 1.02340 & 1.02339 & 1.02337 & 1.02335 & 52.6 \\
\hline 52.7 & 1.02317 & 1.02315 & 1.02313 & 1.02312 & 1.02310 & 1.02308 & 1.02306 & 1.02304 & 52.7 \\
\hline 52.8 & 1.02286 & 1.02284 & 1.02283 & 1.02281 & 1.02279 & 1.02277 & 1.02276 & 1.02274 & 52.8 \\
\hline 52.9 & 1.02255 & 1.02254 & 1.02252 & 1.02250 & 1.02248 & 1.02247 & 1.02245 & 1.02243 & 52.9 \\
\hline 53.0 & 1.02225 & 1.02223 & 1.02221 & 1.02219 & 1.02218 & 1.02216 & 1.02214 & 1.02212 & 53.0 \\
\hline 53.1 & 1.02194 & 1.02192 & 1.02190 & 1.02188 & 1.02187 & 1.02185 & 1.02183 & 1.02182 & 53.1 \\
\hline 53.2 & 1.02163 & 1.02161 & 1.02159 & 1.02158 & 1.02156 & 1.02154 & 1.02153 & 1.02151 & 53.2 \\
\hline 53.3 & 1.02132 & 1.02130 & 1.02128 & 1.02127 & 1.02125 & 1.02123 & 1.02122 & 1.02120 & 53.3 \\
\hline 53.4 & 1.02101 & 1.02099 & 1.02098 & 1.02096 & 1.02094 & 1.02093 & 1.02091 & 1.02089 & 53.4 \\
\hline 53.5 & 1.02070 & 1.02068 & 1.02067 & 1.02065 & 1.02063 & 1.02062 & 1.02060 & 1.02059 & 53.5 \\
\hline 53.6 & 1.02039 & 1.02037 & 1.02036 & 1.02034 & 1.02032 & 1.02031 & 1.02029 & 1.02028 & 53.6 \\
\hline 53.7 & 1.02008 & 1.02006 & 1.02005 & 1.02003 & 1.02002 & 1.02000 & 1.01998 & 1.01997 & 53.7 \\
\hline 53.8 & 1.01977 & 1.01975 & 1.01974 & 1.01972 & 1.01971 & 1.01969 & 1.01967 & 1.01966 & 53.8 \\
\hline
\end{tabular}

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 53E - FOR NGL \&AND LPG LIQUIDS DENSITY REDUCTION TO \(15^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{11}{|c|}{OBSERVED DENSITY} \\
\hline TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & 210.0 & 215.0 & 220.0 & 225.0 & 230.0 & 235.0 & 240.0 & 245.0 & 250.0 & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline \multicolumn{11}{|l|}{CORRESPONDING DENSITY AT \(15^{\circ} \mathrm{C}\)} \\
\hline 31.0 & 352.6 & 352.6 & 352.7 & 352.9 & 353.2 & 353.5 & 353.9 & 354.5 & 355.2 & 31.0 \\
\hline 32.0 & 356.8 & 356.8 & 356.9 & 357.0 & 357.2 & 357.5 & 357.8 & 358.1 & 358.5 & 32.0 \\
\hline 33.0 & 359.6 & 359.6 & 359.7 & 359.7 & 359.9 & 360.1 & 360.3 & 360.7 & 361.1 & 33.0 \\
\hline 34.0 & 362.1 & 362.2 & 362.2 & 362.3 & 362.4 & 362.6 & 362.9 & 363.3 & 363.7 & 34.0 \\
\hline 35.0 & 364.7 & 364.7 & 364.7 & 364.8 & 365.0 & 365.2 & 365.5 & 365.9 & 366.3 & 35.0 \\
\hline 36.0 & 367.2 & 367.2 & 367.3 & 367.4 & 367.5 & 367.8 & 368.1 & 368.4 & 368.9 & 36.0 \\
\hline 37.0 & 369.7 & 369.8 & 369.8 & 369.9 & 370.1 & 370.3 & 370.6 & 371.0 & 371.5 & 37.0 \\
\hline 38.0 & 372.3 & 372.3 & 372.4 & 372.5 & 372.7 & 372.9 & 373.2 & 373.6 & 374.1 & 38.0 \\
\hline 39.0 & 374.8 & 374.9 & 374.9 & 375.1 & 375.2 & 375.5 & 375.8 & 376.2 & 376.7 & 39.0 \\
\hline 40.0 & 377.4 & 377.4 & 377.5 & 377.6 & 377.8 & 378.0 & 378.4 & 378.8 & 379.3 & 40.0 \\
\hline 41.0 & 379.9 & 380.0 & 380.1 & 380.2 & 380.4 & 380.6 & 380.9 & 381.4 & 381.9 & 41.0 \\
\hline 42.0 & 382.5 & 382.5 & 382.6 & 382.7 & 382.9 & 383.2 & 383.5 & 383.9 & 384.5 & 42.0 \\
\hline 43.0 & 385.1 & 385.1 & 385.2 & 385.3 & 385.5 & 385.8 & 386.1 & 386.5 & 387.0 & 43.0 \\
\hline 44.0 & 387.6 & 387.7 & 387.7 & 387.9 & 388.1 & 388.3 & 388.7 & 389.1 & 389.6 & 44.0 \\
\hline 45.0 & 390.2 & 390.2 & 390.3 & 390.4 & 390.6 & 390.9 & 391.2 & 391.7 & 392.2 & 45.0 \\
\hline 46.0 & 392.7 & 392.8 & 392.9 & 393.0 & 393.2 & 393.5 & 393.8 & 394.3 & 394.8 & 46.0 \\
\hline 47.0 & 395.3 & 395.4 & 395.4 & 395.6 & 395.8 & 396.0 & 396.4 & 396.8 & 397.4 & 47.0 \\
\hline 48.0 & 397.9 & 397.9 & 398.0 & 398.1 & 398.4 & 398.6 & 399.0 & 399.4 & 399.9 & 48.0 \\
\hline 49.0 & 400.4 & 400.5 & 400.6 & 400.7 & 400.9 & 401.2 & 401.5 & 402.0 & 402.5 & 49.0 \\
\hline 50.0 & 403.0 & 403.1 & 403.1 & 403.3 & 403.5 & 403.8 & 404.1 & 404.6 & 405.1 & 50.0 \\
\hline 51.0 & 405.6 & 405.6 & 405.7 & 405.9 & 406.1 & 406.3 & 406.7 & 407.1 & 407.7 & 51.0 \\
\hline 52.0 & 408.1 & 408.2 & 408.3 & 408.4 & 408.6 & 408.9 & 409.3 & 409.7 & 410.2 & 52.0 \\
\hline 53.0 & 410.7 & 410.8 & 410.9 & 411.0 & 411.2 & 411.5 & 411.8 & 412.3 & 412.8 & 53.0 \\
\hline 54.0 & 413.3 & 413.3 & 413.4 & 413.6 & 413.8 & 414.1 & 414.4 & 414.9 & 415.4 & 54.0 \\
\hline 55.0 & 415.8 & 415.9 & 416.0 & 416.1 & 416.4 & 416.6 & 417.0 & 417.4 & 418.0 & 55.0 \\
\hline 56.0 & 418.4 & 418.5 & 418.6 & 418.7 & 418.9 & 419.2 & 419.6 & 420.0 & 420.5 & 56.0 \\
\hline 57.0 & 421.0 & 421.0 & 421.1 & 421.3 & 421.5 & 421.8 & 422.1 & 422.6 & 423.1 & 57.0 \\
\hline 58.0 & 423.6 & 423.6 & 423.7 & 423.9 & 424.1 & 424.4 & 424.7 & 425.1 & 425.7 & 58.0 \\
\hline 59.0 & 426.1 & 426.2 & 426.3 & 426.4 & 426.7 & 426.9 & 427.3 & 427.7 & 428.2 & 59.0 \\
\hline 60.0 & 428.7 & 428.8 & 428.9 & 429.0 & 429.2 & 429.5 & 429.9 & 430.2 & 430.7 & 60.0 \\
\hline 61.0 & 431.1 & 431.1 & 431.2 & 431.3 & 431.5 & 431.7 & 432.0 & 432.4 & 432.8 & 61.0 \\
\hline 62.0 & 433.2 & 433.3 & 433.4 & 433.5 & 433.7 & 433.9 & 434.2 & 434.6 & 435.0 & 62.0 \\
\hline 63.0 & 435.4 & 435.5 & 435.5 & 435.7 & 435.8 & 436.1 & 436.4 & 436.7 & 437.1 & 63.0 \\
\hline 64.0 & 437.6 & 437.6 & 437.7 & 437.8 & 438.0 & 438.2 & 438.5 & 438.9 & 439.3 & 64.0 \\
\hline 65.0 & 439.8 & 439.8 & 439.9 & 440.0 & 440.2 & 440.4 & 440.7 & 441.0 & 441.4 & 65.0 \\
\hline 66.0 & 441.9 & 442.0 & 442.1 & 442.2 & 442.3 & 442.6 & 442.8 & 443.2 & 443.6 & 66.0 \\
\hline 67.0 & 444.1 & 444.1 & 444.2 & 444.3 & 444.5 & 444.7 & 445.0 & 445.3 & 445.8 & 67.0 \\
\hline 68.0 & 446.3 & 446.3 & 446.4 & 446.5 & 446.7 & 446.9 & 447.2 & 447.5 & 447.9 & 68.0 \\
\hline 69.0 & 448.4 & 448.5 & 448.6 & 448.7 & 448.8 & 449.0 & 449.3 & 449.7 & 450.1 & 69.0 \\
\hline
\end{tabular}

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

TABLE 54E - FOR NGL \&AND LPG LIQUIDS
TEMPERATURE VOLUME CORRECTION TO \(15{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & DENS & AT 15 D & DEGREES \({ }^{\circ} \mathrm{C}\) & & & & \\
\hline TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & 400.00 & 405.00 & 410.00 & 415.00 & 420.00 & 425.00 & 430.00 & 435.00 & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline & & FACTOR & FOR & RECTING & VOLUME TO & & & & \\
\hline 10.0 & 1.02824 & 1.02719 & 1.02623 & 1.02535 & 1.02453 & 1.02377 & 1.02306 & 1.02220 & 10.0 \\
\hline 10.5 & 1.02551 & 1.02456 & 1.02368 & 1.02288 & 1.02214 & 1.02145 & 1.02081 & 1.02003 & 10.5 \\
\hline 11.0 & 1.02276 & 1.02190 & 1.02112 & 1.02040 & 1.01974 & 1.01912 & 1.01855 & 1.01785 & 11.0 \\
\hline 11.5 & 1.01999 & 1.01923 & 1.01854 & 1.01791 & 1.01732 & 1.01678 & 1.01628 & 1.01566 & 11.5 \\
\hline 12.0 & 1.01720 & 1.01654 & 1.01595 & 1.01540 & 1.01489 & 1.01443 & 1.01399 & 1.01346 & 12.0 \\
\hline 12.5 & 1.01438 & 1.01384 & 1.01333 & 1.01287 & 1.01245 & 1.01206 & 1.01169 & 1.01125 & 12.5 \\
\hline 13.0 & 1.01155 & 1.01111 & 1.01070 & 1.01033 & 1.00999 & 1.00967 & 1.00938 & 1.00902 & 13.0 \\
\hline 13.5 & 1.00870 & 1.00836 & 1.00806 & 1.00777 & 1.00752 & 1.00728 & 1.00706 & 1.00679 & 13.5 \\
\hline 14.0 & 1.00582 & 1.00559 & 1.00539 & 1.00520 & 1.00503 & 1.00487 & 1.00472 & 1.00454 & 14.0 \\
\hline 14.5 & 1.00292 & 1.00281 & 1.00270 & 1.00261 & 1.00252 & 1.00244 & 1.00237 & 1.00227 & 14.5 \\
\hline 15.0 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 1.00000 & 15.0 \\
\hline 15.5 & 0.99705 & 0.99717 & 0.99728 & 0.99737 & 0.99746 & 0.99754 & 0.99762 & 0.99771 & 15.5 \\
\hline 16.0 & 0.99409 & 0.99432 & 0.99453 & 0.99473 & 0.99491 & 0.99507 & 0.99523 & 0.99541 & 16.0 \\
\hline 16.5 & 0.99109 & 0.99145 & 0.99177 & 0.99207 & 0.99234 & 0.99259 & 0.99282 & 0.99310 & 16.5 \\
\hline 17.0 & 0.98807 & 0.98855 & 0.98899 & 0.98938 & 0.98975 & 0.99008 & 0.99040 & 0.99077 & 17.0 \\
\hline 17.5 & 0.98503 & 0.98563 & 0.98618 & 0.98668 & 0.98714 & 0.98757 & 0.98796 & 0.98843 & 17.5 \\
\hline 18.0 & 0.98196 & 0.98269 & 0.98335 & 0.98396 & 0.98452 & 0.98503 & 0.98551 & 0.98608 & 18.0 \\
\hline 18.5 & 0.97886 & 0.97972 & 0.98050 & 0.98122 & 0.98187 & 0.98248 & 0.98304 & 0.98371 & 18.5 \\
\hline 19.0 & 0.97573 & 0.97673 & 0.97763 & 0.97846 & 0.97921 & 0.97991 & 0.98055 & 0.98133 & 19.0 \\
\hline 19.5 & 0.97257 & 0.97371 & 0.97474 & 0.97567 & 0.97653 & 0.97732 & 0.97805 & 0.97893 & 19.5 \\
\hline 20.0 & 0.96939 & 0.97066 & 0.97182 & 0.97287 & 0.97383 & 0.97472 & 0.97553 & 0.97652 & 20.0 \\
\hline 20.5 & 0.96617 & 0.96759 & 0.96887 & 0.97004 & 0.97111 & 0.97209 & 0.97300 & 0.97409 & 20.5 \\
\hline 21.0 & 0.96293 & 0.96449 & 0.96590 & 0.96719 & 0.96837 & 0.96945 & 0.97045 & 0.97165 & 21.0 \\
\hline 21.5 & 0.95965 & 0.96136 & 0.96291 & 0.96432 & 0.96561 & 0.96679 & 0.96788 & 0.96919 & 21.5 \\
\hline 22.0 & 0.95633 & 0.95820 & 0.95989 & 0.96142 & 0.96282 & 0.96411 & 0.96529 & 0.96671 & 22.0 \\
\hline 22.5 & 0.95299 & 0.95501 & 0.95684 & 0.95850 & 0.96002 & 0.96141 & 0.96269 & 0.96422 & 22.5 \\
\hline 23.0 & 0.94960 & 0.95179 & 0.95376 & 0.95556 & 0.95719 & 0.95868 & 0.96006 & 0.96171 & 23.0 \\
\hline 23.5 & 0.94618 & 0.94854 & 0.95066 & 0.95258 & 0.95434 & 0.95594 & 0.95742 & 0.95919 & 23.5 \\
\hline 24.0 & 0.94273 & 0.94525 & 0.94753 & 0.94959 & 0.95146 & 0.95318 & 0.95476 & 0.95665 & 24.0 \\
\hline 24.5 & 0.93923 & 0.94193 & 0.94436 & 0.94656 & 0.94856 & 0.95039 & 0.95207 & 0.95408 & 24.5 \\
\hline 25.0 & 0.93570 & 0.93858 & 0.94117 & 0.94351 & 0.94564 & 0.94758 & 0.94937 & 0.95150 & 25.0 \\
\hline 25.5 & 0.93212 & 0.93519 & 0.93794 & 0.94043 & 0.94269 & 0.94475 & 0.94665 & 0.94891 & 25.5 \\
\hline 26.0 & 0.92850 & 0.93176 & 0.93468 & 0.93732 & 0.93971 & 0.94190 & 0.94390 & 0.94629 & 26.0 \\
\hline 26.5 & 0.92483 & 0.92829 & 0.93138 & 0.93417 & 0.93671 & 0.93902 & 0.94113 & 0.94365 & 26.5 \\
\hline 27.0 & 0.92112 & 0.92478 & 0.92805 & 0.93100 & 0.93367 & 0.93611 & 0.93834 & 0.94100 & 27.0 \\
\hline 27.5 & 0.91736 & 0.92123 & 0.92469 & 0.92780 & 0.93062 & 0.93318 & 0.93553 & 0.93832 & 27.5 \\
\hline 28.0 & 0.91355 & 0.91764 & 0.92128 & 0.92456 & 0.92753 & 0.93022 & 0.93269 & 0.93562 & 28.0 \\
\hline 28.5 & 0.90969 & 0.91400 & 0.91784 & 0.92129 & 0.92441 & 0.92724 & 0.92983 & 0.93290 & 28.5 \\
\hline 29.0 & 0.90577 & 0.91032 & 0.91436 & 0.91798 & 0.92126 & 0.92423 & 0.92695 & 0.93016 & 29.0 \\
\hline
\end{tabular}

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{TABLE 59E - FOR NGL \&AND LPG LIQUIDS DENSITY REDUCTION TO \(20^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{11}{|c|}{OBSERVED DENSITY} \\
\hline TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & 210.0 & 215.0 & 220.0 & 225.0 & 230.0 & 235.0 & 240.0 & 245.0 & 250.0 & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline & \multicolumn{10}{|r|}{CORRESPONDING DENSITY AT \(20^{\circ} \mathrm{C}\) (} \\
\hline 31.0 & 332.9 & 332.9 & 333.1 & 333.3 & 333.6 & 334.0 & 334.5 & 335.2 & 336.1 & 31.0 \\
\hline 32.0 & 338.0 & 338.1 & 338.1 & 338.3 & 338.5 & 338.9 & 339.2 & 339.7 & 340.2 & 32.0 \\
\hline 33.0 & 341.6 & 341.6 & 341.7 & 341.8 & 341.9 & 342.2 & 342.5 & 343.0 & 343.5 & 33.0 \\
\hline 34.0 & 344.8 & 344.8 & 344.9 & 345.0 & 345.1 & 345.4 & 345.7 & 346.2 & 346.7 & 34.0 \\
\hline 35.0 & 347.9 & 347.9 & 348.0 & 348.1 & 348.3 & 348.5 & 348.9 & 349.3 & 349.9 & 35.0 \\
\hline 36.0 & 351.0 & 351.0 & 351.1 & 351.2 & 351.4 & 351.6 & 352.0 & 352.4 & 353.0 & 36.0 \\
\hline 37.0 & 354.0 & 354.0 & 354.1 & 354.2 & 354.4 & 354.7 & 355.0 & 355.5 & 356.0 & 37.0 \\
\hline 38.0 & 357.0 & 357.0 & 357.1 & 357.2 & 357.4 & 357.7 & 358.0 & 358.5 & 359.1 & 38.0 \\
\hline 39.0 & 359.9 & 359.9 & 360.0 & 360.1 & 360.3 & 360.6 & 361.0 & 361.5 & 362.0 & 39.0 \\
\hline 40.0 & 362.8 & 362.9 & 362.9 & 363.1 & 363.3 & 363.6 & 363.9 & 364.4 & 365.0 & 40.0 \\
\hline 41.0 & 365.7 & 365.8 & 365.8 & 366.0 & 366.2 & 366.5 & 366.8 & 367.3 & 367.9 & 41.0 \\
\hline 42.0 & 368.6 & 368.6 & 368.7 & 368.9 & 369.1 & 369.3 & 369.7 & 370.2 & 370.8 & 42.0 \\
\hline 43.0 & 371.4 & 371.5 & 371.6 & 371.7 & 371.9 & 372.2 & 372.6 & 373.1 & 373.6 & 43.0 \\
\hline 44.0 & 374.3 & 374.3 & 374.4 & 374.6 & 374.8 & 375.1 & 375.4 & 375.9 & 376.5 & 44.0 \\
\hline 45.0 & 377.1 & 377.1 & 377.2 & 377.4 & 377.6 & 377.9 & 378.3 & 378.7 & 379.3 & 45.0 \\
\hline 46.0 & 379.9 & 379.9 & 380.0 & 380.2 & 380.4 & 380.7 & 381.1 & 381.5 & 382.1 & 46.0 \\
\hline 47.0 & 382.7 & 382.7 & 382.8 & 383.0 & 383.2 & 383.5 & 383.9 & 384.3 & 384.9 & 47.0 \\
\hline 48.0 & 385.5 & 385.5 & 385.6 & 385.8 & 386.0 & 386.3 & 386.6 & 387.1 & 387.7 & 48.0 \\
\hline 49.0 & 388.2 & 388.3 & 388.4 & 388.5 & 388.7 & 389.0 & 389.4 & 389.9 & 390.5 & 49.0 \\
\hline 50.0 & 391.0 & 391.0 & 391.1 & 391.3 & 391.5 & 391.8 & 392.2 & 392.6 & 393.2 & 50.0 \\
\hline 51.0 & 393.7 & 393.8 & 393.9 & 394.0 & 394.3 & 394.6 & 394.9 & 395.4 & 396.0 & 51.0 \\
\hline 52.0 & 396.5 & 396.5 & 396.6 & 396.8 & 397.0 & 397.3 & 397.7 & 398.1 & 398.7 & 52.0 \\
\hline 53.0 & 399.2 & 399.2 & 399.4 & 399.5 & 399.7 & 400.0 & 400.4 & 400.9 & 401.4 & 53.0 \\
\hline 54.0 & 401.9 & 402.0 & 402.1 & 402.2 & 402.5 & 402.7 & 403.1 & 403.6 & 404.1 & 54.0 \\
\hline 55.0 & 404.6 & 404.7 & 404.8 & 405.0 & 405.2 & 405.5 & 405.8 & 406.3 & 406.9 & 55.0 \\
\hline 56.0 & 407.3 & 407.4 & 407.5 & 407.7 & 407.9 & 408.2 & 408.5 & 409.0 & 409.6 & 56.0 \\
\hline 57.0 & 410.0 & 410.1 & 410.2 & 410.4 & 410.6 & 410.9 & 411.2 & 411.7 & 412.3 & 57.0 \\
\hline 58.0 & 412.7 & 412.8 & 412.9 & 413.1 & 413.3 & 413.6 & 413.9 & 414.4 & 414.9 & 58.0 \\
\hline 59.0 & 415.4 & 415.5 & 415.6 & 415.8 & 416.0 & 416.3 & 416.6 & 417.1 & 417.6 & 59.0 \\
\hline 60.0 & 418.1 & 418.2 & 418.3 & 418.5 & 418.7 & 419.0 & 419.3 & 419.7 & 420.2 & 60.0 \\
\hline 61.0 & 420.6 & 420.7 & 420.8 & 420.9 & 421.1 & 421.3 & 421.6 & 422.0 & 422.5 & 61.0 \\
\hline 62.0 & 422.9 & 423.0 & 423.1 & 423.2 & 423.4 & 423.6 & 423.9 & 424.3 & 424.8 & 62.0 \\
\hline 63.0 & 425.2 & 425.3 & 425.4 & 425.5 & 425.7 & 425.9 & 426.2 & 426.6 & 427.0 & 63.0 \\
\hline 64.0 & 427.5 & 427.6 & 427.7 & 427.8 & 428.0 & 428.2 & 428.5 & 428.9 & 429.3 & 64.0 \\
\hline 65.0 & 429.8 & 429.9 & 429.9 & 430.1 & 430.2 & 430.5 & 430.8 & 431.1 & 431.6 & 65.0 \\
\hline 66.0 & 432.1 & 432.1 & 432.2 & 432.4 & 432.5 & 432.8 & 433.1 & 433.4 & 433.9 & 66.0 \\
\hline 67.0 & 434.4 & 434.4 & 434.5 & 434.6 & 434.8 & 435.0 & 435.3 & 435.7 & 436.1 & 67.0 \\
\hline 68.0 & 436.7 & 436.7 & 436.8 & 436.9 & 437.1 & 437.3 & 437.6 & 437.9 & 438.4 & 68.0 \\
\hline 69.0 & 438.9 & 439.0 & 439.1 & 439.2 & 439.3 & 439.6 & 439.8 & 440.2 & 440.6 & 69.0 \\
\hline
\end{tabular}

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

TABLE 60E - FOR NGL \&AND LPG LIQUIDS
TEMPERATURE VOLUME CORRECTION TO \(20^{\circ} \mathrm{C}\)


This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

\section*{7 References}
1. Manual of Petroleum Measurement Standards, Chapter 11.1 - Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils, American Petroleum Institute, Washington D.C. (2004).
2. Manual of Petroleum Measurement Standards, Chapter 11.2.1 - Compressibility Factors for Hydrocarbons: 0-90 API Range, American Petroleum Institute, Washington D.C. (1984).
3. Manual of Petroleum Measurement Standards, Chapter 11.2.1M - Compressibility Factors for Hydrocarbons: 638-1074 Kilograms per Cubic Metre Range, American Petroleum Institute, Washington D.C. (1986).
4. Manual of Petroleum Measurement Standards, Chapter 11.2.2 - Compressibility Factors for Hydrocarbons: \(0.350-0.637\) Relative Density \(\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)\) and \(-50^{\circ} \mathrm{F}\) to \(140^{\circ} \mathrm{F}\) Metering Temperature, American Petroleum Institute, Washington D.C. (1984).
5. Manual of Petroleum Measurement Standards, Chapter 11.2.2M - Compressibility Factors for Hydrocarbons: \(350-637\) Kilograms per Cubic Metre Density \(\left(15^{\circ} \mathrm{C}\right)\) and \(46^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) Metering Temperature, American Petroleum Institute, Washington D.C. (1986).
6. ASTM-IP Petroleum Measurement Tables, ASTM, Philadelphia, American Edition, (1952), pp. 177-482.
7. "Standard Factors for Volume Correction and Specific Gravity Conversion of Liquefied Petroleum Gases", GPA-2142, Gas Processors Association, Tulsa, (1957).
8. "Composite Pressure and Temperature Volume Correction Tables for Liquefied Petroleum Gas (LPG) and Natural Gasoline", Technical Publication TP-16, Gas Processors Association, Tulsa, (1988).
9. Petroleum Measurement Tables, Volume XII, Intraconversion Between Volume Measures and Density Measures, ASTM, Philadelphia, (1982), pp. 155-164.
10. "Temperature Correction for the Volume of Light Hydrocarbons - Tables 24E and 23E", Technical Publication TP-25, American Petroleum Institute, Washington D.C./ASTM, Philadelphia/Gas Processors Association, Tulsa, (1998).
11. J. F. Ely, "Volume Correction Factors for Natural Gas Liquids - Phase II", Research Report RR-148, Gas Processors Association, Tulsa, (1995).

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
12. C. D. Holcomb, J. W. Magee, W. M. Haynes, "Density Measurements on Natural Gas Liquids", Research Report RR-147, Gas Processors Association, Tulsa, (1995).
13. J. F. Ely, "Volume Correction Factors for Natural Gas Liquids - Phase I", Research Report RR-133, Gas Processors Association, Tulsa, (1991).
14. "Temperature Correction for the Volume of NGL and LPG - Tables 23E, 24E, 53E, 54E, and 60E", Technical Publication TP-27, American Petroleum Institute, Washington D.C./ASTM, Philadelphia/Gas Processors Association, Tulsa, (2007).
13.

This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved
Page 19: [1] Formatted Keith Fry 8/22/ 2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 19: [2] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 19: [3] Formatted Keith Fry 8/22/2016 9:46:00 AM \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
\begin{tabular}{|ll|}
\hline Page 19: [4] Formatted & Keith Fry \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 19: [5] Formatted \(\quad\) Keith Fry & 8/22/2016 9:46:00 AM \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 19: [6] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|c|c|c|}
\hline Page 19: [7] Formatted & Keith Fry & 8/22/2016 9:46:00 AM \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
\begin{tabular}{|l|l|}
\hline Page 19: [8] Formatted \(\quad\) Keith Fry & 8/22/2016 9:46:00 AM \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|c|c|c|}
\hline Page 19: [9] Formatted & Keith Fry & 8/22/2016 9:46:00 AM \\
\hline Tab stops: 3.2", Rig & ecimal al & 3.75" \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Page 19: \([10]\) Formatted & Keith Fry \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Page 19: [11] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
\begin{tabular}{|lcc|}
\hline Page 19: [12] Formatted & Keith Fry & 8/ 22/ 2016 9:46:00 AM \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 19: [13] Formatted & Keith Fry
\end{tabular} 8/ 22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 19: [14] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Page 19: [15] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 19: [16] Formatted Keith Fry 8/ 22/ 2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
Page 19: [17] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 19: [18] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned
\begin{tabular}{|lr|}
\hline Page 19: [19] Formatted & 8eith Fry \\
\hline
\end{tabular}

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 46: [20] Formatted Keith Fry 8/ 22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
Page 46: [21] Formatted Keith Fry 8/22/2016 9:46:00 AM

Tab stops: 3.2", Right,Leader: ... + 3.7", Decimal aligned + Not at 3.25" + 3.75"
\begin{tabular}{|ll|}
\hline Page 61: [22] Formatted & Keith Fry \\
\hline
\end{tabular}

Font: Bold
\begin{tabular}{|lr|}
\hline Page 61: [23] Formatted & Keith Fry
\end{tabular} 8/ 31/ 2016 9:06:00 AM

Font: Italic, Subscript

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 61: [25] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|l|l|}
\hline Page 61: [28] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [29] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [30] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [31] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 61: [34] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [37] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [38] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [39] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [40] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 61: [43] Formatted
Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 61: [44] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 61: [45] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|l|l|}
\hline Page 61: [46] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [47] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [48] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [49] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 61: [52] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 61: [55] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 61: [57] Formatted & Keith Fry
\end{tabular} 8/ 26/ 2016 8:28:00 AM

Font: Italic
\begin{tabular}{|ll|}
\hline Page 61: [58] Formatted & Keith Fry \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [59] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Font: Italic
Page 61: [61] Formatted Keith Fry

8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 61: [62] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: \(2.3^{\prime \prime}\), Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 62: [64] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 62: [67] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 62: [70] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 62: [71] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [73] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [75] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 63: [79] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 63: [80] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 63: [81] Formatted
Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 63: [82] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 63: [83] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 63: [84] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [85] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 63: [88] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [91] Formatted Keith Fry 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [93] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 63: [97] Formatted & Keith Fry \\
\hline
\end{tabular}

Font: Not Italic, Not Superscript/ Subscript
Page 63: [98] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
\begin{tabular}{|lll}
\hline Page 63: [99] Formatted & Keith Fry & 8/22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 63: [100] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5 "+6 "\)
Page 63: [101] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 63: [102] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 63: [103] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 63: [106] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Page 63: [107] Formatted Keith Fry 8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 63: [108] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 63: [109] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [110] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 63: [111] Formatted} Keith Fry

8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [112] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|ll|}
\hline Page 63: [115] Formatted \(\quad\) Keith Fry 2/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 63: [117] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 63: [118] Formatted Keith Fry 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 63: [119] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [120] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 65: [121] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 65: [124] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 65: [125] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 65: [126] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6^{\prime \prime}\)
Page 65: [127] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [128] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 65: [129] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [130] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|ll|}
\hline Page 65: [133] Formatted \(\quad\) Keith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 65: [134] Formatted
Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 65: [135] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 65: [136] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 65: [137] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [138] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 65: [142] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 65: [143] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [144] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 65: [145] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [146] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 65: [147] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [148] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 65: [151] Formatted \(\quad\) Keith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{lll} 
Page 65: [153] Formatted & 8/ 22/ 2016 9:15:00 AM
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 65: [154] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 65: [155] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [156] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 65: [160] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Page 65: [161] Formatted Keith Fry 8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 65: [162] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6^{\prime \prime}\)
Page 65: [163] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 65: [164] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 65: [165] Formatted} Keith Fry

8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 66: [166] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 67: [169] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 67: [170] Formatted
Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{lll} 
Page 67: [171] Formatted & 8/ 22/ 2016 9:15:00 AM
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 67: [172] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 67: [173] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 67: [174] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 67: [178] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 67: [179] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 67: [180] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 67: [181] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 67: [182] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 67: [183] Formatted} Keith Fry

8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 67: [184] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 68: [187] Formatted & Keith Fry \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 69: [189] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 69: [190] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 69: [191] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 69: [192] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 69: [193] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 69: [196] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 69: [197] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 69: [198] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4^{\prime \prime}+5 "+6^{\prime \prime}\)
Page 69: [199] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 69: [200] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 69: [201] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 69: [202] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 70: [205] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 70: [206] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 70: [207] Formatted Keith Fry 8/ 22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 70: [208] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [209] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 70: [210] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [211] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 70: [214] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 70: [215] Formatted
Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 70: [216] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [217] Formatted Keith Fry 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 70: [218] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [219] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 70: [223] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 70: [224] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 70: [225] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6^{\prime \prime}\)
Page 70: [226] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [227] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 70: [228] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [229] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|ll|}
\hline Page 70: [232] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 70: [234] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 70: [235] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 70: [236] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [237] Formatted \\ Keith Fry \\ 8/ 22/ 2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 70: [238] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 70: [241] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 70: [242] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 70: [243] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 71: [244] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 71: [245] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 71: [246] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 71: [247] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 71: [250] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 71: [251] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 71: [252] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 71: [253] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [254] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [255] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [256] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lc|}
\hline Page 72: [259] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 72: [261] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [262] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [263] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [264] Formatted \\ Keith Fry \\ 8/ 22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 72: [268] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 72: [269] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 72: [270] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 72: [271] Formatted Keith Fry 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [272] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [273] Formatted \\ Keith Fry \\ 8/22/2016 9:15:00 AM}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [274] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|ll|}
\hline Page 72: [277] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 72: [278] Formatted
Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [279] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 72: [280] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [281] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned
Page 72: [282] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lc|}
\hline Page 72: [286] Formatted \(\quad\) 8eith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 72: [287] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 72: [288] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 72: [289] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [290] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 72: [291] Formatted} Keith Fry

8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 72: [292] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|ll|}
\hline Page 72: [295] Formatted \(\quad\) Keith Fry 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 72: [296] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [297] Formatted Keith Fry 8/29/2016 8:52:00 AM

Font: Bold
\begin{tabular}{|ll|}
\hline Page 74: [298] Formatted & Keith Fry \\
\hline
\end{tabular}

Font: Times New Roman, Bold
\begin{tabular}{|ll|}
\hline Page 74: [299] Formatted & Keith Fry \\
\hline
\end{tabular}

Font: Bold
\begin{tabular}{|ll|}
\hline Page 74: [300] Formatted & Keith Fry \\
\hline
\end{tabular}

Font: Italic, Subscript

\section*{Page 74: [301] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [302] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [303] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5 "+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [305] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 74: [306] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [308] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 74: [309] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [310] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [311] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lll}
\hline Page 74: [312] Formatted & Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 74: [315] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 74: [316] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 74: [317] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [319] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 74: [320] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 74: [321] Formatted & Keith Fry & 8/22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [323] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 74: [327] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [328] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [329] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 74: [330] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 74: [333] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 74: [334] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 74: [335] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 74: [337] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 75: [338] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 75: [339] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 75: [342] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 75: [344] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 75: [346] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 75: [347] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [348] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [350] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 76: [351] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [353] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 76: [354] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [355] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [356] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [357] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 76: [360] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 76: [361] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 76: [362] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [364] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 76: [365] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 76: [366] Formatted & Keith Fry & 8/22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [368] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 76: [369] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 76: [371] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 76: [372] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [373] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [374] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [375] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 76: [378] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 76: [379] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 76: [380] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [382] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 76: [383] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [384] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [386] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 76: [390] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 76: [391] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 76: [392] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [393] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [395] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 78: [396] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [398] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 78: [399] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [400] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [401] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lll}
\hline Page 78: [402] Formatted & Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 78: [405] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 78: [406] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 78: [407] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [409] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 78: [410] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 78: [411] Formatted & Keith Fry & 8/22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [413] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 78: [414] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [416] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [418] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [419] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
\begin{tabular}{|lll}
\hline Page 78: [420] Formatted & Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 78: [423] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 78: [424] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 78: [425] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [427] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 78: [428] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [429] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [431] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [434] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 78: [435] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [436] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 78: [437] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 78: [438] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 80: [440] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 80: [441] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [442] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [443] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [444] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [445] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|ll|}
\hline Page 80: [446] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|lll}
\hline Page 80: [447] Formatted & Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 80: [449] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 80: [450] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 80: [451] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [452] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 80: [454] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 80: [455] Formatted Keith Fry 8/22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 80: [456] Formatted & Keith Fry 2/2/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 80: [458] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [461] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [462] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [463] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 80: [464] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [465] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [467] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 80: [468] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 80: [469] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [470] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 80: [471] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 80: [472] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)
Page 80: [473] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 80: [474] Formatted & Keith Fry & 8/22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 80: [476] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 80: [477] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [478] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [479] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 80: [480] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [481] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 80: [482] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 80: [483] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 80: [485] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 80: [486] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 80: [487] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 82: [488] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

\section*{Page 82: [489] Formatted}

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [490] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 82: [491] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [492] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [494] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 82: [495] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 82: [497] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 82: [498] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 82: [499] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [500] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 82: [501] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 82: [504] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 82: [505] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 82: [506] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [508] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 82: [509] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [510] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [512] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 82: [516] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 82: [517] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [518] Formatted Keith Fry 8/ 22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 82: [519] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 82: [522] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 82: [523] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 82: [524] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [526] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
\begin{tabular}{|ll|}
\hline Page 82: [527] Formatted \(\quad\) Keith Fry & 8/ 22/ 2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 82: [528] Formatted & Keith Fry 2/2/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 82: [530] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 86: [533] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [535] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [536] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: \(2.3^{\prime \prime}\), Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 87: [539] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 87: [540] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 87: [541] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 87: [542] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [544] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 87: [545] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
\begin{tabular}{|lll}
\hline Page 87: [546] Formatted \(\quad\) Keith Fry 22/2016 9:15:00 AM \\
\hline
\end{tabular}

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [548] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 87: [551] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 87: [552] Formatted}

Keith Fry
8/ 22/ 2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 87: [553] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [554] Formatted Keith Fry 8/ 22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 87: [555] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Page 87: [558] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

\section*{Page 87: [559] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

\section*{Page 87: [560] Formatted}

Keith Fry
8/22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3^{\prime \prime}+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [562] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)
Page 87: [563] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [564] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 87: [566] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned

\section*{Page 88: [570] Formatted}

Keith Fry
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

Page 88: [571] Formatted
Keith Fry
8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8",
Decimal aligned + 5.9", Decimal aligned
Page 88: [572] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"
Page 88: [573] Formatted Keith Fry 8/ 22/ 2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 88: [574] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at 2.5" + 3" + 4" + 5" + 6"

\section*{Page 88: [575] Formatted}

\section*{Keith Fry}

8/ 22/2016 9:15:00 AM
Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned
Page 88: [576] Formatted Keith Fry 8/22/2016 9:15:00 AM

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned + Not at \(2.5^{\prime \prime}+3 "+4 "+5 "+6 "\)

Tab stops: 2.3", Right,Leader: ... + 2.6", Decimal aligned + 3.7", Decimal aligned + 4.8", Decimal aligned + 5.9", Decimal aligned```


[^0]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^1]:    Forewordii
    API Special Notes ..... iii

    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^2]:    Formatted: Font: Not Italic
    Formatted: Not Superscript/ Subscript

[^3]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^4]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^5]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^6]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^7]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^8]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

[^9]:    This document is not an API/ASTM/GPA Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API/ASTM/GPA Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction. Copyright API/ASTM/GPA. All rights reserved

