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ABSTRACT 
 In recent years, as space structures have become large and 
require higher accuracy, composite honeycombs, which can 
reduce weight and have low thermal expansion, are in 
increasing demand. As observed in the design of antenna 
reflectors and rocket bodies, both flat and 3D-shaped cores are 
used in this field. However, these special honeycombs have high 
manufacturing costs and limited applications. This study 
illustrates a new strategy to fabricate arbitrary cross-section 
honeycombs with applications of advanced composite materials. 
These types of honeycombs are usually manufactured from 
normal flat honeycombs by curving or carving, but the proposed 
method enables us to construct objective shaped honeycombs 
directly. The authors first introduce the concept of the kirigami 
honeycomb, which is made from single flat sheets and has 
periodical slits resembling origami. In previous studies, 
honeycombs having various shapes were made using this 
method, and were realized by only changing folding line 
diagrams (FLDs). In this study, these 3D kirigami honeycombs 
are generalized by numerical parameters and fabricated using a 
newly proposed FLD design method, which enables us to draw 
the FLD of arbitrary cross-section honeycombs. Next, the 
authors describe a method of applying this technique to 
advanced composite materials. Applying the partially soft 
composite techniques, folding lines are materialized by silicon 
rubber hinges on carbon fiber reinforced plastic. Complex FLD 
patterns are then printed using masks on carbon fabrics. Finally, 
these foldable composites that are cured in corrugated shapes in 

autoclaves are folded into honeycomb shapes, and some typical 
samples are shown with their FLDs. 

 
INTRODUCTION 

In the construction of aerospace components, lightweight, 
rigid, and strong honeycomb sandwich panels are required. In 
recent years, the use of composite materials has drastically 
increased in this field. In the case of sandwich panels, carbon 
fiber reinforced plastic (CFRP) face sheets are typically 
combined with an aluminum honeycomb. Currently, space 
structures are increasing in size and require greater degrees of 
accuracy; hence, the use of composites as a core material is a 
natural progression. It is promising for further reducing the 
weight of the body of satellites and enhancing the accuracy of 
their on-board equipment because of their low coefficients of 
thermal expansion (CTE). Furthermore, use of the same 
material for both the face sheet and the core prevents certain 
problems that would otherwise arise when combining materials 
that have different CTEs, such as CFRP-face aluminum 
honeycomb [1]. 

Various types of composite honeycombs [2-4] are 
commercially available, in addition to aluminum or nomex 
honeycombs. A comparable product is the CFRP honeycomb 
that has recently been used in antenna reflectors for high 
frequencies [5,6]. Other composites such as Kevlar honeycombs 
are also manufactured and used in floor panels of the latest 
airplane model. Quartz fiber, which has superior electrical 
properties has found the application in radome. 
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Many studies on various types of core configurations that 
do not include hexagonal honeycombs have been reported. The 
main examples include lattice materials consisting of webs and 
struts [7-9]. Several configurations have already been proposed 
in this research area: octet-truss, the 2D and 3D Kagome 
structure, and the tetrahedral lattice. Square composite 
honeycombs, which are expected to show high in-plane 
stretching rigidity, have also been researched [10]. These square 
honeycombs are fabricated by assembling slotted rectangular 
composite sheets. The Z-fiber and X-Cor are truss structures 
that are fabricated by angled carbon fiber rods embedded in 
polymeric foam, and they are typical examples of composite 
sandwich panels [11] that have potential commercial 
applications. 

However, these composite core materials are not regularly 
used in sandwich construction. Compared to standard aluminum 
or nomex honeycombs, their manufacturing costs are very high 
and they have limited applications. Another problem is 
difficulty of machining. In the manufacture of complex-shaped 
parts, the cores must have some degree of curvature. For 
aluminum honeycombs, this can be done using a contour cutter, 
a 3-D tracer, and numerically controlled machines. However, 
burrs and buckling of cell walls present a difficult problem for 
surface accuracy. It is clear that the machining of composite 
cores requires more expensive and sophisticated systems. 
Realizing curvatures in honeycombs is also difficult because 
they deform a saddle shape when bent. It requires special cell 
shapes such as flexcore [2] or cells having auxetic behavior 
[12,13] for a large and accurate curvature.  

This study proposes a novel method to construct arbitrary 
cross-section composite honeycombs. The basic idea originates 
from the fold-made paper honeycombs proposed by Nojima and 
Saito in 2007 [14], in which they attempted to apply origami 
and kirigami techniques to the creation of sandwich structures. 
Origami is the traditional Japanese art of paper folding and has 
received widespread attention from artists, architects, and 
mathematicians. Kirigami is a variation of origami. While 
traditional origami prohibits the cutting of paper, it is 
permissible in kirigami. Kirigami artists create remarkable 
patterns on paper using a combination of cutting and folding.  

Figure 1 shows the basic concept of kirigami (or origami) 
honeycombs. The advantage of this method is that it can be 
extended to manufacture 3D (non-flat) honeycomb. This is 
achieved only by changing the folding line patterns. Some paper 
samples and their folding line diagrams (FLDs) are shown in 
Fig. 2. However, these previous studies [14] have not included 
non-convex-shaped cross-sections. Because of geometrical 
restrictions, their FLDs cannot be drawn on single sheets of flat 
paper. Generalized FLD design methods have also remained a 
challenge.  
   In this study, these 3D kirigami honeycombs are generalized 
by numerical parameters, and a new FLD design method is 
devised. This study also includes non-convex-shaped cross-
sections that have not been possible to realize in previous 
studies. The outline of the paper is as follows. First, the design 

method of the FLD is devised. This involves the calculation of 
the position of the folding lines and slits from given cross-
sectional shapes. The second part describes the condition 
pertaining to foldability and propose a modified method for 
unfoldable cross-sections. This approach enabled us to fold 
arbitrary cross-section honeycombs (including non-convex 
honeycombs) by folding single sheets. The third part describes a 
method of applying this technique to advanced composite 
materials. As an exapmle of kirigami composite honeycombs, a 
wingbox was already manufactured in autoclave-cured woven 
Kevlar fabric using the FLD around an airfoil profile[15]. In 
Ref.15, a dashed line cutting is used on a folding line. This 
study proposes a new method to introduce folding lines on 
CFRP; Silicon rubber is used as the matrix for hinge areas. 
Finally, these foldable composites that are cured in corrugated 
shapes in autoclaves are folded into honeycomb shapes, and 
some typical samples are shown with their FLDs. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Concept of kirigami honeycomb core.  (a) Basic 
folding lines diagram. Thick lines: Slits. Fine lines: 
mountain folding lines. Dashed lines: valley folding lines. 
(b)–(d) The folding process for realizing a honeycomb 
shape. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Examples of 3D folded honeycombs and their 
folding line diagrams (FLDs). Upper: Tapered honeycomb. 
Lower: Convex curved honeycomb. Black lines and areas: 
Slits or cutouts. Gray lines: Folding lines. 
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NOMENCLATURE 
 
C        Cell size. 
c'        Gap length between w-direction folding lines.  
        Characteristic angle of honeycomb. 
XL        Honeycomb width for L-direction. 
XW        Honeycomb width for W-direction. 
NL        Number of cells for L-direction. 
NW        Number of cells for W-direction. 
Ai, Bi      FLD vertices. 
ai , bi       FLD parameters. 
Ti, Ui      Boundary line vertices. 
ti , ui       Cross-section parameters.  
li          Height of cell walls. 
si          Widths of the slits. 

 xl        FLD width for L-direction. 
 
  

FOLDING LINE DIAGRAMS 
 

Parameters for FLDs and Cross-Section Honeycombs 
This study considers the one-directional arbitrary cross-section 
honeycomb shown in Fig. 3. Here, the core thickness and 
curvature change only in the W direction, which is the 
mechanical direction in commercial honeycombs. All cell walls 
are perpendicular to the LW surface, and each cell has a regular 
hexagonal cross-section. Fig. 4 shows a representative FLD for 
a honeycomb such as the one shown in Fig. 3. First, we 
introduce new parameters that represent the position of vertices 
in FLDs and folded honeycomb shapes. Compared with the 
basic models shown in Fig. 1 (a), all folding lines that are 
parallel to the w axis remain parallel and equally spaced, but the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  One directional modified cross-section honeycomb. 
The core thickness and curvature change only in the W 
direction. All cell walls are perpendicular to the LW surface, 
and each cell has a regular hexagonal cross-section. 
 

 

position of the slits moves along the w direction.  To draw an 
FLD, the w coordinate values of these slit vertices are required. 

Considering periodicity and symmetry, a belt-shaped area is 
cut from the FLD and define the l and w axes. The 
representative vertexes A0, A1, A2,… and B0, B1, B2,… are 
chosen, as shown in Fig. 4. Each w coordinate is defined as a0, 
a1, a2,… and b0, b1, b2,…, which are called the FLD parameters. 
Meanwhile, parameters that represent the cross-sectional shape 
of the honeycombs are defined as follows. Fig. 5 shows how the 
vertices Ai and Bi in Fig. 3 are positioned in the LWZ space after 
folding. Here, the built shape is projected onto the WZ surface 
and the top and bottom boundary lines are defined as T0, T1, 
T2… and U0, U1, U2,…, as shown in Fig. 5. The cross-section 
parameters ti and ui are defined as their Z coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     
 Fig. 4  Definition of the FLD parameters ai and bi. 
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Fig. 5  Definition of the cross-section parameters ti and ui. 
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Calculation of FLD Parameters 
In this section, a novel FLD design method is devised. This 

refers to the manner of calculating the FLD parameter (a i, b i) 
from the given cross-section parameters (ti, ui). First, the 
intervals between the slits that are represented by li in Fig. 4 are 
defined as follows: 
 

l2m = a3m + 1 − a3m = a3m − a3m − 1                  (1) 
 
l2m − 1 = b3m – 1 − b3m − 2 = b3m – 2 − b3m −3           (2) 

           (l0 = a1 − a0 , m=1,2,3…)        
 

The widths of the slits si are also represented by a i and b i.  
 
s2m = b3m – b3m − 1                                    (3) 
 
s2m − 1 = a3m – 1 − a3m − 2                          (4) 
                      (m=1,2,3…, s0 = a0 – b0)   

 
Using these equations, each FLD parameter can be represented 
as the sum of li and si, as follows: 

 


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i
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                      (5) 
 
 
Next, li also corresponds to the cell thickness in fold-made 

honeycombs, as shown in Fig. 5, and can be represented by 
cross-section parameters. 

 
li = ti − ui                                           (6) 
 

In the FLD and its folded shape, each rectangle remains 
unchanged. A comparison of the solid-line rectangle in Figs. 4 
and 5 therefore allows us to obtain the following equations 
about the relative positions of vertices. 

 
b3m − a3m = u2m + 1 − u2m                     (7) 
 
b3m − 1 − a3m = u2m − u2m − 1                   (8) 
 

Using (7), (8), and (3), we can represent s2 m using cross-section 
parameters. 

 
s2m = (b3m − a3m) − (b3m-1 − a3m)  
   =u2m + 1 − 2u2m +u2m − 1                   (9) 
 

Using a similar process, s2m + 1 is written in the form  
 
s2m + 1 = 2t2m + 1 − t2m − t2m + 2                 (10) 
 
 

Using (1)–(5), (8), and (9), the FLD parameter a3m can be 
represented by a cross-section parameter as follows:  
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                 (11) 
                          
 

We can also calculate other diagram parameters a3 m+1 , a3 m-1  
from (11) ; 

 
 
                                         (12) 
  
                                                                                       
                                         (13) 
 
 

b3 m is provided from (7) and (11) as follow, 
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then, 
                                                                                                    

                                          (15)  
                                                                                            
                                        
                                          (16) 
 
 
These equations enable us to calculate FLD parameters 

from given cross-sectional shapes. However, it does not mean 
that we always can draw an FLD on a single flat paper. This 
would be possible only when all slits have positive widths. Fig. 
6 shows the problem of the negative slits. As shown in Fig. 6 
(a), the unit cell in normal flat honeycombs is folded from a 
paper with straight slits. Fig. 6 (b) shows a unit cell of the 
tapered honeycomb whose thickness increases linearly. Here, 
the widths of the slits equal to zero, as well as the flat unit cells. 
As shown in Fig. 6 (c), if the cell thickness changes with convex 
curves, the slit widths have positive values. This means that 
some cutouts are required on the paper. As shown in Fig. 2, the 
FLDs that consist of these types of unit cells can be constructed 
relatively easily, and various paper samples have been created 
in previous studies. However, when we constructed the unit 
cells as shown in Fig. 6 (d), which appear in non-convex curved 
honeycombs, the total angles surrounded a slit edge (vertices B 
and E in Fig. 6) over 2. This implies that the slit width has a 
negative value and the papers overlap at the slits. It is therefore 
impossible to fold this type of unit cell from a single paper. This 
is the reason why the fabrication of non-convex curved 
honeycombs has not yet been realized in origami based 
methods. 
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Fig. 6  Types of unit cells and their slit shapes. (a) Flat cell 
with straight slits. (b) Tapered cell with zero width slit. (c) 
Convex curved cell with positive width slit. (Hexagon 
EDCBHG is a cutout area.) (d) Non-convex curved cell with 
negative width cell. (Hexagon EDCBHG is an overlapping 
area.) 

Modified Method for Unfoldable Honey-combs 
This section is about the shape modifying method that 

avoids the negative-slit problem. Using (9) and (10), the 
conditions for foldable cross-sections (si ≧ 0) can be written 
as follows: 

 
u2m+ 1 + u2m-1 − 2u2m ≧ 0                      (17) 
  
2t2m + 1 – t2m+2 − t2m ≧ 0                        (18) 
 

Normally, cross-sectional shapes are given as top and bottom 
boundary lines. In previous methods, these lines are divided for 
each C/2 and approximated line segments, as shown in Fig. 7 
(a). Here, C is the call size. In this case, all cross-section 
parameters are defined individually; hence, the conditions of 
(17) and (18) are maintained in limited cases such as tapered or 
convex curved honeycombs.  

In the suggested methods, boundary lines are divided for 
each C, as shown in Fig. 7 (b). Here, only even-numbered Ti 
and odd-numbered Ui are set on the boundary lines.  

 
t2m = f (m C)                                (19) 
 
u2m + 1 = g ((2m ＋1) C/2)                     (20) 
 

Next, the remaining T2m + 1 and U2m are set on the mid-points of 
points that are before and after T and U, as shown by the 
followed equations: 

 
t2 m + 1 = (t2m + t2m + 2)/2                        (21) 
 
u2m = (u2m − 1 + u2m + 1)/2                       (22) 
 

From (17) and (18), it is then confirmed that the slit widths si 
are always equal to zero. This method permits to modify  
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7  Approximated cross sections. (a) Partitioning with 
C/2 (Previous methods). (b) Partitioning with C (Proposed 
method to modify the unfoldable case). 
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unfoldable cross-sections and draw their FLDs on single flat 
sheets. This means that it becomes possible to fold arbitrary 
cross-section honeycombs from a single paper. Fig. 8 shows a 
sample sheet of paper folded into a honeycomb with parabolic 
surface and a sine curved surface. The specific steps of 
designing the FLD are shown in ANNEX. 
 

 
APPLICATION OF ADVANCED COMPOSITE 
MATERIALS 
 
Folding lines on CFRP Sheets 

Using the above-mentioned methods, we can draw FLDs of 
arbitrary cross-section honeycombs. For paper and metallic 
honeycombs, it is not difficult to apply this method for mass 
production because there are various ways of bending and 
cutting them automatically. This section discusses the 
application of the method to advanced composite materials in 
aerospace applications.  

With respect to the manufacturing process (Fig. 1), the 
challenge has been to find a method of introducing folding lines 
on a CFRP sheet. If a damage on a folding line is permitted, 
folding a thin composite sheet is simplicity itself. As commonly 
used in the paper craft techniques, scratching or dashed-line 
cutting on crease lines is effective to make accurate folding-
lines. Taking a similar approach, an aerofoil shaped honeycomb 
are made from Kevlar sheets [15]. However, this method 
includes fiber breakages on folding lines and can be used only 
for one-time folding. In order to combine origami and 
composites, it is desired that folding lines are protected by some 
kind of soft materials. In examples of such techniques, some 
researchers have reported partially flexible composites that can 
be bent at soft-matrix areas [16,17]. Epoxy and silicon matrixes 
are used on the hard and soft parts, respectively. This study uses  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8  Honeycomb core with parabolic surface (y=0.002 
x2‐0.2x+20) and sine curved surface (y=10sin(2x / 
200)). (a) Cross section. (b) Paper sample (C=20mm, 100
×200mm). (c) Development chart with a i and b i. 

the mask to print more complex patterns of two types of 
matrices on carbon fabrics. Fig. 9 illustrates the concept of the 
mask method, which involves constructing a mask which has 
the same pattern as that of the FLD. During the resin infusion, it 
is put on a reinforcement sheet and the area of the folding lines 
is kept dry. After curing the epoxy, these dry areas are covered 
by a soft matrix. By using this techniques, we can freely draw 
folding patterns by only changing the mask patterns; This make 
it possible to fold origami by composite sheets. Figure 10 shows 
the process of making the composite crane which is known as 
traditional origami motif in Japan. 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

   Fig.9  The concept of the mask method. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.10  Composite origami crane. (a) Mask created from 
unfolded crease pattern of origami crane. (b) The partially 
soft composite sheets with the crane pattern. (c) Fold the 
sheets according to the folding process. (d) The folded 
shape. 
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CFRP Kirigami Honeycombs 
 
This study uses normal plain-woven carbon fabric G0801-

7-1020 (HEXCEL Co., Ltd.) for reinforcement, normal epoxy 
resin Hex Ply 913 (HEXCEL Co., Ltd.) for the hard matrix, and 
silicon rubber CF19 -2615 (NuSil Technology Co., Ltd) for the 
soft matrix at the folding lines. Using the FLD design method, 
masks are constructed for various cross-section honeycombs. 
Fig. 11 (a) shows an example of a mask of a tapered 
honeycomb. Compared with FLDs on paper, the w-direction  
folding lines can be omitted because they are folded by a mold, 
and only slits and l-direction folding lines are reflected with no 
distinction. In a flat honeycomb, the FLD consists of 
straightlines; hence, straight masking tape can be used, as 
shown in Fig. 11 (b). By using these masks, the necessary 
folding lines are kept dry after resin infusion. These partially 
infused fabrics are cured into corrugated shapes on the molds. 
This study use aluminum trapezium rods that are obtained by 
cutting the hex rods in half, as shown in Fig. 12. The size of the 
rods corresponds to the cell size of folded honeycombs. Fig. 13 
shows a sketch of the lay-up. The fabric is sanded with the 
release films and additional hex rods are used for holding. 
These partially resin infused sheets are cured at 125°C and 700 
kN/m2 for 60 min in the autoclave. Fig. 14 shows the sample 
after curing. The gray stripes that are seen are the dry areas. 
Silicon rubber is used to coat these areas and cured at 150°C for 
30 min. At this point, the cured silicon covers the slit lines as 
well as the folding lines. We therefore have to cut them 
according to the FLD. Fig. 15 (a) shows this process. After 
introducing slits, they can be folded into honeycomb shapes, as  

 
 
 
 
 
 
 
 
 

Fig.11  Samples of the masks. (a) Tapered honeycomb. (b) 
Flat honeycomb. 

 
 
 
 
 
 
 
 
 
 

Fig. 12 The mold is made from 450 mm length aluminum 
rods (c = 14.3 mm (9/16 in), h = 7.15 mm、 a = 8.25 
mm). 

shown in Fig. 15 (b). Commercial acrylic adhesive is used to fix 
their folded shapes. Fig. 16 shows comprehension CFRP 
samples and their original FLDs. Figs. 16 (a) and (b) show the 
tapered honeycomb and the aerofoil (NACA2415) honeycombs, 
respectively. It is possible to construct curved cores that include 
non-convex cross-sections, as shown in Fig. 16 (c). 
 

 
Discussion 
 
   This study used masks to infuse two types of matrix on 
single CFRP sheets, and we first put epoxy on dry fabrics. 
However, there are various methods for realizing folding lines 
 
 
 
 
 
 
 
 
 
 

Fig. 13 Schematic illustration of the lay-up. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Cured CFRP sheets. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 (a) Corrugated CFRP sheet with slits and folding 
lines and (b) its folding process. 

(a) (b) 

(a) (b) 
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Fig. 16  Samples of CFRP 3D honeycomb cores and 
their mask patterns. (a) Tapered core (C = 14.3 [mm]). (b) 
Curved core (C = 14.3 [mm]). (c) Aerofoil (C = 14.3 
[mm]). 
 

on CFRP sheets. For example, it is possible to cover the folding 
lines with silicon rubber. Instead of using masks, stamps or 
printer systems can be used to infuse silicon rubber. There are 
several choices according to the types of fabrics and matrices. 
As mentioned before, another option is to partially cut 
(perforate) the reinforcements. An automated cutting machine is 
used to cut prepreg sheets and some samples have already been 
made with this method. In addition, this study is not limited to 
regular hexagonal honeycombs. By only changing the shape of 
the rods in Fig. 12, other cell configurations, including over 
expanding (OX) cells, can be manufactured, and a related study 
about negative Poisson’s ratio (NPR) honeycomb has already 
begun.  
   This method approximates a cross section by continuing 
line segments, and it might cause the decrease of surface 
accuracy especially in large curvature. However, selecting small 
cell size can avoid this problem. Usually, the cell size is enough 
small comparing to curvatures of whole structures in aerospace 
components. About mechanical properties such as shear rigidity 
and compressive stiffness which are mainly required for cores, 
kirigami honeycomb is thought to have equivalent performance 
of current major honeycomb core if we select same materials, 
foil thickness, cell size and adhesive. In addition, foils are 
connected each other in kirigami honeycombs while they are 
separated in major honeycomb. It may provide higher structural 
strength to kirigami honeycombs.  
 
 
 

CONCLUSION 
 
By folding a thin flat sheet with periodical slits, various 

cross-section honeycombs were manufactured on the basis of 
origami and kirigami techniques. This study reveals the 
geometric relationship between an FLD and a cross-section of a 
folded honeycomb. They are represented by numerical 
parameters and fabricated using a newly proposed FLD design 
method. In addition, the foldability of 3D honeycombs was 
discussed, and we proposed a modified method for dealing with 
unfoldable cases. The above achievements make it possible to 
fold one directional arbitrary cross-section honeycombs from 
single flat sheets. Next, this study applies a kirigami honeycomb 
to advanced composite materials. Folding lines are materialized 
by soft-matrix (silicon rubber) hinges, and the mask method is 
devised to control the matrix areas on fabrics.  

One of the major advantages of the proposed method is that 
we can directly manufacture arbitrary cross-section honeycombs 
without the need for difficult and expensive processing, which 
is normally required. The automation of the folding and gluing 
processes remains a challenge, but drastic cost reductions can 
be achieved when this method is adapted for mass production 
because of its versatility. This study also has significant 
potential for the continuous production of honeycombs.  
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This annex describes the specific steps for design process 

for FLD by using the example of Fig.8 model. First, trace the 
cross-section of the target honeycomb on x-y surface. Define 
the right and left boundary as x=0, x=Xw, express the top and 
bottom boundary with two curves y=f(x), y=g(x) (Fig. A-1(a)). 
This example uses following a parabolic curve and a sine curve. 

 
f(x)=0.002x2-0.2x+20                        (A-1) 
 
g(x)=10sin(2x/200)                        (A-2) 
 

Cell size C, honeycomb width for w-direction Xw ,and the 
number of cell for w-direction Nw are defined by using 
following relation.  
 
   C=Xw/N                                   (A-3) 
 
Here, we choice Xw = 200, NW=10, and C =20. The Gap length 
between l-direction folding lines c' (see Fig. A-2(a)) is 
determined as follow,  


c' = C / (2 cos )                 (A-4) 
 
The characteristic angle is shown in Fig.6(a). In a regular 
hexagonal honeycomb, is equals to /6, so c' =11.5. 
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   Secondly, divide the cross section into 2NW  trapeziums for 
each C/2 as shown in Fig. A-1(b). Then, vertexes on upper 
boundary are defined as Ti, and lower as Ui. If the target cross-
section meet the foldable condition given by (17) and (18), the 
y-coordinate of Ti and Ui can be used as cross-section 
parameters ti and ui. Otherwise, it is necessary to modify the 
vertexes position according to (21)(22); remove the odd-
numbered upper vertexes and even-numbered lower vertexes on 
the mid-points of points that are before and after T and U as 
shown in Fig.A-1(c). Table A-1 shows these modified cross-
section parameters. The terms marked * express the modified 
vertexes. The other terms express the vertexes on the curves of 
y=f(x) and y=g(x).  
   Thirdly, Put ti, ui of Table A-1 in the equation (11)~(16), 
calculate the FDL parameters ai and bi. Table A-2 shows the 
results. In Table A-2, a3m+1 and a3m+2 equal to b3m+2and b3m+3 

respectively (m=0,1,2…9). This is because after the above 
modification, all slit widths become zero, so A3m+1 and A 3m+2 
are unified with B3m+2 and B3m+3 respectively.  
   Finally, construct the belt-like partially FLD as shown in 
Fig.A-2(a) by using Table A-2. Repeating and reflection of this 
drawing gives the whole FLD. By marking the each of the three 
parts of Fig.A-2(a) with A,B, and C, this repetition pattern 
express as [ABC ][ABC ]…[ABC ]A as shown in Fig.A-
2. Here,  expresses the reversed image of B. The l-directional 
length of FLD is determined by the number of the L-direction 
cells and expressed by follow. 
 

   xl=(2NL+3)c'                       (A-5) 

ANNEX 

DESIGN PROCESS FOR THR FOLDING LINE DIAGRAM 
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   Table A-2  FLD parameters of Fig. 15 (mm). 

i ti ui 
0  40.0 0.00 
1 *36.4 3.09 
2  32.8 *5.59 
3 *30.0  8.09 
4  27.2 *9.05 
5 *25.2  10.0 
6  23.2 *9.05 
7 *22.0  8.09 
8  20.8 *5.59 
9 *20.4  3.09 

10  20.0 *0.00 
11 *20.4  -3.09 
12  20.8 *-5.59 
13 *22.0  -8.09 
14  23.2 *-9.04 
15 *25.2  -10.0 
16  27.2 *-9.05 
17 *30.0  8.09 
18  32.8 *5.59 
19 *36.4  3.09 
20  40.0  0.00 

m a 3m-1 a 3m a 3m+1 b 3m b 3m+1 b 3 m+2 
0 － 0.00  40.0  3.10  36.4  69.7  
1 40.0  67.2  94.4  69.7  91.6  114  
2 94.4  113  131  114  129  144  
3 131  145  159  144  158  172  
4 159  174  190  172  189  206  
5 190  210  230  206  230  253  
6 230  256  282  253  283  314  
7 282  315  347  314  349  384  
8 347  383  419  384  422  460  
9 419  458  496  460  450  539  

10 496  536  576  539  536  － 
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Table A-1 Cross sec-
tion parameters of 
Fig. 15 (mm). 
 

Fig. A-1  Cross sections of the 
honeycomb shown in Fig. 15. (a) trace 
the cross-section. (b) Discretization to 
dot sequence T, U. (c) Modification 
methods. 
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A
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Fig. A-2  Drawing FLD from ai and bi. 
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