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Figure 21.1

Some examples of common machining operations.
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Figure 21.2

Schematic illustration of the turning operation, showing various features.
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Figure 21.3 (1 of 2)

Schematic illustration of a two-dimensional cutting process, also called orthogonal cutting:
(a) Orthogonal cutting with a well-defined shear plane, also known as the M.E. Merchant
model. Note that the tool shape, the depth of cut, t,, and the cutting speed, V , are all
independent variables.
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Figure 21.3 (2 of 2)

Schematic illustration of a two-dimensional cutting process, also called orthogonal cutting:
(b) Orthogonal cutting without a well-defined shear plane.
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Figure 21.5

Basic types of chips produced in orthogonal metal cutting, their schematic representation,
and photomicrographs of the cutting zone: (a) continuous chip, with narrow, straight, and
primary shear zone, (b) continuous chip, with secondary shear zone at the chip—tool
interface, (c) built-up edge, (d) segmented or nonhomogeneous chip, and (e) discontinuous

chip.
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Figure 21.6 (1 of 2)

(a) Hardness distribution in a built-up edge in 3115 steel. Note that some regions within the
built-up edge are as much as three times harder than the bulk metal being machined, (b)
Surface finish produced in turning 5130 steel with a built-up edge. (c) Surface finish on
1018 steel in face milling. Magnifications: 15x.

Built-up

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 21.7 (1 of 5)

(a) Machining aluminum using an insert without a chip breaker; note the long chips that can
interfere with the tool and present a safety hazard.

Source: (a) Courtesy of Kennametal, Inc.
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Figure 21.7 (2 of 5)

(b) Machining aluminum with a chip breaker.

Source: (b) Courtesy of Kennametal, Inc.
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Figure 21.7 (3 of 5)

(c) Schematic illustration of the action of a chip breaker; note that the chip breaker
decreases the radius of curvature of the chip and eventually breaks it.
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Figure 21.7 (4 of 5)

(d) Chip breaker clamped on the rake face of a cutting tool.
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Figure 21.7 (5 of 5)

(e) Grooves in cutting tools acting as chip breakers; the majority of cutting tools are now
inserts with built-in chip-breaker features.
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Figure 21.8 (1 of 2)

Chips produced in turning: (a) tightly curled chip; (b) chip hits workpiece and breaks, (c)
continuous chip moving radially away from workpiece; and (d) chip hits tool shank and

breaks off.
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Figure 21.9 (1 of 3)

(a) Schematic illustration of cutting with an oblique tool; note the direction of chip
movement.
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Figure 21.9 (2 of 3)

(b) Top view, showing the inclination angle, i.
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Figure 21.9 (3 of 3)

(c) Types of chips produced with tools at increasing inclination angles.
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Table 21.2

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of
the Machine Tool, Corrected for 80% Efficiency (for dull tools, multiply by 1.25).

Specific energy

Material W-s/mm?®  hp-min/in?®
Aluminum alloys 0.4-1 0.15-0.4
Cast irons 1.1-54 0.4-2
Copper alloys 1.4-3.2 0.5-1.2
High-temperature alloys 3.2-8 1.2-3
Magnesium alloys 0.3-0.6 0.1-0.2
Nickel alloys 4.8-6.7 1.8-2.5
Refractory alloys 3-9 1.1-3.5
Stainless steels 2-5 0.8-1.9
Steels 2-9 0.7-34
Titanium alloys 2-5 0.7-2
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Figure 21.12

Typical temperature distribution in the cutting zone. Note the severe temperature gradients
within the tool and the chip, and that the workpiece is relatively cool.
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Figure 21.13 (1 of 2)

Temperatures developed in turning 52100 steel: (a) flank temperature distribution, (b) tool—
chip interface temperature distribution.
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Figure 21.14

Proportion of the heat generated in cutting transferred to the tool, workpiece, and chip as a
function of the cutting speed. Note that the chip removes most of the heat.
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Figure 21.15 (1 of 5)

(a) Features of tool wear in a turning operation. The VB indicates average flank wear, (b) flank wear, (c)
crater wear, (d) thermal cracking, (e) flank wear and built-up edge
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Figure 21.16

Effect of workpiece hardness and microstructure on tool life in turning ductile cast iron.
Note the rapid decrease in tool life (approaching zero) as the cutting speed increases. Tool
materials have been developed that resist high temperatures, such as carbides, ceramics,
and cubic boron nitride, as described in Chapter 22.
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Figure 21.17

Tool-life curves for a variety of cutting-tool materials. The negative reciprocal of the slope of
these curves is the exponent n in the Taylor tool-life equation [Eq. (21.25)], and C is the
cutting speed at T = 1 min, ranging from about 200 to 10,000 ft/min in this figure.
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Table 21.4

Allowable Average Wear Land (see VB in Fig. 21.15a) for Cutting Tools in Various
Machining Operations.

Allowable wear land (mm)

Operation High-speed steel tools Carbide tools
Turning 15 0.4
Face milling 15 0.4
End milling 0.3 0.3
Drilling 04 04
Reaming 0.15 0.15

Note: Allowable wear for ceramic tools is about 50% higher.
Allowable notch wear (see Section 21.5.3), V Bmax, is about

twice that for V B.

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 21.18

(a) Schematic illustrations of types of wear observed on various cutting tools, (b) Schematic
illustrations of catastrophic tool failures. A wide range of parameters influence these wear
and failure patterns.
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Figure 21.19

Relationship between crater-wear rate and average tool—chip interface temperature: (1)
highspeed steel, (2) C1 carbide, and (3) C5 carbide (see Table 22.5). Note how rapidly
crater-wear rate increases with an incremental increase in temperature.
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Figure 21.20

Interface of a cutting tool (right) and chip (left) in machining plain-carbon steel. The
discoloration of the tool indicates the presence of high temperatures. Compare this figure
with the temperature profiles shown in Fig. 21.12.
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Figure 22.1

The hardness of various cutting-tool materials as a function of temperature. The wide range
in each group of materials is due to the variety of tool compositions and treatments
available for that particular group.
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Table 22.1 (1 0f 2)

General Characteristics of Tool Materials.

High-speed Cast-cobalt Carbides Cubic boron  Single-crystal
Property steels alloys WwC TiC Ceramics nitride diamond™
Hardness 83-86 HRA  82-84 HRA 90-95 HRA 91-93 HRA 91-95 HRA 4000-5000 HK  7000-8000 HK
46-62 HRC  1800-2400 HK  1800-3200 HK  2000-3000 HK

Compressive strength,

MPa 41004500 1500-2300 4100-5850 3100-3850 27504500 6900 6900

psi x103 600-650 220-335 600-850 450-560 400-650 1000 1000
Transverse rupture strength,

MPa 2400-4800 1380-2050 1050-2600 1380-1900 345-950 700 1350

psi x10? 350-700 200-300 150-375 200-275 50-135 105 200
Impact strength,

] 1.35-8 0.34-1.25 0.34-1.35 0.79-1.24 < 0.1 <05 <0.2

in.-1b 12-70 3-11 3-12 7-11 <l <5 <2
Modulus of elasticity,

GPa 200 - 520-690 310-450 310-410 850 820-1050

psi x 106 30 - 75-100 45-65 45-60 125 120-150

*The values for polycrystalline diamond are generally lower, except for impact strength, which is higher.
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Table 22.1 (2 of 2)

General Characteristics of Tool Materials.

Density,
kg/m3 8600 8000-8700 10,000-15,000 5500-5800 4000-4500 3500 3500
Ib/in 0.31 0.29-0.31 0.36-0.54 0.2-0.22 0.14-0.16 0.13 0.13
Volume of hard phase, %
7-15 10-20 70-90 - 100 95 95
Melting or decomposition temperature,
2C 1300 - 1400 1400 2000 1300 700
°F 2370 - 2550 2550 3600 2400 1300
Thermal conductivity, W/m K
30-50 - 42-125 17 29 13 500-2000
Coefficient of thermal expansion, x 10~¢/°C
12 - 4-6.5 7.5-9 6-8.5 48 1.5-4.8

*The values for polycrystalline diamond are generally lower, except for impact strength, which is higher.
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Table 22.2

General Characteristics of Cutting-tool Materials. These Materials Have a Wide Range of
Compositions and Properties; Overlapping Characteristics Exist in Many Categories of Tool

Materials.
Polycrystalline
cubic
High-speed Cast-cobalt Uncoated Coated boron

steels alloys carbides  carbides Ceramics nitride Diamond
Hot hardness >
Toughness -
Impact strength =<
Wear resistance >
Chipping resistance = -
Cutting speed -
Thermal-shock -

resistance

Tool material cost >
Depth of cut Light Light Light Light Light Light Very light
Depth of cut to to to to to to for single-crystal
Depth of cut heavy heavy heavy heavy heavy heavy diamond
Processing method Wrought, Cast Cold CVD Cold pressing  High-pressure, High-pressure,
Processing method cast, and pressing or and sintering high- high-
Processing method HIP* HIP and PVD** or HIP temperature temperature
Processing method sintering sintering sintering sintering sintering sintering

Source: After R. Komanduri.

* Hot-isostatic pressing.

** Chemical-vapor deposition, physical-vapor deposition.
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Table 22.3

General Operating Characteristics of Cutting-tool Materials.

Tool materials

General characteristics

Modes of tool wear or
failure

Limitations

High-speed steels

Uncoated carbides

Coated carbides

Ceramics

Polycrystalline
cubic boron
nitride (cBN)

Diamond

High toughness, resistance to frac-
ture, wide range of roughing and
finishing cuts, good for interrupted
cuts

High hardness over a wide range
of temperatures, toughness, wear
resistance, versatile, wide range of
applications

Improved wear resistance over un-
coated carbides, better frictional
and thermal properties

High hardness at elevated tempera-
tures, high abrasive wear resistance

High hot hardness,
cutting-edge strength

toughness,

High hardness and toughness, abra-
sive wear resistance

Flank wear, crater wear

Flank wear, crater wear

Flank wear, crater wear

Depth-of-cut line notch-
ing, microchipping, gross
fracture

Depth-of-cut line notch-
ing, chipping, oxidation,
graphitization
Chipping, oxidation,
graphitization

Low hot hardness, limited harden-
ability, and limited wear resistance

Cannot be used at low speeds be-
cause of cold welding of chips and
microchipping

Cannot be used at low speeds be-
cause of cold welding of chips and
microchipping

Low strength and low thermome-
chanical fatigue strength

Low strength, and lower chemi-
cal stability than ceramics at higher
temperature

Low strength, and low chemical sta-
bility at higher temperatures
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Figure 22.2

Typical cutting tool inserts with various shapes and chip-breaker features: Round inserts
also are available, as can be seen in Figs. 22.3c and 22.4. The holes in the inserts are
standardized for interchangeability in toolholders.

Source: Courtesy of Kennametal, Inc.
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Figure 22.3 (1 of 2)

Methods of mounting inserts on toolholders: (a) clamping.
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Figure 22.3 (2 of 2)

Methods of mounting inserts on toolholders: (b) wing lockpins.
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Figure 22.4

Relative edge strength and tendency for chipping of inserts with various shapes. Strength
refers to the cutting edge indicated by the included angles.
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Figure 22.5

Edge preparation for inserts to improve edge strength.
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Figure 22.6

Relative time required to machine with various cutting-tool materials, indicating the year the
tool materials were first introduced. Note that machining time has been reduced by two
orders of magnitude within a hundred years.
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Figure 22.7

Schematic illustration of typical wear patterns on uncoated high-speed steel tools and
titanium nitride-coated tools. Note that flank wear is significantly lower for the coated tool.
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Figure 22.8

Multiphase coatings on a tungsten-carbide substrate. Three alternating layers of aluminum
oxide are separated by very thin layers of titanium nitride. Inserts with as many as 13 layers
of coatings have been made. Coating thicknesses are typically in the range from 2 to 10

um.
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Figure 22.9

Ranges of mechanical properties for various groups of tool materials (see also Tables 22.1
through 22.5).
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Figure 22.10

An insert of a polycrystalline cubic boron nitride or a diamond layer on tungsten carbide.
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Figure 22.11 (1 of 3)

Microphotographs of diamond compacts: (a) fine-grained diamond, with mean grain size
around 2 ym, (b) medium grain, with mean grain size around 10 ym, (c) coarse grain, with
grain size around 25 ym.

(b)
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Figure 22.12

Schematic illustration of the proper methods of applying cutting fluids (flooding) in various
machining operations: (a) turning, (b) milling, (c) thread grinding, (d) drilling
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Figure 22.13 (1 of 3)

(a) A turning insert with coolant applied through the tool, (b) comparison of temperature
distributions for conventional and through-the-tool application.
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Figure 23.1 (1 of 6)

Miscellaneous cutting operations that can be performed on a lathe. Note that all parts are
axisymmetric. The tools used, their shape, and the processing parameters are described in

detail throughout this chapter.

(a) Straight turning (b) Taper turning
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Figure 23.1 (2 of 6)

(d) Turning and
external grooving

(c) Profiling
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Figure 23.1 (3 of 6)
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Figure 23.1 (4 of 6)

(h) Boring and
iInternal grooving

(g) Cutting with
a form tool
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Figure 23.1 (5 of 6)

A

(i) Drilling (j) Cutting off
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Figure 23.1 (6 of 6)

= Workpiece

(k) Threading (I) Knurling

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Table 23.1

General Characteristics of Machining Processes and Typical Dimensional Tolerances.

Typical dimensional

Process Characteristics tolerances, +mm (in.)

Turning Turning and facing operations on all types of materials, uses single-point ~ Fine: 0.025-0.13 (0.001-
or form tools; engine lathes require skilled labor; low production rate  0.005)
(but medium-to-high rate with turret lathes and automatic machines) = Rough: 0.13 (0.005)
requiring less skilled labor

Boring Internal surfaces or profiles with characteristics similar to turning;  0.025 (0.001)
stiffness of boring bar important to avoid chatter

Drilling Round holes of various sizes and depths; high production rate; labor  0.075 (0.003)
skill required depends on hole location and accuracy specified; requires
boring and reaming for improved accuracy

Milling Wide variety of shapes involving contours, flat surfaces, and slots;  0.13-0.25 (0.005-0.01)
versatile; low-to-medium production rate; requires skilled labor

Planing Large flat surfaces and straight contour profiles on long workpieces,  0.08-0.13 (0.003-0.005)
low-quantity production, labor skill required depends on part shape

Shaping Flat surfaces and straight contour profiles on relatively small work- ~ 0.05-0.13 (0.002-0.003)
pieces; low-quantity production; labor skill required depends on part
shape

Broaching  External and internal surfaces, slots, and contours; good surface finish;  0.025-0.15 (0.0010-0.006)
costly tooling; high production rate; labor skill required depends on part
shape

Sawing Straight and contour cuts on flat or structural shapes; not suitable for 0.8 (0.03)

hard materials unless saw has carbide teeth or is coated with diamond;
low production rate; generally low labor skill
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Figure 23.2

General view of a typical lathe, showing various components.
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Figure 23.3

(a) Photograph of a turning operation, showing insert and discontinuous chips. The cutting
tool is traveling from right to left in this photograph, (b) Schematic illustration of the basic
turning operation, showing depth of cut, d; feed, f; and spindle rotational speed, N, in
rev/min. The cutting speed is the surface speed of the workpiece at the tool tip.
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Figure 23.11

(a) A computer-numerical-control lathe with two turrets, (b) A typical turret equipped with 10

tools, some of which are powered.
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Table 23.9

Typical Production Rates for Various Machining Operations.

Operation Rate
Turning
Engine lathe Very low to low
Tracer lathe Low to medium
Turret lathe Low to medium
Computer-controlled lathe Low to medium
Single-spindle chuckers Medium to high
Multiple-spindle chuckers High to very high
Boring Very low
Drilling Low to medium
Milling Low to medium
Planing Very low
Gear cutting Low to medium
Broaching Medium to high
Sawing Very low to low

Note: Production rates indicated are relative: Very low is about
1 or more parts per hour, medium is approximately 100 parts
per hour, and very high is 1000 or more parts per hour.
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Figure 23.14 (1 of 2)

The range of surface roughnesses obtained in various processes; note the wide range
within each group, especially in turning and boring.
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Figure 23.15 (1 of 2)

Range of dimensional tolerances in various machining processes as a function of

workpiece size. Note that there is one order of magnitude difference between small and
large workpieces.
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Table 23.10

General Troubleshooting Guide for Turning Operations.

Problem

Probable causes

Tool breakage

Excessive tool wear
Rough surface finish
Dimensional variability
Tool chatter

Tool material lacks toughness, improper tool angles, machine tool lacks stiffness, worn bearings and
machine components, machining parameters too high

Machining parameters too high, improper tool material, ineffective cutting fluid, improper tool angles
Built-up edge on tool; feed too high; tool too sharp, chipped, or worn; vibration and chatter
Lack of stiffness of machine tool and work-holding devices, excessive temperature rise, tool wear

Lack of stiffness of machine tool and work-holding devices, excessive tool overhang, machining
parameters not set properly
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Figure 23.19

Schematic illustration of a vertical boring mill. Such a machine can accommodate
workpiece sizes as large as 2.5 m (98 in.) in diameter.
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Vertical Boring Machine

https://youtu.be/daqYyzPC1Rs
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Figure 23.20 (1 of 2)

Two common types of drills: (a) Chisel-edge drill. The function of the pair of margins is to
provide a bearing surface for the drill against walls of the hole as it penetrates the
workpiece. Drills with four margins (double-margin) are available for improved guidance
and accuracy. Drills can have chip-breaker features.
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Figure 23.20 (2 of 2)

Two common types of drills: (b) Crankshaft drill. These drills have good centering ability,
and because the chips tend to break up easily, crankshaft drills are suitable for producing
deep holes.

Crankshaft-point drill

(b)
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Table 23.13

General Troubleshooting Guide for Drilling Operations.

Problem

Probable causes

Drill breakage
Excessive drill wear

Tapered hole
Oversize hole
Poor hole surface finish

Dull drill, drill seizing in hole because of chips clogging flutes, feed too high, lip relief angle too small

Cutting speed too high, ineffective cutting fluid, rake angle too high, drill burned and strength lost
when drill was sharpened

Drill misaligned or bent, lips not equal, web not central
Same as previous entry, machine spindle loose, chisel edge not central, side force on workpiece

Dull drill, ineffective cutting fluid, welding of workpiece material on drill margin, improperly ground
drill, improper alignment
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Figure 24.1

Typical parts and shapes that can be produced with the machining processes described in
this chapter.
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Figure 24.2 (1 of 6)

Some basic types of milling cutters and milling operations. (a) Face milling, (b) end or
shoulder milling, (c) profile milling, (d) slot milling, (e) slot and groove milling, (f) thread

milling and tapping
Ball nose Long edge

Square shoulder .
Face mill with inserts : end mill  milling cutter _
face mill _ 9 Ball nose end mill

(c) Profile milling

(a) Face milling (b) End or shoulder milling

Tap
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Figure 24.3

Photograph of the cutting action of a milling cutter that uses a number of inserts to remove
metal in the form of chips.

Source: Courtesy of Sandvik Coromant.
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Figure 24.4

Schematic illustration of peripheral milling.
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Figure 24.5 (1 of 3)

(a) Schematic illustration of conventional milling and climb milling, (b) Slab-milling operation
showing depth of cut, d; feed per tooth, f; chip depth of cut, t., and workpiece speed, v, (c)

Schematic illustration of cutter travel distance, |, to reach full depth of cut.
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* Cutter
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Figure 24.7

A face-milling cutter with indexable inserts.

Source: Courtesy of Ingersoll Cutting Tool Company.
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Figure 24.8 (1 of 4)

Schematic illustration of the effect of insert shape on feed marks on a face-milled surface:
(a) small corner radius, (b) corner flat on insert, (c) wiper, consisting of a small radius
followed by a large radius, resulting in smoother feed marks, (d) Feed marks due to various
insert shapes
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Figure 24.14

Cutters for (a) straddle milling, (b) form milling, (c) slotting.
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Figure 24.15

(a) T-slot cutting with a milling cutter, (b) A shell mill.
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Workpiece

T-slot
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Table 24.2 (1 of 2)

General Recommendations for Milling Operations. Note that these values are for a
particular machining geometry and are often exceeded in practice.

General-purpose starting conditions Range of conditions
Feed mm/tooth Speed m/min Feed mm/tooth  Speed m/min
Material Cutting tool (in./tooth) (ft/min) (in/tooth) (ft/min)
Low-carbon and free- Uncoated carbide, 0.13-0.20 100-472 0.085-0.38 90-425
machining steels coated carbide, (0.005-0.008) (320-1550) (0.003-0.015) (300-1400)
cermets
Alloy steels
Soft Uncoated, coated 0.10-0.18 100-260 0.08-0.30 60-370
cermets (0.004-0.007) (360-860) (0.003-0.012) (200-1200)
Hard Cermets, PcBN 0.10-0.15 90-220 0.08-0.25 75460
(0.004-0.006) (310-720) *0.003-0.010) (250-1500)
Cast iron, gray
Soft Uncoated, coated, 0.10-0.20 160440 0.08-0.38 90-1370
cermets, SiN (0.004-0.008) (530-1440) (0.003-0.015) (300—4500)
Hard Cermets, SiN, 0.10-0.20 120-300 0.08-0.38 90460
PcBN (0.004-0.008) (400-960) (0.003-0.015) (300-1500)

Source: Based on data from Kennametal, Inc.

Note: Depths of cut, d, usually are in the range of 1-8 mm (0.04 to 0.3 in.). PcBN:
polycrystalline cubic-boron nitride. PCD: polycrystalline diamond. See also Table 23.4 for
range of cutting speeds within tool material groups.
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Table 24.2 (2 of 2)

General Recommendations for Milling Operations. Note that these values are for a

particular machining geometry and are often exceeded in practice.

Stainless steel, Austenitic
High-temperature alloys
Nickel based

Titanium alloys

Aluminum alloys
Free machining

High silicon
Copper alloys

Plastics

Uncoated, coated,
cermets

Uncoated, coated,
cermets, SiN, PcBN

Uncoated, coated,
cermets

Uncoated, coated,
PCD
PCD

Uncoated, coated, PCD
PCD

Uncoated, coated, PCD
PCD

0.13-0.18
(0.005-0.007)

0.10-0.18
(0.004-0.007)

0.13-0.15
(0.005-0.006)

0.13-0.23

(0.005-0.009)
0.13
(0.005)

0.13-0.23
(0.005-0.009)

0.13-0.23
(0.005-0.009)

120-370
(370-680)
30-370
(100-1200)
50-60
(175-200)

1200-1460
(3920-4790)
610
(2000)
300-760
(1000-2500)
270460
(900-1500)

0.08-0.38
(0.003-0.015)
0.08-0.38
(0.003-0.015)
0.08-0.38
(0.003-0.015)

0.08-0.46
(0.003-0.018)
0.08-0.38
(0.003-0.015)
0.08-0.46
(0.003-0.018)
0.08-0.46
(0.003-0.018)

90-500
(300-1800)
30-550
(90-1800)
40-140
(125-450)

300-3000
(1000-10,000)
370-910
(1200-3000)
90-1070
(300-3500)
90-1370
(300-4500)

Source: Based on data from Kennametal, Inc.

Note: Depths of cut, d, usually are in the range of 1-8 mm (0.04 to 0.3 in.). PcBN:
polycrystalline cubic-boron nitride. PCD: polycrystalline diamond. See also Table 23.4 for

range of cutting speeds within tool material groups.
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Table 24.3

General Troubleshooting Guide for Milling Operations.

Problem

Probable causes

Tool breakage
Excessive tool wear
Rough surface finish
Tolerances too broad

Workpiece surface burnished
Back striking
Chatter marks

Burr formation

Breakout

Tool material lacks toughness, improper tool angles, machining parameters too
high

Machining parameters too high, improper tool material, improper tool angles,
improper cutting fluid

Feed per tooth too high, too few teeth on cutter, tool chipped or worn, built-up
edge, vibration and chatter

Lack of spindle and work holding device stiffness, excessive temperature rise, dull
tool, chips clogging cutter

Dull tool, depth of cut too low, radial relief angle too small
Dull cutting tools, tilt in cutter spindle, negative tool angles

Insufficient stiffness of system; external vibrations; feed, depth of cut, and width
of cut too large; select stable processing parameters

Dull cutting edges or too much honing, incorrect angle of entry or exit, feed and
depth of cut too high, incorrect insert shape

Lead angle too low, incorrect cutting-edge geometry, incorrect angle of entry or
exit, feed and depth of cut too high
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Figure 24.16

Machined surface features in face milling (see also Fig. 24.8).
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Figure 24.18

Schematic illustration of (a) a horizontal-spindle column-and-knee-type milling machine, (b)
vertical-spindle column-and-knee-type milling machine.
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Figure 24.19

Schematic illustration of a bed-type milling machine.
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Figure 24.20

A computer numerical-control (CNC) vertical-spindle milling machine. This is one of the
most versatile machine tools.

Source: Haas Automation, Inc.
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Figure 24.21

Schematic illustration of a five-axis profilemilling machine. Note that there are three
principal linear and two angular movements of machine components.
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Figure 24.22

Typical parts that can be made on a planer.
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Figure 24.23

(a) Typical parts made by internal broaching, (b) Parts made by surface broaching, (c)
Vertical broaching machine.
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Source: (a) Courtesy of General Broach and Engineering Company.
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Figure 24.24

(a) Cutting action of a broach, showing various features, (b) Terminology for a broach.
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Figure 24.25 (1 of 2)

Chip breaker features on (a) a flat broach, (b) a round broach.
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Figure 24.26

Terminology for a pull-type internal broach used for enlarging long holes.
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Broaching Machine

https://youtu.be/jKi_oiiFd7c
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Figure 24.28

Examples of various sawing operations.
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Figure 24.30

(a) High-speed-steel teeth welded onto a steel blade, (b) Carbide inserts brazed to blade
teeth.
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Figure 24.33

(a) Producing gear teeth on a blank by form cutting, (b) Schematic illustration of gear
generating with a pinion-shaped gear cutter, (c) Gear generating in a gear shaper using a
pinion-shaped cutter. Note that the cutter reciprocates vertically, (d) Gear generating in a
gear shaper using a pinion-shaped cutter. Note that the cutter reciprocates vertically, (e)
Gear generating with rack-shaped cutter.

Gear cutter Clittsi 5]
; : : pindle
Base circle Pitch circle ¢t—‘-‘~">

Spacer

f\* J:—|

Pinion-shaped  Gear blank Gear
cutter teeth

-

Form cutter

Gear blank

(a) Pitch circle Base circle

Axial movement (C)
(cutting direction)

Rack-shaped cutter

Gear blank .

(e)

Pinion  Pinion-cutter Gear Gear
cutter rotation rotation

(d)
@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 24.34

(a) Hobs, used to machine gear teeth, (b) schematic illustration of gear cutting with a hob.
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Source: (a) Courtesy of Sandvik Coromant.
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Figure 24.35

(a) Cutting a straight bevel-gear blank with two cutters, (b) Cutting a helical bevel gear.
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Figure 24.36

Finishing gears by grinding: (a) form grinding with shaped grinding wheels, (b) grinding by

generating, using two wheels.
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Gear Hobbing Machine

https://youtu.be/OrnTh6¢c19HM
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Figure 24.38

(a) The Ping Anser® golf putter, (b) CAD model of rough machining of the putter outer
surface, (c) rough machining on a vertical machining center, (d) machining of the lettering in
a vertical machining center; the operation was paused to take the photo, as normally the

cutting zone is flooded with a coolant.

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



Figure 25.1

Examples of parts that can be machined on machining centers, using processes such as
turning, facing, milling, drilling, boring, reaming, and threading. Such parts ordinarily would
require the use of a variety of machine tools. Forged motorcycle wheel, finish machined to

tolerance and subsequently polished and coated.

Source: Courtesy of R.C. Components.
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Figure 25.2

A horizontal-spindle machining center equipped with an automatic tool changer. Tool
magazines can store up to 200 cutting tools of various functions and sizes.
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Source: Courtesy Haas Automation, Inc.
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Figure 25.3

Schematic illustration of the principle of a five-axis machining center. The pallet, which
supports and transfers the workpiece, has three axes of movement and can be swiveled
around two axes (thus a total of five axes), allowing the machining of complex shapes, such

as those shown in Fig. 25.1.
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Source: Courtesy of Toyoda Machinery.
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Figure 25.4 (1 of 3)

(a) Schematic illustration of the top view of a horizontal-spindle machining center, showing
the pallet pool, setup station for a pallet, pallet carrier, and an active pallet in operation
(shown directly below the spindle of the machine).
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Source: (a) Courtesy of Hitachi Seiki Co., Ltd.
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Figure 25.4 (2 of 3)

(b) Schematic illustration of two machining centers, with a common pallet pool.
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Source: (b) Courtesy of Hitachi Seiki Co., Ltd.
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Figure 25.4 (3 of 3)

(c) A pallet pool for a horizontal-spindle machining center. Various other pallet
arrangements are possible in such systems.
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Figure 25.5

Swing-around tool changer on a horizontal-spindle machining center. (a) The tool-exchange
arm is placing a toolholder, with a cutting tool, into the machine spindle. Note the axial and
rotational movements of the arm, (b) The arm is returning to its home position. Note its

rotation along a vertical axis after placing the tool, and the two degrees of freedom in its
home position.
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Figure 25.7

A vertical-spindle machining center. The tool changer is on the left of the machine, and has
a 40 tool magazine.
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Figure 25.10

Schematic illustration of a reconfigurable modular machining center capable of
accommodating workpieces of different shapes and sizes and requiring different machining

operations on their various surfaces.
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Figure 25.11

Schematic illustration of the assembly of different components of a reconfigurable
machining center.
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Figure 25.12

(a) A hexapod machine tool, showing its major components, (b) A detailed view of the
cutting tool in a hexapod machining center.
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Hexapod

https://youtu.be/nebJ59TcYIQ
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Figure 25.14

The relative damping capacity of (a) gray cast iron, (b) an epoxy—granite composite
material. The vertical scale is the amplitude of vibration and the horizontal scale is time.
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Figure 25.15

The damping of vibrations as a function of the number of components on a lathe. Joints
dissipate energy; the greater the number of joints, the higher is the damping capacity of the
machine.
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Figure 25.17

Improvements in machining accuracy over the years, using ultraprecision machining
technologies.
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Figure 25.18

Total cost

Graphs showing (a) cost per piece and (b)
time per piece in machining. Note the

optimum speeds for both cost and time.
The range between the two is known as
the high-efficiency machining range.

Cost per piece —

CuttingI speed —
(@)
|

Machining cost

— Tool-change cost
/ 1 Nonproductive cost
| &
1

|
|
—* -~ High-efficiency machining range

—— Total time

|
I
|
|
|
I
|
|
|
|
|
|
|
|
|
t
|
|
|

Time per piece —

Machining time

— Tool-changing time
—— Nonproductive time

———)s;(\

Cutting speed —-

(b)

@Pearson Copyright © 2020, 2016 Pearson Education, Inc. All Rights Reserved



