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Abstract—Cloud computing represents a solution for appli-
cations with high scalability needs where usage patterns, and
therefore resource requirements, may fluctuate based on external
circumstances such as exposure or trending. However, in order
to take advantage of the cloud’s benefits, software engineers
need to be able to express the application’s needs in quantifi-
able terms. Additionally, cloud providers have to understand
such requirements and offer methods to acquire the necessary
infrastructure to fulfill the users’ expectations. In this paper, we
discuss the design and implementation of an Infrastructure as a
Service cloud manager such that non-functional requirements
determined during the requirements analysis phase can be
mapped to properties for a group of Virtual Appliances running
the application. The discussed management system ensures that
expected Quality of Service is maintained during execution and
can be considered during different development phases.

I. I NTRODUCTION

The emergence of cloud computing responds to a increasing
trend in web application emergence and utilization. The wide
adoption of Internet has resulted in systems that need to
accomodate millions of users [1] and provide capabilities that
until now were only required by critical, high availability
or high throughput software. The practice of Software Engi-
neering provides methodologies to ensure such characteristics
are met, but it is necessary to review how they fit in this
new paradigm. In this paper, we explore the applicability of
traditional processes to the incipient field of cloud computing
from the perspective of our research in an Infrastructure asa
Service (IaaS) cloud manager.

Internet has resulted in rapid cycles of software devel-
opment, deployment and consumption by users. The rising
number of subscribers, better network connectivity and band-
width, and the growing connectedness between users have
created new dynamics where applications can be rapidly
discovered and consumed. However, the benefits produced by
these circumstances are hindered when expected requirements
are not met. Nowadays, cloud computing is often employed
as a solution to this problem. Capabilities such as pay-per-
use, scalability or elastic provisioning of resources can help
to overcome these new challenges. Nevertheless, application
developers need to recognize how to apply Software Engineer-
ing methods to the cloud in order to successfully map their
needs to fulfill service expectations.

There are two interrelated points that we believe have to
be considered to successfully make use of clouds to develop

applications that respond to the new demands generated in this
field. First, developers must understand which non-functional
requirements take renewed importance in cloud applications
so that they can be accounted for during the requirements
analysis phase. Second, cloud providers need to define better
guarantees for their services, so developers can design their
systems accordingly. We believe that providing a solution to
these problems will result in a more dependable use of clouds
to confront the new challenges of this era.

In this paper we consider the concept ofDistributed En-
sembles of Virtual Appliances(DEVAs), introduced in [2], as
a model to represent complex systems with Quality of Service
(QoS) guarantees. We discuss how a software architecture
can be mapped to a DEVA, and how through the use of
performance modeling and prediction we can make certain
assurances about its behavior in the cloud in order to address
its non-functional requirements. We finally present a case
study were we demonstrate the feasibility of our approach
to model the expected number of requests per second and
response time of a web application hosted in the cloud.

II. BACKGROUND

We define a cloud application as any software that runs on a
distributed system that complies with the definition of acloud.
Such systems ([3], [4]) possess certain common capabilities
such as on-demand provisioning, resource elasticity or pay-
per-use billing model. Therefore, cloud applications can be
deployed on remote resources with a minimal cost, and scaled
dynamically when user demand grows.

We consider three main actors in our scenario: application
users, application providers, and cloud providers. In this
proposed division, application providers also have the role of
cloud users, even though in certain cases it would be possible
that application and cloud providers are the same individual
or organization. The cloud is usually divided in Software,
Platform and Infrastructure as a Service [3] —SaaS, PaaS
and IaaS respectively. Application providers are in chargeof
implementing the SaaS layer, while the PaaS and IaaS layers
are supplied by cloud providers.

A DEVA [2] is a group of Virtual Appliances and virtual
network devices, where individual and composite policies can
be defined for elements. Virtual Appliances [5] are Virtual



Fig. 1. General architecture

Machines with specific functions, usually containing a partic-
ular software and configuration; for simplicity, we’ll use the
more general term VM to refer to them. Figure 1 illustrates the
architecture of the DEVA Manager. A user sends a specifica-
tion for a list of VMs and their associated QoS requirements,
which may consist of CPU, memory and required software for
individual VMs, and network bandwidth and latency for the
network links. Then, the Manager instantiates the ensemble
across heterogeneous resources, which may be located in
different administrative domains. A group of agents monitors
each VM’s behavior and provides the requested QoS and
network isolation.

III. R EQUIREMENT ANALYSIS AND ARCHITECTURAL

DESIGN

In Software Engineering, the requirements analysis phase
is in charge of determining the functional and non-functional
requirements of the system based on the client’s needs. In
particular, non-functional requirements [6] describe thechar-
acteristics of the system not related to its functionality.These
requirements shape the architecture of the system during the
design phase.

In this paper we target a class of applications that are
specially suited to be hosted in the cloud and have a prevalent
set of non-functional requirements. Identifying them allows
developers to ensure that they are addressed during the require-
ment analysis phase, and establish a set of requisites that must
be met by cloud providers in order to quantify their service
and ascertain the application goals are met successfully. We
enumerate the most salient ones next.

Response time

This requirement describes how much time it takes from
the moment a user sends a request to the system, until a
complete response is provided. In web applications, this com-
prehends request transmission and processing, and response
transmission. The factors that account for it are resource ca-
pabilities —processing power, memory, disk, network latency
and bandwidth— and the load produced by other processes
running in the server or the number of concurrent requests.
For complex requests, this may also involve calls to external
systems, or to other subsystems, in which case the host’s
internal network characteristics and other resources’ load may
be taken into account.

Uptime

The total time the service is available. It may be expressed
as a percentage. When considering this requirement, it is
necessary to take into account the provider’s own uptime.
For example, if a provider has an uptime of 99.5%, it would
be impossible to deploy an application with a higher uptime.
Other factors involve the recoverability of the system (i.e.,
how much time it takes to restart the service after a failure
happens).

Requests per unit of time

This requirement describes the number of requests the
system can handle successfully per unit of time, and can also
be referred to as the system’s throughput. Resource allocation
and usage has an impact in this parameter. Additionally, the
number of requests can have an impact in the response time
requirement (i.e., a high number of requests will result in a
deterioration of the overall response time).

Fault tolerance

One of the system’s properties is how it can withstand
errors, either hardware or software-based. In the case of cloud,
non-software errors can be generated either at the physicalor
the virtual machines hosting the service. While the first caseis
usually out of the developer’s control, virtual machine faults
can be handled by different means, for example by spawning
new instances, or having backup VMs to respond to failures.

Security

Security is another requirement that can be applied to
the cloud provider or to the developed system. In the first
case, the application developer is under the provider’s security
measures such as physical infrastructure access policies or
network isolation mechanisms. Alternatively, security inthe
instantiated VMs must be handled by the cloud user.

Operational cost

In traditional systems, hardware was determined based on
the application’s initial requirements. Changes in require-
ments would typically result in costly upgrades involving the
acquisition of new physical machines and installation and
configuration of the application to run on them. In cloud
systems, resources can be upgraded almost instantaneously,
meaning that cost can be considered a changing variable.
This allows defining tradeoffs to architectural (static) and
operational (dynamic) behavior.

During the requirements analysis, it is the job of the soft-
ware engineer to give appropriate values to each of the non-
functional requirements according to the user’s expectations.
Each of these parameters needs to be reflected in one or more
architectural decisions and tradeoffs.



IV. M APPING REQUIREMENTS TODEVAS

The original implementation of the DEVA Manager accepts
three types of parameters: nodes (VMs and virtual network
devices), edges between nodes, and element annotations. Basic
annotations describe node and edge characteristics such as
VM processor power or memory size, and link bandwidth and
latency, respectively.

An application developer could map the assigned non-
functional requirement values to any of the discussed DEVA
parameters in order to ensure the application’s operational
guarantees. For example, the number of desired requests per
second would influence the assigned latency for the links
between VMs; alternatively, the targeted response time could
translate to a minimum processing power for the VMs in the
ensemble.

However, this process is complicated and error-prone: the
relationship between non-functional requirements and low
level values is in many cases difficult to determine, and
many factors can take part in the fulfillment of one individual
parameter. Thus, we propose an extension to our system where
non-functional requirements can be directly mapped to the
execution platform, not only during the deployment phase, but
also along the whole design process.

Our proposed approach in this paper extends DEVA an-
notations with new high-level values that correspond to non-
functional requirements. An underlying application-dependent
model is in charge of translating high-level parameters to low-
level ones, and performing the required operations on the
appropriate elements. We describe our system design next, and
discuss its implementation.

Fig. 2. Extended architecture

A. Processing annotations for DEVAs

Once the user defines a set of nodes, edges and annotations,
a request is sent to the DEVA manager, which parses it
and assigns the virtual resources to physical hosts that can
comply with the requested QoS parameters. At each host, a
number of VMs and virtual network links are created so that
the ensemble appears as an isolated group of machines with
dedicated resources. Additionally, a set of DEVA Agents are
in charge of monitoring the infrastructure usage and ensuring
global and individual QoS.

Requirements in the request are realized in two phases:
first, the scheduling module of the manager chooses the target
resources so that the ensemble requirements can be met. This
implies selecting hosts with enough free memory and CPU for
the VMs and ensuring the underlying physical network will be
able to support the requested bandwidth and latency. Second,
control measures are applied to constraint resource usage so
that shared requests don’t interfere among them. VM resources
are adjusted by a Virtual Machine Monitor such as Xen or
VMWare running in the target host, while network resources
are controlled by a DEVA Agent. Agents apply shaping and
monitoring to manage network QoS.

In order to implement high-level annotations representing
non-functional requirements, we need to extend the DEVA
manager and agents so that the new parameters can be
translated into the existing ones. Figure 2 shows the system
architecture with the new components in a darker shade.

First, the manager needs to translate non-functional re-
quirements into values that can be considered as part of the
scheduling process. We provide a non-functional requirements
(NFR) Parser that is in charge of converting high-level values
to low-level ones. For this, a Static Application Model is
employed. Such model is dependent on the type of application,
and can be defined either theoretically or empirically. We
define a global annotation for the request, where the user can
specify the application type. The value of this annotation will
determine the model to use in the scheduler.

The Non-Functional Requirements Parser generates a set of
requirements for nodes and connections based on the translated
parameters, and these are fed to the scheduler, which takes
them into account to generate a list of physical machine
candidates. Each of the candidates is assigned a number of
VMs to host. Finally, the Infrastructure manager, implemented
in our system by OpenNebula [7], sends instantiation requests
to Hypervisors and the DEVA Agents in charge of the dynamic
behavior of the application.

After VMs are instantiated, DEVA Agents create a virtual
network in the hosting machines. In our proposed architecture,
we extend the system by adding three new components in
the agents: First, we define an additional monitoring module
with application dependent rules. While the basic component
reads values such as CPU, memory and bandwidth usage, new
values need to be contemplated in order to track non-functional
requirements compliance. Examples of this are requests per
second for a web server or database transactions for a database
server. The application-dependent monitoring module can be
extended based on different applications. All agents send the
monitored data to the DEVA Manager, where the data is
aggregated to determine high-level actions.

The second change in the DEVA Agents consists in an Ap-
plication Management module similar to the existing Network
Management component. While the later one is in charge of
determining low-level actions to maintain network QoS, the
new subsystem needs to consider high-level requirements and
send them as an input to the other module. The third modifi-
cation of the agent, the Dynamic Application Model, provides



the mapping based on a model of the application’s behavior.
Contrarily to the Non-Functional Requirements Parser and the
Static Application Model, the components in the agent can
also consider the runtime state of the application.

B. Model-based translation of non-functional requirements

There are two modules with the task of translating non-
functional —high level— to infrastructure or low-level re-
quirements. As stated in the last section, the first one con-
siders the static behavior of the application and provides the
necessary criteria to the scheduler, while the second one takes
into account the dynamic state of the application. There are
different approaches in the literature to modeling application
performance such as [8] or [9], which can be divided into
the categories of empirical, theoretical and on-line simulation
models.

The first category corresponds to those models created
from the application’s off-line execution. Requirements can
be inferred by observing the behavior of the system under
different conditions and creating a model that can be later used
to obtain approximate parameters to provide to the underlying
management system. These models are usually measured by
treating the application as a black-box (i.e., without employing
any knowledge of the internal implementation or design).

The second category consists of creating a mathematical
model to relate the application’s characteristics to its require-
ments. In this case, knowledge about the internal implemen-
tation is used to quantify the application’s behavior basedon
available resources.

Finally, some models perform on-line (runtime) simulation
of the application in order to find its behavior for a certain
input. Simulations can be either event-based, for which an
abstract model is created to approximate the behavior under
certain conditions, or real-time, where a part or the whole
application is executed to predict how the real system would
behave.

Our system does not make any assumptions about the
models used to map non-functional requirements to low-level
ones. In fact, any of these could be employed either for the
static or the dynamic modules in the manager and the agents.
The basic prerequisite is that the used model understands
the application’s requirements and is able to determine a
set of values that can be expressed via DEVA annotations.
Some models may consider individual components of the
system separately, while others contemplate complex relations
between modules and how changes in one may affect others.

C. Non-functional requirements fulfillment

The modules added to the system allow the translation of
non-functional requirements to low-level ones by using an
application model. However, the DEVA Manager and agents
need to perform the appropriate actions in order to fulfill the
requested requirements. We classify these actions in two areas:
resource allocation, and resource control. These categories also
correspond to static and dynamic management, respectively.

The first type of actions is decided and enforced by the
DEVA Manager based on the initial ensemble request and the
model mapping. After parsing the user’s input, non-functional
requirements are translated into a set of low-level QoS values,
which can be in turn used by the scheduler component
to assign virtual elements to physical infrastructure. In our
implementation in [2], the scheduler executes a metaheuristic
algorithm to iteratively choose a near optimal placement of
the requested DEVA in the available resources. This mapping
would ensure that non-functional requirements are met by em-
ploying the appropriate infrastructure. Additionally, the DEVA
Manager sends a description of the requested network links
to each agent. Agents perform traffic isolation and shaping
operations on the physical links to multiplex their usage among
ensemble members, and when needed, create tunnels between
physical hosts in different domains to build a virtual overlay
network.

However, static allocation is not enough to respond to the
runtime behavior of the application. While some values can
be applied during the instantiation phase, most of the non-
functional requirements need to be considered in terms of the
application’s dynamic usage. The DEVA agent is in charge
of monitoring the system’s running state and execute the
appropriate control mechanisms. In many cases, these actions
have associated trade-offs which need to be considered. Ex-
amples of control mechanisms run by the agents are dynamic
bandwidth or CPU adjustment, provisioning of additional VM
instances or VM migration.

V. EXPERIMENTAL VALIDATION

In order to validate the proposed architecture, we have im-
plemented a prototype extending the original DEVA Manager
and agent. There are two main goals for this section:

1) Demonstrate the feasibility of translating high-level,
non-functional requirements into a deployed ensemble
of VMs.

2) Show how high-level QoS requirements are met during
a DEVA lifecycle.

The experiment includes provisioning a test application
through the DEVA Manager in order to determine how a set of
non-functional requirements defined through the requirements
analysis phase can be fulfilled during runtime. We have devel-
oped a three-tiered web application to illustrate the process.

A. The Chirper Application

In our test scenario, an fictitious company wants to develop
an internal messaging systems so that their employees can
communicate without having to use third party applications.
They decide to deploy this solution in their private cloud so
that they can take advantage of their in-house resources. The
application, which we callChirper, stores profile information
for users, and enables them to post short messages to a
common virtual board and query others’ messages.

The application has two main components: the first one
is a web server running the CherryPy1 python web server;

1http://www.cherrypy.org



Fig. 3. Chirper class diagram

the second is a PostgreSQL2 database with the users and
messages information. The application will be accessed from
the company’s intranet.

As the first step, we perform the requirements elicitation
to come up with the different functional and non-functional
requirements. In this case, users need to be able to register
in the application through a form, and then query either a
specific user entries or last 50 messages in the database. We
focus on a subset of the typical non-functional requirements
explained in Section III: after exploring their users’ behavior,
our fictitious company estimates that the application should be
able to respond to a peak of 40 requests per second, and that
any request should be served in less than 500 milliseconds
through the internal network.

In the second step, we define the application’s architecture
and implement it. In our approach, we follow the Model-View-
Controller (MVC) architecture: a front-end interface where
the user can interact with the system, a controller to submit
and request data to the database, and the database layer itself.
Figure 3 shows a class diagram of the system. The application
receives requests through different URLs, which are mapped
by CherryPy to the appropriate functions in the Chirper-
Controller object. This class handles each request separately,
performing input validation, then retrieving the requested
information by calling the DBManager class, and finally
rendering the response through the PageRenderer instance.The
DBManager uses the SQLObject3 Object-Relational Mapping
(ORM) library to access the PostgreSQL database and perform
selection and insertion operations. Finally, the PageRenderer
class has methods to produce HTML code to return to the
user.

In order to simplify scalability and be able to assign physical
resources separately to each of the components, the web and
database servers are deployed as different Virtual Appliances.
Each of the VMs runs CentOS 5.3 and the software require-
ments needed by the application, which consist of Python 2.4
and CherryPy 3.2 for the Web appliance, and PostgreSQL 8.4
for the Database appliance. When the VMs are provisioned in
the cloud, the DEVA Manager is able to define the resource
allocation by sending commands to the VM Hypervisor and
the DEVA agents. There are three main parameters that can
be configurable once the VMs are instantiated in the infras-

2http://www.postgresql.org
3http://www.sqlobject.org

tructure: maximum CPU share assigned to a VM, amount of
memory, and bandwidth allocation between pairs of VMs.

B. Performance Modeling

Once the application complies with the specified functional
requirements, a model is created to account for the expected
performance. In this example, a simple black-box model is
defined by benchmarking the application externally. We deploy
both appliances in the private cloud, consisting of a cluster
of machines with Pentium 4 processors and 1 GB of memory
running the Xen 3.0 hypervisor, and a third VM to act as a user.
Physical machines are interconnected with 1 Gbps ethernet
links and a dedicated network switch.

Initially, each VM is assigned a quota of 100% of the
CPU, 1GB of disk, and 768 Mb of RAM. We run the
Apache Benchmark tool to send 1000 requests with a level of
concurrence of 10 to the service for each tested configuration.
CherryPy is set up to spawn 10 serving threads without
page caching mechanisms. We measure the request time and
number of requests served per second for the operation of
querying the last 50 messages in the database. We consider
CPU and bandwidth as the VMs’ configuration parameters.
Memory allocation was discarded since the application doesn’t
require a high amount of main memory and consequently
its performance doesn’t depend on this parameter (our tests
demonstrated 40 Mb were enough for the application to
function at maximum capacity).

In the first set of runs, we calculate the application’s behav-
ior depending on the CPU quota. After running the tests, we
determined that the Database appliance is not CPU bound, and
therefore, there is no difference in performance with different
values. Figure 4 shows the number of handled requests per
second and the milliseconds taken for each request when the
CPU allocation for the Web appliance is changed from 25% to
100% in intervals of 25%. As the figure shows, the number of
served requests per second is directly proportional to the CPU
allocation, while the time taken to respond to each request
decreases with a higher CPU quota.

As the second set of measurements, we explore the appli-
cation’s behavior in relation to the allocated bandwidth. There
are two links considered in this benchmark: the incoming
connection to the Web appliance, and the private connection
linking it to the database. Each of them can be constrained and
isolated independently by the DEVA agents in the hosting ma-
chines. By doing this, each DEVA can perform independently
of the rest, and network traffic from different applicationsis
separated so that different VMs can multiplex the physical
channel. We test the application with symmetric network
assignments —i.e. same incoming and outgoing rate— from
100 Kb/s to 500 Kb/s with increments of 100 Kb/s. Figure 5
shows the results in requests per seconds and milliseconds
per request for the incoming link (in) and the private one
connecting both VMs (priv).

As it can be observed, the number of served requests per
second depends on the available bandwidth, up to approxi-
mately 550 Kb/s for the incoming link (not shown in the graph)
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and 400 Kb/s for the private link. Lower bandwidth results in
reduced requests per second and higher response time.

C. Integrating the model with the DEVA manager

The final step consists of integrating the experimental
performance model into the DEVA manager and making the
appropriate changes so that user requests can specify high-
level requirements as parameters. We add the logic to translate
such submission into low level parameters by employing
the models and specifying an additional global parameter,
applicationType=’Chirper’so that the DEVA Manager knows
which model to apply.

After that, we test the system by sending a request to
the DEVA Manager specifying the two described Virtual
Appliances and the desired non-functional requirements of
40 requests per second and 500 ms of maximum response
time. The manager identifies this request to instantiate the
Chirper application, and translates the requirements to 75%
of CPU for the Web appliance and 25% of CPU for the
Database appliance, 64 Mb or RAM for each VM, 500 Kb/s
for incoming bandwidth and 400 Kb/s for private bandwidth.
Finally, it decides that both VMs can be assigned to a single
physical machine and provisions them accordingly.

VI. CONCLUSIONS ANDFUTURE WORK

As the cloud becomes more mainstream as a method to host
applications, developers will need to consider how different
providers —or in-house solutions— will be able to fulfill the
final users’ needs. Similarly, providers need to be able to
give reliable guarantees for the Quality of Service of software
deployed on their infrastruture. In this paper, we addressed
this problem from both the developer’s and cloud provider’s
perspectives. We showed how an example application with
concrete requirements can be developed and deployed in a
cloud manager that takes high-level non-functional require-
ments into consideration.

However, there are still many issues to address in order
to determine how software can be successfully deployed in

clouds: additional non-functional requirements such as fault-
tolerance, execution cost or security need to be considered,
and improved models that are able to predict applications’ per-
formance considering different parameters such as processor,
memory, network and disk usage have to be developed.
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