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Genomic experiments produce multiple views of biological systems, among them are DNA sequence and copy number variation, and

mRNA and protein abundance. Understanding these systems needs integrated bioinformatic analysis. Public databases such as

Ensembl provide relationships and mappings between the relevant sets of probe and target molecules. However, the relationships can

be biologically complex and the content of the databases is dynamic. We demonstrate how to use the computational environment R to

integrate and jointly analyze experimental datasets, employing BioMart web services to provide the molecule mappings. We also

discuss typical problems that are encountered in making gene-to-transcript–to-protein mappings. The approach provides a flexible,

programmable and reproducible basis for state-of-the-art bioinformatic data integration.

INTRODUCTION
As it becomes possible to investigate biological systems in ever more
detail with respect to different aspects, such as DNA sequence
variation and copy number, epigenetic modifications of DNA and
chromatin, RNA expression and protein abundance, and the
interaction of proteins with nucleic acids and metabolites, it
becomes necessary to analyze the data in an integrative manner.
Researchers then need to address two main challenges: first, each
technology needs specific preprocessing, error modeling, normal-
ization and statistical data analysis methods; second, and typically
for good scientific reasons, a variety of systems of identifiers and
coordinate systems are used for the DNA, RNA and protein
molecules targeted in these experiments, for the probing reagents
(such as DNA probes on microarrays or siRNAs). Identifiers are
also needed for the annotation of genomes, genes and gene
products in public databases with information regarding, for
instance, sequences, gene ontology, assignment to pathways,
known interactions and associations with diseases and other
phenotypes.

The open source programming environment R1 provides math-
ematical, statistical and graphical facilities that are used in many
different fields of science for data analysis or development of new
analysis methods. The Bioconductor Project2 is an open source and
open development software project geared towards the develop-
ment of tools for the analysis of genomic datasets. It consists of
a variety of R packages and interfaces to other software systems,
each tackling specific bioinformatic data manipulation and analysis
needs. R and Bioconductor together provide a comprehensive and
powerful set of tools to address the first challenge mentioned above.
Furthermore, they provide data structures for the different types of
experimental data that can be flexibly manipulated, combined and
mined for relationships.

How to address the second challenge: constructing proper
transformations between different identifier systems and obtaining
the needed annotations? Public bioinformatics service providers,
such as NCBI (National Center for Biotechnology Information),
EBI (European Bioinformatics Institute) and UCSC (University
California Santa Cruz), as well as many instrument and reagent
vendors, have websites on which users can look up relevant

information. However, manual lookup does not perform well for
genome-scale experiments. Typically, these websites therefore also
provide files with bulk annotation and mappings. Traditionally, a
bioinformatician would download these files, parse them, subset
the relevant information and load it into appropriate data struc-
tures in their program. However, this process is tedious, error-
prone, needs to be repeated each time a new version of such files is
released, and does not provide assistance with dealing with contra-
dictory information.

The query oriented data management system and web service
BioMart3, developed by the Ontario Institute for Cancer Research
and the European Bioinformatics Institute (Hinxton, UK), pro-
vides access to mappings, relationships and annotation from several
biological databases such as Ensembl4 and Wormbase5. Besides
genome annotation databases, several other biological databases are
served through the BioMart system. For example, Reactome6 is a
knowledgebase of human biological pathways and processes.
The Bioconductor package biomaRt7,8 provides an Application
Programming Interface (API) to BioMart web services and enables
the programmable construction and subsequent analysis of large
and complex queries to BioMart services from R. It allows the
seamless embedding of identifier matching and annotation in
statistical data analysis procedures. We have been using it in
many of our data analysis projects9,10, and it is widely used by
others (e.g., it is currently the most frequently used client platform
for accessing the Ensembl BioMart web services).

The strength of the biomaRt package in querying online web
services can also be a limitation: internet access is needed, perfor-
mance of repeated queries can be slower than with the bulk
download paradigm, and ‘freezing’ the results at a particular
version of the underlying databases needs additional attention
and is not always easy. For some of the tasks, the precompiled
Bioconductor annotation packages11 offer an excellent alternative;
however, their thematic scope is more limited.

The vast majority of human gene loci are annotated consistently
in different databases. For these loci, one can start from an Ensembl
Gene identifier, get a single and unique corresponding Entrez
Gene identifier and in many cases a HGNC (HUGO Gene

  
p

u
or

G  
g

n i
h si l

b
u

P er
u ta

N 900 2
©

n
at

u
re

p
ro

to
co

ls
/

m
oc.er

ut a
n.

w
w

w//:
ptt

h

1184 | VOL.4 NO.8 | 2009 | NATURE PROTOCOLS

PROTOCOL



Nomenclature) symbol, and the reverse mapping from Entrez Gene
to Ensembl is equivalently unambiguous. However, there is a
smaller, but appreciable set of cases that are more complicated.
This is because of the differences in annotation methodology or in
the data underlying the annotation. The three groups, NCBI12,
Ensembl and HGNC13, are actively working on reconciling differ-
ences in annotation along with other groups. Many of these cases
reflect unusual biological complexity. Here, the current goal of
genome annotators is to provide further qualifiers, so that, at the
very least, a user can know when instances reflect real complexity
rather than only seeing a tangle of relationships and wondering
whether there was a database error.

A case in point is the PROTOCADHERIN GAMMA (PCDHG)
gene locus. A query in Ensembl version 52 for the gene symbol
PCDHGA12 results in four Entrez Gene identifiers: 5098, 26025,
56097 and 56098. The locus has one Ensembl Gene identifier
(ENSG00000081853) and four Ensembl transcript identifiers. At
NCBI, however, each of the four Entrez Gene identifiers is mapped
to a different HGNC symbol, PCDHGC3, PCDHGA12, PCDHGC5
and PCDHGC4, respectively. This gene locus is part of the proto-
cadherin-g gene cluster, which, like some other loci in the human
genome such as the Ig locus, has a complex organization and
cannot be easily fitted in the canonical view of a gene. In this cluster,
22 variable region exons are followed by a constant region of three
exons shared by all genes in the cluster. The protocadherin com-
munity argued that the best representation of this biology mapped
to the gene locus concept was for separate HGNC names for
different transcripts. However, considering the agreed single locus
nature of this region with a limited number of transcripts and
related functions, a single locus with multiple transcripts (as

represented in Ensembl) is more consistent for many genomic
interpretations of data in this region. For such complex loci there
will never be a clear set of criteria that one can apply in a consistent
manner and that can satisfy all users of the information. Rather, the
best scenario is a careful flagging with a qualifier, thus alerting the
end user of the information that special consideration of a complex
biological scenario may be needed.

As genome annotation is still work in progress, data and analysis
results published a few years ago have to be treated with caution.
Microarray data, for instance, are prone to probe-to-gene mapping
changes because of improved genome annotations, often making it
difficult to map published results from the past to the present.
Updated probe to genome annotation mappings are provided by
array manufacturers and by databases such as Ensembl, and
alternatively one can compute one’s own alignments. Integrating
data from different experiments, using different sets of probes,
is often biologically complex, and the choice on how to do this
should depend on context and judgement. As long as our
understanding of biology improves, such mappings will remain
dynamic, and hence, it is important that genome annotation
resources are updated regularly and that these updates can
find an easy way to enter into bespoke algorithms and software
for the data analysis tasks. The BioMart data warehouses and
the biomaRt R/Bioconductor interface are powerful and effective
tools for doing so.

To ensure the scientific value and effect of such analyses,
we recommend that publications quote the version number of
any database used and that software scripts are provided in
supplemental information for complete clarity and reproducibility
of the analysis.

MATERIALS
EQUIPMENT SETUP
R/Bioconductor The current release of R can be downloaded.
The needed add-on packages can be installed from Bioconductor by starting
R and giving the following instructions to the R interpreter:

source(‘http://www.bioconductor.org/biocLite.R’)
biocLite(c(‘biomaRt’,‘affy’,‘gplots’,‘lattice’))

Data As an example of how to use this protocol, in the procedure we
use data produced from a panel of 51 breast cell lines14. The dataset
consists of mRNA expression measurements, array comparative genomic
hybridization (CGH) measurements of DNA copy number and protein
quantifications from western blots. mRNA expression was measured
using the Affymetrix U133a platform, and the CEL files are available at the
ArrayExpress database15 with the accession number E-TABM-157. The
arrayCGH data and protein quantification data can be downloaded as

Excel files. A ZIP archive with all data files is provided in Supplementary Data 1
(E-TABM-157.zip). Unpack it on the computer and set R’s working directory to
the location of the files.

setwd(‘C:/Documents and Settings/MyUserID/MyData’)
This protocol can be adapted to other datasets with a similar experimental
design; all intermediate results should be carefully checked. For datasets that
use different array technologies or additional types of assays, the adaptation
will need further effort.

biomaRt The following commands load the biomaRt package and open an editor
window, in which a file with the programme code for this protocol can be viewed.
We recommend that readers use this file to reproduce the analysis shown here.

library(’biomaRt’)
NP2009code()

PROCEDURE
1| Load the needed add-on packages.

library(‘affy’)
library(‘gplots’)
library(‘lattice’)

2| The tabulator-delimited text file E-TABM-157.txt has one row for each microarray and three columns such as:
Array.Data.File contains the names of the raw (CEL) data files; Source.Name contains the name of the cell line from which the
cDNA was extracted; and CancerType indicates the type of breast cancer that the cell line represents (basal A, basal B or luminal,
according to table 1 in reference 14). Import the sample annotation into R using the read.AnnotatedDataFrame function and
import the CEL files using the following ReadAffy function:
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sampleAnnot ¼ read.AnnotatedDataFrame(’E-TABM-157.txt’,
row.names ¼ ‘Array.Data.File’)

mRNAraw ¼ ReadAffy(phenoData ¼ sampleAnnot,
sampleNames ¼ sampleAnnot$Source.Name)

3| Normalize the Affymetrix data using RMA16.

mRNA ¼ rma(mRNAraw)

4| To undertake principal component analysis using the
mRNA profiles of the 200 most variable probesets (see Fig. 1),
first compute the variance of all probesets; the apply function
applies the var function to compute the variance to each row
of the expression matrix. The order of the variances from high
to low is computed using the order function, and the indices of
the top 200 probesets are stored in the vector ord. Next, carry
out a principal component analysis using these top 200 probe-
sets. To do this, the matrix needs to be transposed by the
t function to meet the format expect by the prcomp function,
which computes the principal component decomposition.
Finally, plot the samples according to the first two principal
components (pca$x[, 1:2]), which represent the largest and
second largest variance components in the data. Color the
samples by sample type using the colors specified in the typeColors vector. From this plot, we can learn that the mRNA
expression profiles cluster the samples according to cancer type:

probesetvar ¼ apply(exprs(mRNA), 1, var)
ord ¼ order(probesetvar, decreasing¼TRUE)[1:200]
pca ¼ prcomp(t(exprs(mRNA)[ord,]), scale¼TRUE)
typeColors ¼ c(’Lu’¼’firebrick1’,’BaA’¼’dodgerblue2’,’BaB’¼’darkblue’)
plot(pca$x[, 1:2], pch¼16, col¼typeColors[as.character(mRNA$CancerType)],

xlab¼’PC1’, ylab¼’PC2’, asp¼1)
legend(’topleft’, c(’luminal’, ’basal A’, ’basal B’), fill¼typeColors)

5| Read the (already normalized) CGH data from the aCGH.csv file. Create an object cgh of class ExpressionSet, which is
Bioconductor’s standard container for microarray-like data. The intensity data matrix is filled with columns 4–56 of the data file,
whereas columns 1–3 provide metadata for the microarray probes:

cghData ¼ read.csv(’aCGH.csv’, header¼TRUE, row.names¼1)
cgh ¼ new(’ExpressionSet’, exprs ¼ as.matrix(cghData[,4:56]))
featureData(cgh) ¼ as(cghData[,1:3], ’AnnotatedDataFrame’)

6| Plot the arrayCGH data of chromosome 1 for three cell lines; extract the indices of the corresponding probes into
the chr1 vector using the which function. Next, use the indices in chr1 to select the log-ratio values for these probes and the
three cell lines, and store them in the vector logRatio. The chr1 indices are also used to select the chromosomal positions of
these probes; as we need them for each of the three samples, repeat them three times using the rep function before storing
them in the vector kb. The vector clName contains the cell line name for each element in the logRatio vector. Pass these
values to the xyplot function, whose result is shown in Figure 2:

chr1 ¼ which(featureData(cgh)$Chrom ¼¼ 1)
clColors ¼ c(’MCF10A’ ¼ ’dodgerblue3’, ’BT483’ ¼ ’orange’, ’BT549’ ¼

’olivedrab’)
logRatio ¼ exprs(cgh)[chr1, names(clColors)]
kb ¼ rep(featureData(cgh)$kb[chr1], times¼ncol(logRatio))
clName ¼ rep(names(clColors), each¼nrow(logRatio))

print(xyplot(
logRatio B kb | clName,
pch¼16, layout¼c(1,3), ylim¼c(-0.5, 1.1),
panel¼function(y){
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Figure 1 | Principal component analysis using the mRNA profiles of the 200

most variable probesets. It should be noted how the first principal component

(PC1) clearly separates the luminal type (red) from the basal A (light blue)

and basal B (dark blue) types, between which the variation is more

continuous.
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panel.xyplot(y,col¼clColors[panel.number()])
panel.abline(h¼0, col¼’firebrick2’)

}))

7| Determine the genomic coordinates for the genes on
chromosome 1 probed by the mRNA expression data of
Steps 2–4; establish a connection with the Ensembl BioMart
web service using the useMart function, and select the dataset
by setting the dataset argument to hsapiens_gene_ensembl.
getBM is the main query function of biomaRt. In BioMart
systems, attributes specify the features we wish to retrieve
from the database, whereas the set of records to be selected
is defined by the filters and values arguments; comprehensive
documentation of the biomaRt software can be found in the
vignette that comes with the package.

ensembl ¼ useMart(’ensembl’, dataset¼’hsapiens_gene_
ensembl’)
probes ¼ getBM(attributes ¼ c(’affy_hg_u133a’, start_
position’),

filters ¼ c(’chromosome_name’,’with_affy_hg_u133a’),
values ¼ list(1, TRUE), mart ¼ ensembl)

8| Extract the expression values for BT483 and BT549 and
make a scatterplot (see Fig. 3) that distinguishes, by point
color, between probes in- and outside the region amplified
in BT483:

xpr ¼ exprs(mRNA)[probes[,‘affy_hg_u133a’],
c(‘BT549’,‘BT483’)]
pos ¼ probes[,’start_position’]
plot(xpr, pch¼16, cex¼0.5, col¼ifelse(pos4140e6, ’red’,
’darkgrey’))

9| t-test whether the log-ratios between BT483 and BT549 are systematically different between the amplified and unamplified
regions. It should be noted that console text preceeded by ‘#’ is the printed output of the t.test function:

logRatios ¼ xpr[,2] - xpr[,1]
t.test(logRatios B (pos4140e6))
# Welch Two Sample t-test
# data: logRatios by pos 4 1.4e+08
# t ¼ -14.1299, df ¼ 2044.034, p-value
o 2.2e-16
# alternative hypothesis: true difference
in means is not equal to 0
# 95 percent confidence interval:
# -0.6179031 -0.4672868
# sample estimates:
# mean in group FALSE mean in group TRUE
# -0.2036218 0.3389731

10| Read the protein quantification data from the mmc6.csv
file. Analogous to Step 5, we create an object protein of class
ExpressionSet:

proteinData ¼ read.csv(‘mmc6.csv’, header¼TRUE,
row.names¼1)
protein¼ new(’ExpressionSet’, exprs¼ as.matrix(proteinData))
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Figure 2 | The CGH log-ratios of chromosome I for three cell lines (MCF10A,
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noted how MCF10A and BT483 have amplifications on the q-arm of the

chromosome, which is the right-hand half of the plot as the region with no
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Figure 3 | Expression data of probes mapping to chromosome 1 for the two

cell lines BT483 and BT549. The probesets mapping to the region amplified in

BT483 (genomic coordinate 4140 MB) are shown by red dots, the other

probesets in gray. The expression difference is significant with a t-test P-value

of 2.2e-16.

NATURE PROTOCOLS | VOL.4 NO.8 | 2009 | 1187

PROTOCOL



11| Determine each protein’s maximum
expression value; we will use this to
scale the colors in the heatmap (see
Fig. 4). The apply function applies the
max function to each row of the protein
abundance matrix. In the call to the
barplot function, set the las argument
to 2 so that the axis labels are drawn
perpendicular to the axis. From the
barplot we can learn that a wide
variation in expression values exists
between the different proteins and
that scaling of the expression matrix
will improve visualization of the
heatmap in Step 12:

prmax ¼ apply(exprs(protein), 1, max)
barplot(prmax, las¼2)

12| Compute a hierachical clustering of
protein quantification data and display
in a heatmap (see Fig. 5). Create a
gradient from white to dark blue using
the colorRampPalette function. The
sideColors vector assigns a color to each
sample according to its cancer type.
This information can be added to the
heatmap as a color sidebar for the
columns by using the ColSideColors
argument. The heatmap function first
carries outs a hierachical clustering of
the data and then plots a heatmap of a
matrix with correspondingly re-ordered
rows and columns. In this function
the trace argument is set to none
so no trace line is drawn in the
heatmap. It is evident from the heatmap
that the protein expression data
clusters samples broadly according to
cancer type:
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hmColors ¼ colorRampPalette
(c(‘white’, ‘darkblue’))(256)
sideColors ¼ typeColors[as.character(pData(mRNA)[ sampleNames(protein),

‘CancerType’])]
sideColors[is.na(sideColors)] ¼ ‘grey’
heatmap.2(exprs(protein)/prmax, col¼hmColors, trace¼‘none’,

ColSideColors ¼ sideColors)

13| Select samples common to mRNA, cgh and protein datasets:

samples ¼ intersect(sampleNames(protein), sampleNames(mRNA))
samples ¼ intersect(samples, sampleNames(cgh))
mRNA ¼ mRNA[,samples]
protein ¼ protein[,samples]
cgh ¼ cgh[,samples]

14| Map between HGNC symbols, by which the protein antibodies were annotated, to Ensembl gene and Affymetrix U133a
identifiers. It is to be noted that console text preceded by ‘#’ is the printed output:

map ¼ getBM(attributes ¼ c(’ensembl_gene_id’, ’affy_hg_u133a’, ’hgnc_symbol’),
filters ¼ c(’hgnc_symbol’, ’with_hgnc’, ’with_affy_hg_u133a’),
values ¼ list(featureNames(protein), TRUE, TRUE),
mart ¼ ensembl)

head(map)
# ensembl_gene_id affy_hg_u133a hgnc_symbol
# 1 ENSG00000177885 215075_s_at GRB2
# 2 ENSG00000169047 204686_at IRS1
# 3 ENSG00000178568 206794_at ERBB4
# 4 ENSG00000178568 214053_at ERBB4
# 5 ENSG00000091831 211234_x_at ESR1
# 6 ENSG00000091831 211233_x_at ESR1

15| Determine the multiplicity of the mapping. Ideally, there would be exactly one perfectly specific and sensitive probeset
for each target gene. Owing to alternative splicing, gene overlap and families of genes with similar sequence, this can be a
difficult objective, and the array manufacturer has in many cases provided several probesets per gene, targeting different regions
and varying in their sequence specificity. To explore this, the following table gives the number of times that the same gene is
targeted by 1, 2, y probesets. Note that console text preceded by ‘#’ is the printed output:

geneProbesetsAll ¼ split(map$affy_hg_u133a, map$hgnc_symbol)
table(listLen(geneProbesetsAll))

# 1 2 3 4 5 6
# 13 12 8 3 1 2

16| Determine an mRNA expression profile for each HGNC sym-
bol. If there are multiple probesets for the same gene, we take
here the simplistic approach to prefer the probesets with the
extension _at, and among these, to take the average signal:

geneProbesets ¼ lapply(geneProbesetsAll,
function(x) {

good ¼ grep(’[0-9]._at’, x)
if (length(good)40) x[good] else x

})
summaries ¼ lapply(geneProbesets,

function(i) {
colMeans(exprs(mRNA)[i,,drop¼FALSE])

})
summarized_mRNA ¼ do.call(rbind, summaries)
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Figure 6 | Expression profiles of AURKA over the cell lines (along the x-axis)

for mRNA (orange) and protein (green) levels. The correlation coefficient (r)

between these profiles is 0.686.
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17| Plot mRNA expression and protein levels of the AURKA
gene over all samples (see Fig. 6):

colors ¼ c(’orange’,’olivedrab’)
correlation ¼ cor(summarized_mRNA[’AURKA’,],

exprs(protein)[’AURKA’,],
method¼’spearman’)

matplot(cbind(
summarized_mRNA[’AURKA’, ],
log2(exprs(protein)[’AURKA’, ])),
type¼’l’, col¼colors, lwd¼2, lty¼1,
ylab¼’mRNA and protein expression levels’,
xlab¼’cell lines’,
main¼bquote(rho¼¼.(round(correlation, 3))))
legend(’bottomright’, c(’mRNA’,’protein’), fill¼colors)

18| Plot mRNA expression versus protein expression levels for
all genes, in four cell lines (see Fig. 7):

samples ¼ sampleNames(protein)[c(5,11,16,24)]
v_mRNA ¼ as.vector(summarized_mRNA[,samples])
v_protein ¼ as.vector(exprs(protein)[ rownames
(summarized_mRNA), samples])
xyplot(

v_protein B v_mRNA | rep(samples, each ¼ nrow
(summarized_mRNA)),
pch¼16, xlab¼ ’mRNA level’, scales¼list(y¼list(log¼TRUE)),
ylab¼’protein level’)

19| Use the sessionInfo() function to record the versions of R and Bioconductor packages. It is to be noted that console text
preceded by ‘#’ is the printed output:

sessionInfo()

# R version 2.9.0 (2009-04-17)
# powerpc-apple-darwin8.11.1

# locale:
# C

# attached base packages:
# [1] grid stats graphics grDevices utils datasets methods base

# other attached packages:
# [1] lattice_0.17-22 gplots_2.7.0 caTools_1.9 bitops_1.0-4.1 gdata_2.4.2
## [6] gtools_2.5.0-1 affy_1.22.0 Biobase_2.4.1 biomaRt_2.0.0

# loaded via a namespace (and not attached):
# [1] RCurl_0.94-1 XML_2.3-0 affyio_1.12.0
# [4] preprocessCore_1.6.0 tools_2.9.0

20| Use the listMarts function to record the version of the Ensembl database used in the analysis. It should be noted that
console text preceded by ‘#’ is the printed output:

listMarts()[1:3,]

# biomart version
# 1 ensembl ENSEMBL 53 GENES (SANGER UK)
# 2 snp ENSEMBL 53 VARIATION (SANGER UK)
# 3 vega VEGA 34 (SANGER UK)

? TROUBLESHOOTING
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Figure 7 | Scatterplots of protein expression levels versus mRNA expression

levels in four cell lines. It is to be noted that there is only a modest

correlation between these two methods of gene expression measurements.

Differences may be due to technical reasons, as well as to regulation of mRNA

translation.

1190 | VOL.4 NO.8 | 2009 | NATURE PROTOCOLS

PROTOCOL



� TIMING
The protocol described above should take less than 1 h to walk through. When used with data other than the example dataset,
this protocol might take substantially more time, as additional adaptations to the code might be needed.

? TROUBLESHOOTING
1. biomaRt needs the libcurl system library, which on some Linux and OS X systems is not installed by default; it can be

obtained from public package repositories or from http://curl.haxx.se. On Windows, installation of libcurl is not necessary as the
RCurl package for Windows includes this library.

2. Normalization using RMA will need the Chip Definition File (CDF) to be accessible. This CDF file comes as an R package and
will be automatically downloaded from Bioconductor by the rma function when needed.

3. Bioconductor has an active user community, and problems or questions related to Bioconductor packages can be posted
on the Bioconductor mailing list, through http://www.bioconductor.org/docs/mailList.html. It is recommended to follow the
posting guide. This protocol provides a guideline and when the user encounters problems, we refer to the Bioconductor
mailing list for help.

ANTICIPATED RESULTS
We use software from the R and Bioconductor projects to process and integrate data from different biological experiments and
use the biomaRt package to retrieve annotation information and identifier cross-references from Ensembl. Starting from
Affymetrix CEL files, we use the normalization methods implemented in the affy package to obtain normalized expression data.
We applied a principal component analysis to determine if the mRNA levels divide the breast cell line samples into different
subclasses (Fig. 1). We then imported array CGH data obtained from the same set of cell lines and visualized an amplification on
the q-arm of MCF10A and BT483 (Fig. 2). We showed that the mRNA levels correlate with the amplifications measured by
arrayCGH (Fig. 3): there is a shift to higher expression levels for genes located in the amplified region. We then added protein
quantification data from the same set of samples to this integration exercise. Figures 6 and 7 show that for a subset of genes
the mRNA and protein quantification data correlate well; however, overall this correlation is modest. The main focus of this
protocol is to show the seamless combination of statistical data analysis and bioinformatic annotation retrieval allowed by R,
Bioconductor and BioMart.

Note: Supplementary information is available via the HTML version of this article.
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