
This article is the result of an ongoing collaborative effort
by the coauthors, preceding and during the AGI Roadmap
Workshop held at the University of Tennessee, Knoxville

in October 2009, and from many continuing discussions since
then. Some of the ideas also trace back to discussions held dur-
ing two Evaluation and Metrics for Human Level AI workshopa
organized by John Laird and Pat Langley (one in Ann Arbor in
late 2008, and one in Tempe in early 2009). Some of the con-
clusions of the Ann Arbor workshop were recorded (Laird et al.
2009). Inspiration was also obtained from discussion at the
Future of AGI postconference workshop of the AGI-09 confer-
ence, triggered by Itamar Arel’s presentation AGI Roadmap (Arel
2009); and from an earlier article on AGI road-mapping (Arel
and Livingston 2009).

Of course, this is far from the first attempt to plot a course
toward human-level AGI: arguably this was the goal of the
founders of the field of artificial intelligence in the 1950s, and
has been pursued by a steady stream of AI researchers since,
even as the majority of the AI field has focused its attention on
more narrow, specific subgoals. The ideas presented here build
on the ideas of others in innumerable ways, but to review the
history of AI and situate the current effort in the context of its
predecessors would require a much longer article than this one.
Thus we have chosen to focus on the results of our AGI roadmap
discussions, acknowledging in a broad way the many debts
owed to many prior researchers. References to the prior litera-
ture on evaluation of advanced AI systems are given by Laird
(Laird et al. 2009) and Geortzel and Bugaj (2009), which may in
a limited sense be considered prequels to this article.

We begin by discussing AGI in general and adopt a pragmat-
ic goal for measuring progress toward its attainment. We also
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� We present the broad outlines of a roadmap
toward human-level artificial general intelli-
gence (henceforth, AGI). We begin by discussing
AGI in general, adopting a pragmatic goal for
its attainment and a necessary foundation of
characteristics and requirements. An initial
capability landscape will be presented, drawing
on major themes from developmental psycholo-
gy and illuminated by mathematical, physio-
logical, and information-processing perspec-
tives. The challenge of identifying appropriate
tasks and environments for measuring AGI will
be addressed, and seven scenarios will be pre-
sented as milestones suggesting a roadmap
across the AGI landscape along with directions
for future research and collaboration. 



adopt, as a provisional starting point, a slightly
modified version of the characteristics and require-
ments for AGI proposed by Laird and Wray (2010),
upon which we will later construct a number of
specific scenarios for assessing progress in achiev-
ing AGI. An initial capability landscape for AGI
will be presented, drawing on major themes from
developmental psychology and illuminated by
mathematical, physiological, and information-
processing perspectives. The challenge of identify-
ing appropriate tasks and environments for meas-
uring AGI will be taken up. Several scenarios will
be presented as milestones outlining a roadmap
across the AGI landscape, and directions for future
work and collaboration will conclude the article.

The Goal: Human-Level 
General Intelligence

Simply stated, the goal of AGI research as consid-
ered here is the development and demonstration
of systems that exhibit the broad range of general
intelligence found in humans. This goal of devel-
oping AGI echoes that of the early years of the arti-
ficial intelligence movement, which after many
valiant efforts largely settled for research into nar-
row AI systems that could demonstrate or surpass
human performance in a specific task, but could
not generalize this capability to other types of tasks
or other domains.

A classic example of the narrow AI approach was
IBM’s Deep Blue system (Campbell, Hoane, and
Hsu 2002), which successfully defeated world chess
champion Gary Kasparov but could not readily
apply that skill to any other problem domain with-
out substantial human reprogramming. In early
2011, IBM’s Watson question-answering system
(Ferrucci 2010) dramatically defeated two all-time
champions in the quiz show Jeopardy, but having
never personally visited Chicago’s O’Hare and
Midway airports, fumbled on a question that any
human frequent flier in the US would have known.
To apply the technology underlying Watson to
another domain, such as insurance or call-center
support, would require not merely education of
the AI system, but significant reprogramming and
human scoring of relevant data — the analogue of
needing to perform brain surgery on a human each
time the person needs to confront a new sort of
task. As impressive as these and other AI systems
are in their restricted roles, they all lack the basic
cognitive capabilities and common sense of a typ-
ical five-year-old child, let alone a fully educated
adult professional.

Given the immense scope of the task of creating
AGI, we believe the best path to long-term success
is collaboration and coordination of the efforts of
multiple research groups. A common goal and a
shared understanding of the landscape ahead of us

will be crucial to that success, and it was the aim of
our workshop to make substantial progress in that
direction.

A Pragmatic Goal for AGI
The heterogeneity of general intelligence in
humans makes it practically impossible to develop
a comprehensive, fine-grained measurement sys-
tem for AGI. While we encourage research in defin-
ing such high-fidelity metrics for specific capabili-
ties, we feel that at this stage of AGI development
a pragmatic, high-level goal is the best we can
agree upon.

Nils Nilsson, one of the early leaders of the AI
field, stated such a goal in the 2005 AI Magazine
article Human-Level Artificial Intelligence? Be Seri-
ous! (Nilsson, 2005):

I claim achieving real human-level artificial intelli-
gence would necessarily imply that most of the
tasks that humans perform for pay could be auto-
mated. Rather than work toward this goal of
automation by building special-purpose systems, I
argue for the development of general-purpose, edu-
cable systems that can learn and be taught to per-
form any of the thousands of jobs that humans can
perform. Joining others who have made similar pro-
posals, I advocate beginning with a system that has
minimal, although extensive, built-in capabilities.
These would have to include the ability to improve
through learning along with many other abilities.

Many variant approaches have been proposed
for achieving such a goal, and both the AI and AGI
communities have been working for decades on
the myriad subgoals that would have to be
achieved and integrated to deliver a comprehen-
sive AGI system. But aside from the many techno-
logical and theoretical challenges involved in this
effort, we feel the greatest impediment to progress
is the absence of a common framework for collab-
oration and comparison of results. The AGI com-
munity has been working on defining such a
framework for several years now, and as mentioned
earlier, this present effort on AGI road-mapping
builds on the shoulders of much prior work.

Characteristics and Requirements for AGI
As a starting point for our road-mapping effort, we
have adopted a slightly modified version of Laird
and Wray’s Cognitive Architecture Requirements
for Achieving AGI (Laird and Wray 2010). Their
outline of eight characteristics for environments,
tasks, and agents and 12 requirements for general
cognitive architectures provides a level foundation
for the comparison of appropriate scenarios for
assessing AGI systems. We stress, however, that in
our perspective these requirements should not be
considered as final or set in stone, but simply as a
convenient point of departure for discussion and
collaboration. As our understanding of AGI
improves through ongoing research, our under-
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standing of the associated requirements is sure to
evolve. In all probability, each of the many current
AGI research paradigms could be used to spawn a
slightly different requirements list, but we must
start somewhere if we are to make progress as a
community.

To test the capability of any AGI system, the
characteristics of the intelligent agent and its
assigned tasks within the context of a given envi-
ronment must be well specified. Failure to do this
may result in a convincing demonstration, but
make it exceedingly difficult for other researchers
to duplicate experiments and compare and con-
trast alternative approaches and implementations.

The characteristics shown in figure 1 provide the
necessary (if not sufficient) degrees of dynamism
and complexity that will weed out most narrow AI
approaches at the outset, while continually chal-
lenging researchers to consider the larger goal of
AGI during their work on subsystems and distinct
capabilities. We have added the requirement for
openness of the environment (C2), that is, the
agent should not be able to rely on a fixed library
of objects, relations, and events. We also require
objects to have an internal structure that requires
complex, flexible representations (C1).

There are nearly as many different AGI architec-
tures as there are researchers in the field. If we are
ever to be able to compare and contrast systems,
let alone integrate them, a common set of archi-
tectural features must form the basis for that com-
parison. 

Figure 2 reprises Laird and Wray’s requirements
for general cognitive architectures and provides a
framework for that basis. We have modified
requirement R0, which in Laird and Wray reads
“fixed structure for all tasks,” to emphasize that the
system may grow and develop over time, perhaps
changing its structure dramatically — but these
changes need to be effected by the agent itself, not
by the intervention of the programmer. We antici-
pate further additions and changes to these lists
over time as the community converges in experi-
ence with various cognitive architectures and AGI
systems, but we have adopted them so we can
progress as a community to our larger, shared
goals.

Current Challenges
In addition to providing a framework for collabo-
rative research in AGI, Laird and Wray (2010) iden-
tified two significant challenges:

… one of the best ways to refine and extend these
sets of requirements and characteristics is to devel-
op agents using cognitive architectures that test the
sufficiency and necessity of all these and other pos-
sible characteristics and requirements on a variety
of real-world tasks. One challenge is to find tasks
and environments where all of these characteristics
are active, and thus all of the requirements must be

confronted. A second challenge is that the existence
of an architecture that achieves a subset of these
requirements does not guarantee that such an
architecture can be extended to achieve other
requirements while maintaining satisfaction of the
original set of requirements.

Our 2009 AGI road-mapping workshop took up
the first challenge of finding appropriate tasks and
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C1.  The environment is complex, with diverse, interacting
         and richly structured objects.

C2.  The environment is dynamic and open.

C3.  Task-relevant regularities exist at multiple time scales. 

C4.  Other agents impact performance.

C5.  Tasks can be complex, diverse and novel.

C6.  Interactions between agent, environment and tasks
        are complex and limited. 

C7.  Computational resources of the agent are limited.

C8.  Agent existence is long-term and continual.

Figure 1. Characteristics for AGI Environments, Tasks, and Agents.

R0.   New tasks do not require re-programming of 
         the agent 

R1.  Realize a symbol system

Represent and effectively use:

      R2. Modality-specific knowledge

      R3. Large bodies of diverse knowledge

      R4. Knowledge with different levels of generality

      R5. Diverse levels of knowledge

      R6. Beliefs independent of current perception

      R7. Rich, hierarchical control knowledge

      R8. Meta-cognitive knowledge

R9.   Support a spectrum of bounded and unbounded 
 deliberation

R10. Support diverse, comprehensive learning

R11  Support incremental, online learning

Figure 2. Cognitive Architecture Requirements for AGI.



environments to assess AGI systems, while the sec-
ond challenge will be more appropriately handled
by individual research efforts. We also added a
third challenge, that of defining the landscape of
AGI, in service to the AGI road-mapping effort that
has been under way for several years.

The balance of this article will deal with these
two challenges in reverse order. First, we will pro-
vide an initial landscape of AGI capabilities based
on developmental psychology and underpinned
by mathematical, physiological, and information-
processing perspectives. Second, we will discuss the
issues that arise in selecting and defining appro-
priate tasks and environments for assessing AGI,
and finally, we will present a number of scenarios
and directions for future work and collaboration.

Challenge: Mapping the Landscape
There was much discussion both in preparation
and throughout our AGI Roadmap Workshop on
the process of developing a roadmap. A traditional
highway roadmap shows multiple driving routes
across a landscape of cities and towns, natural fea-
tures like rivers and mountains, and political fea-
tures like state and national borders. A technology
roadmap typically shows a single progression of
developmental milestones from a known starting
point to a desired result. Our first challenge in
defining a roadmap for achieving AGI was that we
initially had neither a well-defined starting point
nor a commonly agreed upon target result. The
history of both AI and AGI is replete with this
problem, which is somewhat understandable given
the breadth and depth of the subjects of both
human intelligence and computer technology. We
made progress by borrowing more metaphors from
the highway roadmap, deciding to first define the
landscape for AGI and then populate that land-
scape with milestones that may be traversed
through multiple alternative routes.

The final destination, full human-level artificial
general intelligence, encompasses a system that
could learn, replicate, and possibly exceed human-
level performance in the full breadth of cognitive
and intellectual abilities. The starting point, how-
ever, was more problematic, since there are many
current approaches to achieving AGI that assume
different initial states. We finally settled on a devel-
opmental approach to the roadmap, following
human cognitive development from birth through
adulthood.

The various scenarios for assessing AGI that had
been submitted by participants prior to the work-
shop were then arrayed as milestones between
these two endpoints, without any specific routes
between them aside from their relative require-
ments for increasing levels of human cognitive
development.

Top Down: Characterizing 
Human Cognitive Development
The psychological approach to intelligence encom-
passes a broad variety of subapproaches rather
than presenting a unified perspective. Viewed his-
torically, efforts to conceptualize, define, and
measure intelligence in humans reflect a distinct
trend from general to specific (Gregory 1996),
much like the history of AI. 

Early work in defining and measuring intelli-
gence was heavily influenced by Spearman, who in
1904 proposed the psychological factor g (for gen-
eral intelligence). Spearman argued that g was bio-
logically determined, and represented the overall
intellectual skill level of an individual. A related
advance was made in 1905 by Binet and Simon,
who developed a novel approach for measuring
general intelligence in French schoolchildren. A
unique feature of the Binet-Simon scale was that it
provided comprehensive age norms, so that each
child could be systematically compared with oth-
ers across both age and intellectual skill level. In
1916, Terman introduced the notion of an intelli-
gence quotient or IQ, which is computed by divid-
ing the test taker’s mental age (that is, his or her
age-equivalent performance level) by the physical
or chronological age.

In subsequent years, psychologists began to
question the concept of intelligence as a single,
undifferentiated capacity. There were two primary
concerns. First, while performance within an indi-
vidual across knowledge domains is somewhat cor-
related, it is not unusual for skill levels in one
domain to be considerably higher or lower than in
another (that is, intraindividual variability). Sec-
ond, two individuals with comparable overall per-
formance levels might differ significantly across
specific knowledge domains (that is, interindivid-
ual variability). 

These issues helped to motivate a number of
alternative theories, definitions, and measurement
approaches, which share the idea that intelligence
is multifaceted and variable both within and across
individuals. Of these approaches, a particularly
well-known example is Gardner’s theory of multi-
ple intelligences (Gardner 1999), which proposes
eight distinct forms or types of intelligence: (1) lin-
guistic, (2) logical-mathematical, (3) musical, (4)
bodily-kinesthetic, (5) spatial, (6) interpersonal, (7)
intrapersonal, and (8) naturalist. Gardner’s theory
suggests that each individual’s intellectual skill is
represented by an intelligence profile, a unique
mosaic or combination of skill levels across the
eight forms of intelligence.

While Gardner’s theory has had significant
impact within the field of adult intelligence, it has
had comparatively less influence on the study of
intellectual development in children. Instead,
researchers in the field of cognitive development
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seek to (1) describe processes of intellectual
change, while (2) identifying and explaining the
underlying mechanisms (both biological and envi-
ronmental) that make these changes possible.
Contemporary theories of cognitive development
are very diverse and defy simple systematization,
and a thorough treatment of the field would take
us too far from our focus. However, two major
schools of thought, those of Piaget and Vygotsky,
will serve as axes for our AGI landscape.

Piaget’s Theory
In his classic work that founded the science of cog-
nitive development, Piaget proposed that humans
progress through four qualitatively distinct stages
(Piaget 1953). 

First, during the sensorimotor stage (0–2 years),
infants acquire a rich repertoire of perceptual and
motor skills (for example, reaching, grasping,
crawling, walking, and others). This stage includes
a number of major milestones, such as the ability
to search for hidden objects and the ability to use
objects as simple tools. 

Second, infants enter the preoperational stage
(2–6 years) as they acquire the capacity to mental-
ly represent their experiences (for example, mem-
ory, mental images, drawing, language, and oth-
ers), but lack the ability to systematically
coordinate these representations in a logically con-
sistent manner. 

During the next stage (6 years to adolescence),
children at the concrete operational level master
basic elements of logical and mathematical
thought, including the ability to reason about
classes and categories, as well as numerical opera-
tions and relations. 

The final stage of development, formal opera-
tions, begins in adolescence and includes the use
of deductive logic, combinatorial reasoning, and
the ability to reason about hypothetical events.

Vygotsky’s Theory
In contrast to Piaget’s view, which focuses on the
individual, Vygotsky’s classic theory of cognitive
development emphasizes the sociocultural perspec-
tive (Vygotsky 1986). Vygotsky’s theory not only
highlights the influence of the social environment,
but it also proposes that each culture provides a
unique developmental context for the child. Three
fundamental concepts from this theory are (1)
internalization, (2) zone of proximal development,
and (3) tools of intellectual adaptation. 

First, Vygotsky proposed that the capacity for
thought begins by acquiring speech (that is, think-
ing out loud), which gradually becomes covert or
internalized. 

Second, he emphasized that parents, teachers,
and skilled peers facilitate development by helping
the child function at a level just beyond what he or

she is capable of doing alone; he referred to this
cognitive space as the zone of proximal develop-
ment. 

Third, Vygotsky also stressed that each child
inherits a unique set of objects, ideas, and tradi-
tions that guide learning (for example, books, cal-
culators, computers, and others). These tools of
intellectual adaptation not only influence the pat-
tern of cognitive development, but also serve as
constraints on the rate and extent of development.

Surveying the Landscape 
of Human Intelligence
While many consider the views of Piaget and
Vygotsky to be at odds because of their different
foci, we consider them to be complementary, par-
tial descriptions of the same development process.
Piaget’s approach focused on the stages of cogni-
tive development of an individual child, while
Vygotsky considered the same development with-
in the context of social interaction with other
humans with access to and training in the use of
cultural artifacts like tools, languages, books, and a
shared environment. By placing the developmen-
tal stages of each theory on opposing axes (figure
3), we can outline the landscape of human cogni-
tive development and provide a structure for the
placement of milestones along the road to AGI.

Bottom Up: Substrata 
of the AGI Landscape
Our ultimate goal as a community is to create func-
tional computer systems that demonstrate human-
level general intelligence. This lofty aim requires
that we deeply understand the characteristics of
human cognitive behavior and development out-
lined above, as well as implement that under-
standing in a nonbiological substrate, the modern
digital computer. To accomplish this, we draw
inspiration and perspectives from many different
disciplines, as shown in figure 4. From physiology
we seek to understand the biological implementa-
tion of human intelligence; from mathematics, the
nature of information and intelligence regardless
of its implementation; and from information pro-
cessing, we map these insights and others into the
metaphors of computer science that will most
directly lead to successful computer implementa-
tion. This section describes each of these under-
pinnings for our road-mapping efforts.

The Physiological Perspective
Given advances in bioscience, it has become
increasingly feasible to take a more holistic physi-
ological perspective on cognitive development
incorporating genetic, biochemical, and neural
mechanisms, among others. A unique strength of
biologically inspired cognitive theories is their abil-
ity to account for universal aspects of development
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that emerge in a consistent pattern across a wide
range of cultures, physical environments, and his-
torical time periods (for example, motor-skill
development, object perception, language acquisi-
tion, and others). The physiological approach also
plays a prominent role in explaining differences
between typical and atypical patterns of develop-
ment (for example, autism, ADHD, learning disor-
ders, disabilities, and others). Both physiological
and information-processing perspectives favor
modular accounts of cognitive development,
which view the brain as divided into special-pur-
pose input-output systems that are devoted to spe-
cific processing tasks.

The Mathematical Perspective
Thie mathematical perspective is typified by the
recent work of Marcus Hutter and Shane Legg, who
give a formal definition of general intelligence
based on the Solomonoff-Levin distribution (Legg
and Hutter 2007). Put very roughly, they define
intelligence as the average reward-achieving capa-
bility of a system, calculated by averaging over all
possible reward-summable environments, where
each environment is weighted in such a way that
more compactly describable programs have larger
weights. Variants of this definition have been pro-

posed to take into account the way that intelli-
gence may be biased to particular sorts of environ-
ments, and the fact that not all intelligent systems
are explicitly reward-seeking (Goertzel 2010).

While this notion of intelligence as compression
is useful, even if a mathematical definition of gen-
eral intelligence were fully agreed upon, this
wouldn’t address the human-level part of AGI.
Human intelligence is neither completely general
in the sense of a theoretical AGI like AIXI, Hutter’s
optimally intelligent agent (Hutter 2004), nor is it
highly specialized in the sense of current AI soft-
ware. It has strong general capability, yet is biased
toward the class of environments in which human
intelligence develops — a class of environments
whose detailed formalization remains largely an
unsolved problem.

The Information Processing Perspective
Much of modern cognitive science uses the com-
puter as a metaphor for the mind. This perspective
differs from the system-theoretic ideas of Piaget
and Vygotsky, but at the same time provides a
more direct mapping to the target implementation
for AGI systems.

According to the information-processing per-
spective, cognitive development in infancy and
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childhood is due to changes in both hardware
(neural maturation, for example, synaptogenesis,
neural pruning, and others) and software (for
example, acquisition of strategies for acquiring and
processing information). Rather than advocating a
stage-based approach, this perspective often high-
lights processes of change that are gradual or con-
tinuous. For example, short-term memory — typi-
cally measured by the ability to remember a string
of random letters or digits — improves linearly
during early childhood (Dempster 1981).

Challenge: Finding 
Tasks and Environments

The next challenge we address is that of defining
appropriate tasks and environments for assessing
progress in AGI where all of the Laird and Wray
characteristics are active, and thus all of the
requirements must be confronted. The usefulness
of any task or environment for this purpose is crit-
ically dependent on how well it provides a basis for
comparison between alternative approaches and
architectures. With this in mind, we believe that
both tasks and environments must be designed or
specified with some knowledge of each other. For
example, consider the competition to develop an
automobile capable of driving itself across a rough-
ly specified desert course.1 While much of the
architecture and implementation would likely be
useful for the later competition for autonomous
city driving,2 such a different environment
required significant reconsideration of the tasks
and subtasks themselves.

Tasks, therefore, require a context to be useful,
and environments, including the AGI’s embodi-
ment itself, must be considered in tandem with the
task definition. Using this reasoning, we decided to
define scenarios that combine both tasks and their
necessary environments. 

Further, since we are considering multiple sce-
narios as well as multiple approaches and architec-
tures, it is also important to be able to compare and
contrast tasks belonging to different scenarios.
With this in mind, we chose to proceed by first
articulating a rough heuristic list of human intelli-
gence competencies (figure 5). As a rule of thumb,
tasks may be conceived as ways to assess compe-
tencies within environments. However, contem-
porary cognitive science does not give us adequate
guidance to formulate anything close to a com-
plete, rigid, and refined list of competencies. What
we present here must be frankly classified as an
intuitive approach for thinking about task genera-
tion, rather than a rigorous analytical methodolo-
gy from which tasks can be derived.

Environments and Embodiments for AGI
General intelligence in humans develops within
the context of a human body, complete with many
thousands of input sensors and output effectors,
which is itself situated within the context of a rich-
ly reactive environment, complete with many oth-
er humans, some of which may be caregivers,
teachers, collaborators, or adversaries. Human per-
ceptual input ranges from skin sensors reacting to
temperature and pressure, smell and taste sensors
in the nose and mouth, sound and light sensors in
the ears and eyes, to internal proprioceptive sen-
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sors that provide information on gravitational
direction and body joint orientation, among oth-
ers. Human output effectors include the many
ways we can affect the physical states of our envi-
ronment, like producing body movements
through muscles, sound waves using body
motions, or producing vibrations through vocal
cords, for example. Effectors like the muscles con-
trolling gaze direction and focus of the eyes also
directly affect environmental sensing.

One of the distinctive challenges of achieving
AGI is thus how to account for a comparably rich
sensory/motor experience. The history of AI is
replete with various attempts at robotic embodi-
ment, from Gray Walter’s Tortoise (Walter 1953)
through Honda’s ASIMO. Virtual embodiment has
also been utilized, exploiting software systems that
simulate bodies in virtual environments, such as
Steve Grand’s Creatures (Grand 2001).

There are many challenges in determining an
appropriate level of body sophistication and envi-
ronmental richness in designing either physical or
virtual bodies and environments. Regrettably,
nearly every AI or AGI project that has included sit-
uated embodiment has done so in some unique,

incompatible and typically nonrepeatable form.
Various leagues of the RoboCup competition
(Kitano 1997) have been a notable exception to
this, where a commercially available hardware
robotic platform such as the Sony AIBO or Alde-
baran Nao is specified, with contestants only
allowed to customize the software of the robotic
players. Unfortunately, the limited nature of the
RoboCup task — a modified game of soccer — is
too narrow to be suitable as a benchmark for AGI.

The Breadth of Human Competencies
Regardless of the particular environment or
embodiment chosen, there are, intuitively speak-
ing, certain competencies that a system must pos-
sess to be considered a full-fledged AGI. For
instance, even if an AI system could answer ques-
tions involving previously known entities and con-
cepts vastly more intelligently than IBM’s Watson,
we would be reluctant to classify it as human-level
if it could not create new concepts when the situ-
ation called for it.

While articulation of a precise list of the compe-
tencies characterizing human-level general intelli-
gence is beyond the scope of current science (and
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Figure 5. Some of the Important Competency Areas Associated with Human-Level General Intelligence.



definitely beyond the scope of this article), it is
nevertheless useful to explore the space of compe-
tencies, with a goal of providing heuristic guidance
for the generation of tasks for AGI systems acting
in environments. Figure 5 lists a broad set of com-
petencies that we explored at the road-mapping
workshop: 14 high-level competency areas, with a
few key competency subareas corresponding to
each. A thorough discussion of any one of these
subareas would involve a lengthy review paper and
dozens of references, but for the purposes of this
article an evocative list will suffice.

We consider it important to think about compe-
tencies in this manner — because otherwise it is
too easy to pair a testing environment with an
overly limited set of tasks biased to the limitations
of that environment. What we are advocating is
not any particular competency list, but rather the
approach of exploring a diverse range of compe-
tency areas, and then generating tasks that evalu-
ate the manifestation of one or more articulated
competency areas within specified environments. 

Some of the competencies listed may appear
intuitively simpler and earlier stage than others, at
least by reference to human cognitive develop-
ment. The developmental theories reviewed earli-
er in this article each contain their own hypothe-
ses regarding the order in which developing
humans achieve various competencies. However,
after careful consideration we have concluded that
the ordering of competencies isn’t necessary for an
AGI capability roadmap. In many cases, different
existing AGI approaches pursue the same sets of
competencies in radically different orders, so
imposing any particular ordering on competencies
would bias the road-mapping effort toward partic-
ular AGI approaches, something antithetical to the
collaboration and cooperation sorely needed in the
present stage of AGI development.

For example, developmental robotics (Lungarel-
la et al. 2003) and deep learning (Bengio 2009) AGI
approaches often assume that perceptual and
motor competencies should be developed prior to
linguistic and inferential ones. On the other hand,
logic-focused AGI approaches are often more natu-
rally pursued by beginning with linguistic and
inferential competencies, and only afterwards mov-
ing to perception and actuation in rich environ-
ments. By dealing with scenarios, competencies,
and tasks, but not specifying an ordering of com-
petencies or tasks, we are able to present a capabil-
ity roadmap that is friendly to existing approaches
and open to new approaches as they develop.

Supporting Diverse 
Concurrent Research Efforts
Balancing the AGI community’s need for collabo-
rative progress while still supporting a wide range
of independent research and development efforts,

we must allow for concurrent activity in many
regions of the landscape. This requires that many
of the unsolved lower-level aspects of general intel-
ligence such as visual perception and fine-motor
control be finessed in some of our scenarios,
replaced by an approximate high-level implemen-
tation or even a human surrogate, until we have
sufficiently rich underlying systems as a common
base for our research. It is sometimes argued that
since human intelligence emerges and develops
within a complex body richly endowed with
innate capabilities, AGI may only be achieved by
following the same path in a similar embodiment.
But until we have the understanding and capabili-
ty to construct such a system, our best hope for
progress is to foster concurrent but ultimately col-
laborative work.

Scenarios for Assessing AGI
In order to create a roadmap toward human-level
AGI, one must begin with one or more particular
scenarios. By a scenario we mean a combination of
tasks to be performed within a specified environ-
ment, together with a set of assumptions pertain-
ing to the way the AGI system interacts with the
environment along with the inanimate entities
and other agents therein. Given a scenario as a
basis, one can then talk about particular subtasks,
their ordering and performance evaluation.

A wide variety of scenarios may be posited as rel-
evant to AGI; here we review seven that were iden-
tified by one or more participants in the AGI
Roadmap Workshop as being particularly interest-
ing. Each of these scenarios may be described in
much more detail than we have done here; this
section constitutes a high-level overview, and more
details on several of the scenarios is provided in the
references.

General Video-Game Learning
This scenario addresses many challenges at once:
providing a standard, easily accessible, situated
embodiment for AGI research; a gradient of ever
increasing sensory/motor requirements to support
gradual development, measurement, and compar-
ison of AGI capabilities; a wide range of differing
environments to test generality of learning ability;
and a compelling demonstration of an AGI’s capa-
bility or lack thereof, easily evaluated by nonspe-
cialists, based on widely common human experi-
ences playing various video games.

The goal of this scenario would not be human-
level performance of any single video game, but
the ability to learn and succeed at a wide range of
video games, including new games unknown to
the AGI developers before the competition. The
contestant system would be limited to a uniform
sensory/motor interface to the game, such as video
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and audio output and controller input, and would
be blocked from any access to the internal pro-
gramming or states of the game implementation.
To provide for motivation and performance feed-
back during the game, the normal scoring output
would be mapped to a uniform hedonic
(pain/pleasure) interface for the contestant. Con-
testants would have to learn the nature of the
game through experimentation and observation,
by manipulating game controls and observing the
results. The scores achieved against a prepro-
grammed opponent or story line would provide a
standard measure of achievement along with the
time taken to learn and win or advance in each
kind of game.

The range of video games used for testing in this
scenario could be open ended in both simplicity
and sophistication. An early game like Pong might
itself prove too challenging a starting point, so
even simpler games may be selected or developed.
Since success at most video games would require
some level of visual intelligence, general video-
game learning (GVL) would also provide a good
test of computer vision techniques, ranging from
relatively simple two-dimensional object identifi-
cation and tracking in Pong to full three-dimen-
sional perception and recognition in a game like
Tomb Raider or Half-Life at the highest levels of per-
formance. Various genres of video games such as
the early side-scrolling games (for example, Super
Mario Brothers) to first person shooters (for exam-
ple, Doom, Half-Life) to flight simulations (for
example, Microsoft Flight Simulator, Star Wars X-
Wing) provide rich niches where different
researchers could focus and excel, while the com-
mon interface would still allow application of
learned skills to other genres.

Among other things, in order to effectively play
many videos games a notable degree of strategic
thinking must be demonstrated, such as the abili-
ty to map situations to actions while considering
not just the short-term but also the longer-term
implications of choosing an action. Such capabili-
ty, often associated with the notion of the credit
assignment problem, is one that remains to be
demonstrated in a scalable way. GVL provides a
effective platform for such demonstration.

This scenario has the added benefit of support-
ing the growth of a research community focused
on the specification and development of appropri-
ate tests for AGI. Such a community would create
the video game tests, in collaboration with the
original game vendors in many cases, and both
administer the tests and report the results through
an Internet forum similar to the SPEC-style system
performance reporting sites.3

Preschool Learning
In the spirit of the popular book All I Really Need to

Know I Learned in Kindergarten (Fulghum 1989), it is
appealing to consider early childhood education
such as kindergarten or preschool as inspiration for
scenarios for teaching and testing AGI systems.
The details of this scenario are fleshed out by
Goertzel and Bugaj (2009).

This scenario has two obvious variants: a physi-
cal preschool-like setting involving a robot, and a
virtual-world preschool involving a virtual agent.
The goal in such scenarios is not to imitate human
child behavior precisely but rather to demonstrate
a robot or virtual agent qualitatively displaying
similar cognitive behaviors to a young human
child. This idea has a long and venerable history in
the AI field — Alan Turing’s original 1950 paper on
AI, where he proposed the famous Turing test, con-
tains the suggestion that “Instead of trying to pro-
duce a programme to simulate the adult mind,
why not rather try to produce one which simulates
the child’s?” (Turing 1950).

This childlike cognition-based approach seems
promising for many reasons, including its integra-
tive nature: what a young child does involves a
combination of perception, actuation, linguistic
and pictorial communication, social interaction,
conceptual problem solving, and creative imagina-
tion. Human intelligence develops in response to
the demands of richly interactive environments,
and a preschool is specifically designed to be just
such an environment with the capability to stimu-
late diverse mental growth. The richness of the pre-
school environment suggests that significant value
is added by the robotics-based approach; but much
could also potentially be achieved by stretching the
boundaries of current virtual-world technology.

Another advantage of focusing on childlike cog-
nition is the wide variety of instruments for meas-
uring child intelligence developed by child psy-
chologists. In a preschool context, the AGI system
can be presented with variants of tasks typically
used to measure the intelligence of young human
children.

It doesn’t currently make sense to outfit a virtu-
al or robot preschool as a precise imitation of a
human preschool — this would be inappropriate
since a contemporary robotic or virtual body is
rather differently capable than that of a young
human child. The aim in constructing an AGI pre-
school environment should be to emulate the
basic diversity and educational character of a typi-
cal human preschool.

To imitate the general character of a human pre-
school, several learning centers should be available
in a virtual or robot preschool. The precise archi-
tecture will be adapted through experience, but
initial learning centers might include the Blocks
Center — a table with blocks of various shapes and
sizes on it; the Language Center: a circle of chairs,
intended for people to sit around and talk with the
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AGI; the Manipulatives Center — with a variety of
different objects of different shapes and sizes,
intended to teach a wide range of visual and motor
skills; the Ball Play Center — where balls are kept
in chests and there is space for the AGI to kick or
throw the balls around alone or with others; or the
Dramatics Center — where the AGI can both
observe and enact various movements and roles.

Reading Comprehension
The next scenario is closely related to the previous
one, but doesn’t require embodiment in a virtual
world, and makes a special commitment as to the
type of curriculum involved. In this scenario, an
aspiring AGI should work through the grade
school reading curriculum, and take and pass the
assessments normally used to assess the progress of
human children. This obviously requires under-
standing a natural language (NL) text and being
able to answer questions about it. However, it also
requires some not so obvious abilities.

Very early readers are usually picture books that
tightly integrate the pictures with the text. In some,
the story is mostly conveyed through the pictures.
In order to understand the story, the pictures must
be understood as well as the NL text. This requires
recognizing the characters and what the characters
are doing. Reference resolution is required between
characters and events mentioned in the text and
illustrated in the pictures. The actions that the
characters are performing must be recognized from
snapshot poses, unlike the more usual action recog-
nition from a sequence of frames taken from a
video. The next stage of readers are early chapter
books, which use pictures to expand on the text.
Although the story is now mainly advanced
through the text, reference resolution with the pic-
tures is still important for understanding.

Instructors of reading recognize ”four roles of a
reader as: meaning maker, code breaker, text user,
and text critic … meaning makers read to under-
stand … comprehension questions [explore] literal
comprehension, inferential comprehension, and
critical thinking” (Sundance 2001). Code breakers
translate written text to speech and vice versa. Text
users identify whether the text is fiction or nonfic-
tion. ”If the book is factual, they focus on reading
for information. If a text is fiction, they read to
understand the plot, characters, and message of
the story …. Text critics evaluate the author’s pur-
pose and the author’s decisions about how the
information is presented … check for social and
cultural fairness … look for misinformation … and
think about their own response to the book and
whether the book is the best it might be” (Sun-
dance 2001).

The roles of meaning maker, code breaker, and
text user are mostly, though not entirely, familiar
to people working in natural language under-

standing. However, the role of text critic is new,
requiring metalevel reasoning about the quality of
the text, its author’s intentions, the relation of the
text to the reader’s society and culture, and the
reader’s own reaction to the text, rather than mere-
ly reasoning about the information in the text.

This scenario fulfills most of the Laird and Wray
criteria handily, and a few less obviously. The AGI’s
environment in this scenario is not dynamic in a
direct sense (C2), but the AGI does have to reason
about a dynamic environment to fulfill the tasks.
In a sense, the tasks involved are fixed rather than
novel (C5), but they are novel to the AGI as it pro-
ceeds through them. Other agents affect task per-
formance (C4) if group exercises are involved in
the curriculum (which indeed is sometime the
case). Many of the specific abilities needed for this
scenario are discussed in the next scenario.

Story or Scene Comprehension
Focused on scene and story comprehension, this
scenario shares aspects of the preschool and read-
ing comprehension scenarios. Like the reading sce-
nario, it focuses on a subset of childlike perform-
ance — but a different subset, involving a broader
variety of engagements with the world. Scene com-
prehension here does not mean only illustrations,
but real-world scenes, which can be presented at
different granularities, media, and complexities
(cartoons, movies, or theatrical performances, for
instance). This approach differs from the reading
scenario in that it more directly provides a dynam-
ic environment. If group exercises are included
then all the Laird and Wray criteria are fulfilled in
a direct and obvious way.

The story or scene comprehension scenario
focuses on the relationship between perception,
mental representation, and natural language. Here,
the system might be presented with a story, which
it needs to analyze semantically and then re-pre-
sent in a different form (for instance, as a movie
sequence, or another kind of retelling). In the oth-
er direction, the system is shown a movie or car-
toon sequence, which it needs to comprehend and
re-present using language. This approach lends
itself to a variety of standardizable test scenarios,
which allow the direct comparison of competing
AGI architectures with each other as well as with
child performance using identical input.

Note that these tests ignore the interaction of
the system and the environment, and the particu-
lar needs of the system itself. It is often argued that
general intelligence might only be attained by a
motivated, interacting system, but this scenario
would allow the comparison of motivated, inter-
active architectures with less comprehensive pro-
cessing-oriented architectures.

AGI system capabilities in story and scene com-
prehension are probably not independent but relat-
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ed, since both tasks focus on modeling the rela-
tionships between perception, language, and
thought, which are not unidirectional. Further
tasks might focus on the interplay between these
areas, by combining expression and comprehen-
sion. This could either be done in a fully interactive
manner (that is, by designing a system that has to
respond to a teacher), or self-interactive (two agents
learn to communicate with each other, while shar-
ing an environment). For an example design of
such a self-interactive scenario, see Steels (2010).

School Learning
The virtual school student scenario continues the
virtual preschool scenario but is focused on higher
cognitive abilities assuming that, if necessary, low-
er-level skills will be finessed. In particular, it is
assumed that all interfaces with the agent are
implemented at a symbolic level: the agent is not
required to process a video stream, to recognize
speech and gestures, to balance its body and avoid
obstacles while moving in space, and others. All
these can be added later to enhance the challenge,
but a key feature of this scenario is that they can
also be finessed, allowing for early exploration of
such capabilities without waiting for other system
developments. On the other hand, it is critically
important in the scenario for the agent to make
academic progress at a human student level, to
understand human minds, and to understand and
use classroom-related social relations in the envi-
ronment in which it is embedded.

In this scenario, the agent is embedded in a real
high school classroom by means of a virtual-reali-
ty-based interface. The agent lives in a symbolic
virtual world that is continuously displayed on a
big screen in the classroom. The virtual world
includes a virtual classroom represented at a sym-
bolic (object) level, including the human instruc-
tor and human students represented by simplistic
avatars. The agent itself is represented by an avatar
in this virtual classroom. The symbolic virtual
world is synchronized with the real physical world
with the assistance of intelligent monitoring and
recording equipment performing scene analysis,
speech recognition, language comprehension, ges-
ture recognition, and others (if necessary, some or
all of these functions will be performed by hidden
human personnel running the test; students
should not be aware of their existence). The study
material, including the textbook and other cur-
riculum materials available to each student, will be
encoded electronically and made available to the
agent at a symbolic level.

A particularly challenging aspect of this scenario
is that the agent will be evaluated not only on its
own learning and problem-solving performance,
but also on its approach to problem solving, based
on its interactions with students and with the

instructor. Here the general metrics for self-regulat-
ed learning will be used (Winne and Perry 2000). In
addition, social performance of the agent can be
evaluated based on surveys of students and standard
psychological metrics. Another potentially impor-
tant measure will be the effect of the agent presence
in the classroom on human student learning.

The Wozniak Test
In an interview a few years ago, Steve Wozniak of
Apple Computer fame expressed doubt that there
would ever be a robot that could walk into an unfa-
miliar house and make a cup of coffee (Wozniak
and Moon 2007). We feel that this task is demand-
ing enough to stand as a Turing test equivalent for
embodied AGI. Note that the Wozniak test is a sin-
gle, special case of Nils Nilsson’s general employ-
ment test for human-level AI (Nilsson 2005).

A robot is placed at the door of a typical house
or apartment. It must find a doorbell or knocker, or
simply knock on the door. When the door is
answered, it must explain itself to the household-
er and enter once it has been invited in. (We will
assume that the householder has agreed to allow
the test in his or her house, but is otherwise com-
pletely unconnected with the team doing the
experiment, and indeed has no special knowledge
of AI or robotics at all.) The robot must enter the
house, find the kitchen, locate local coffee-making
supplies and equipment, make coffee to the house-
holder’s taste, and serve it in some other room. It
is allowed, indeed required by some of the
specifics, for the robot to ask questions of the
householder, but it may not be physically assisted
in any way.

The current state of the art in robotics falls short
of this capability in a number of ways. The robot
will need to use vision to navigate, identify objects,
possibly identify gestures (“the coffee’s in that cab-
inet over there”), and to coordinate complex
manipulations. Manipulation and physical model-
ing in a tight feedback learning loop may be nec-
essary, for example, to pour coffee from an unfa-
miliar pot into an unfamiliar cup. Speech
recognition and natural language understanding
and generation will be necessary. Planning must be
done at a host of levels ranging from manipulator
paths to coffee-brewing sequences.

The major AGI advance for a coffee-making
robot is that all of these capabilities must be coor-
dinated and used appropriately and coherently in
aid of the overall goal. The usual setup, task defi-
nition, and so forth are gone from standard narrow
AI formulations of problems in all these areas; the
robot has to find the problems as well as to solve
them. That makes coffee-making in an unfamiliar
house a strenuous test of a system’s adaptivity and
ability to deploy common sense.

Although standard shortcuts might be used,
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such as having a database of every manufactured
coffeemaker built in, it would be prohibitive to
have the actual manipulation sequences for each
one preprogrammed, especially given the variabil-
ity in workspace geometry, dispensers and con-
tainers of coffee grounds, and so forth. Transfer
learning, generalization, reasoning by analogy, and
in particular learning from example and practice
are almost certain to be necessary for the system to
be practical.

Coffee-making is a task that most 10-year-old
humans can do reliably with a modicum of expe-
rience. A week’s worth of being shown and prac-
ticing coffee making in a variety of homes with a
variety of methods would provide the grounding
for enough generality that a 10 year old could
make coffee in the vast majority of homes in a
Wozniak test. Another advantage to this test is it
would be extremely difficult to cheat, since the
only reasonably economical way to approach the
task would be to build general-learning skills and
have a robot that is capable of learning not only to
make coffee but any similar domestic chore.

An Initial Road Map for Achieving AGI
Having set forth these seven scenarios, we can now
proceed to array them across the previously

defined AGI landscape (figure 3). Figure 6 shows
the result of this mapping, with some scenarios
like General Video Game Learning and Scene/Sto-
ry Comprehension spanning large areas of the
landscape as their content increases in complexity
and cognitive challenge. Just as we consider the
Laird and Wray requirements as a practical starting
point and our scenarios as initial representatives of
a much larger, more representative collection, we
hope this initial road map is enhanced and cor-
rected as our collective experience in AGI grows.

Remaining Whitespace
In our view, the suggested scenarios represent a sig-
nificant step in populating the AGI Landscape, but
many alternative scenarios are conceivable, and
might even cover areas that we have incompletely
addressed or not mentioned at all.

Among the areas that might need more atten-
tion are aesthetic appreciation and performance,
structured social interaction, and skills that require
high cognitive function and integration.

Aesthetic appreciation and performance include
composition, literature, artistic portrayal, dance,
and others. Examining the appreciation of aes-
thetics is bound to increase our understanding of
the motivational system, of mental representation,
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and of metacognition. Aesthetic performance adds
manipulation, creation, and adaptation of physi-
cal and imagined objects, theory of mind, aspects
of sociality, and many things more.

Structured social interaction includes goal adop-
tion, collaboration, competition and exploitation,
negotiation, discourse and joint decision making,
group organization, leadership, and so on. Scenar-
ios in the social domain will require representa-
tions and assessment of social setups, the mental
states of individuals, and possible ramifications for
the agent’s own goals. 

Skills that require high cognitive function and
integration include, for instance, complex rescue
scenarios, physical shopping, and skilled human
assistance. Each of these task areas would require
complex coordination between interaction, explo-
ration, evaluation, and planning.

Thus, we encourage and invite suggestions for
additional scenarios, as long as these are firmly
rooted in an AGI approach, that is, each scenario
should foster our understanding of general,
humanlike intelligence, and not simply provide
narrow engineering solutions to a limited task.

From Scenarios to Tasks, Metrics,
and Challenges

The description of scenarios and competency
areas, as we have presented here, makes it possible
to articulate specific tasks for assessing progress
toward AGI in a principled manner. For each of the
scenarios reviewed above (or other analogous sce-
narios), one may define a specific task-set, where
each task addresses one or more of the competen-
cy areas in the context of the scenario. To consti-
tute a reasonable approximation of an AGI test
suite or overall AGI challenge, the total set of tasks
for a scenario must cover all the competency areas.
Each task must also be associated with some par-
ticular performance metric — quantitative wher-
ever possible, but perhaps qualitative in some cas-
es depending on the nature of the task. 

The obvious risk of an AGI evaluation approach
based on a long list of tasks is that it is susceptible
to solution by the so-called “big switch statement”
approach, in which separate narrowly specialized
programs corresponding to the individual tasks are
combined together in a simplistic harness. Some
may believe that human intelligence is well
approximated by a big switch statement of this
sort, but we take a different perspective, which
doesn’t rule out the possibility, but also doesn’t
focus on or encourage this approach. 

In addition, the competency areas alluded to
above include many that focus on learning and
generalization. So even if a big switch statement
approach is used to handle tasks based on these
requirements, the switch will be choosing between

a large number of specialized programs that in
themselves could handle a great deal of learning.

Example Tasks
For sake of brief illustration, table 1 roughly
describes a handful of example tasks and task fam-
ilies corresponding to a few of the scenarios
described above. Much of the work of fleshing out
the initial roadmap described here will involve sys-
tematically creating a substantial list of tasks cor-
responding to the scenarios chosen, using an
exploratory enumeration of human general intelli-
gence competencies as a guide (perhaps a refined
version of the list in figure 5). Each task will then
need to be associated with quantitative perform-
ance metrics.

Some of the examples in table 1 are highly spe-
cific, others are broader task families. Our feeling is
that it will generally be better to identify moder-
ately broad task families rather than highly specific
tasks, in order to encourage the creation of systems
with more robust and flexible functionality. 

Multidimensional Challenges
What then is the right sort of challenge to present
to a would-be AGI system? We suggest the follow-
ing: to address a few dozen closely interrelated,
moderately broadly defined tasks in an environ-
ment drawn from a moderately broad class (for
example, an arbitrary preschool or textbook rather
than specific ones determined in advance). If the
environment is suitably rich and the tasks are
drawn to reflect the spectrum of human general
intelligence competencies, then this sort of chal-
lenge will motivate the development of genuine
human-level AGI systems.

This sort of challenge is not nearly as well spec-
ified as a chess contest, RoboCup, or the DARPA
Grand Challenge, but we feel the complexity and
heterogeneity here is directly reflective of the com-
plexity and heterogeneity of human general intel-
ligence. Some have posited that there are simple
core principles underlying all human-level general
intelligence. Even if this turns out to be true, the
real-world manifestation of these principles —
what can actually be measured — is highly com-
plex and involves multiple interrelated competen-
cies defined through interaction with a rich,
dynamic world.

Challenges and Competitions
Finally, we emphasize that our main goal here is to
propose a capability roadmap for the AGI research
community, not a competition or contest. Compe-
titions can be valuable, and we would be happy to
see one or more developed along the lines of the
capability roadmap we have described. However,
we doubt any successful competition could ever
cover the full extent of a roadmap such as this.
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One reason for this is that a competition is very
likely to involve concrete decisions regarding the
prioritization or temporal ordering of tasks, which
will inevitably result in the competition having
widely differential appeal to AGI researchers
depending on their chosen scientific approach.

The primary value to be derived through wide
adoption of a capability roadmap of this nature is
the concentration of multiple researchers pursuing
diverse approaches on common scenarios and
tasks — which allows them to share ideas and learn
from each other much more than would be the
case otherwise. There is much to be gained
through multiple researchers pursuing the same
concrete challenges in parallel, with or without the
presence of an explicit judged competition.

Call For Collaboration
We have explained our vision for the creation of a
roadmap to human-level artificial general intelli-
gence, selected goals and starting points, estab-
lished a landscape, populated it with a number of
diverse scenarios, and fleshed out some of the
details. What’s next is to put more meat on the

bones: describe the scenarios in more detail, refine
the list of specific competency areas, and then cre-
ate tasks and metrics along the lines outlined
above. Once this is done, we will have a capability
roadmap clearly articulating some plausible path-
ways to AGI; and we will have the basis for creat-
ing holistic, complex challenges that can mean-
ingfully assess progress on the AGI problem.

Such a roadmap does not give a highly rigorous,
objective way of assessing the percentage of
progress toward the end goal of AGI. However, it
gives a much better sense of progress than one
would have otherwise. For instance, if an AGI sys-
tem performed well on diverse metrics correspon-
ding to tasks assessing 50 percent of the compe-
tency areas listed above, in several of the above
scenarios, the creators of this system would seem
justified in claiming to have made very substantial
progress toward AGI. If the number were 90 per-
cent rather than 50 percent, one would seem justi-
fied in claiming to be almost there. If the number
were 25 percent, this would give one a reasonable
claim to interesting AGI progress. This kind of
qualitative assessment of progress is not the most
one could hope for, but it is better than the
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Scenario Competency 
Area 

Subarea Example Task or Task Family 

Virtual 
Preschool 

Learning Dialogical Learn to build a particular structure of blocks (such as a pyramid) faster based on a 
combination of imitation, reinforcement, and verbal instruction, than by imitation 
and reinforcement without verbal instruction 

Virtual 
Preschool 

Modeling Self 
and Other 

Theory of 
Mind 

While Sam is in the room, Ben puts the red ball in the red box. Then Sam leaves 
and Ben moves the red ball to the blue box. Sam returns and Ben asks him where 
the red ball is. The agent is asked where Sam thinks the ball is. 

Virtual 
School 
Student 

Learning Media- 
oriented 

Starting from initially available basic concepts (a number, a variable, a function), 
demonstrate academic progress in learning how to solve problems from the text-
book using techniques described in the same textbook. The agent should move step 
by step, from simple to advanced problems, from one domain to another. 

Robot  
Preschool 

Actuation Propriocep- 
tion 

The teacher moves the robot's body into a certain configuration. The robot is asked 
to restore its body to an ordinary standing position, and then repeat the configura-
tion that the teacher moved it into. 

Robot  
Preschool 

Memory Episodic Ask the robot about events that occurred at times when it received a particularly 
large, or particularly small, reward for its actions; it should be able to answer simple 
questions about these significant events, with significantly more accuracy than 
about events occurring at random times 

Wozniak 
Test 

Communication Gestural The robot will be directed to the kitchen. It must understand gestures indicating 
that it should follow an indicated path, or know how to follow its guide, and know 
when either is appropriate. 

Wozniak 
Test 

Actuation Navigation The robot must complete its task without colliding people, walls, furniture, or pets. 

Wozniak 
Test 

Social  
Interaction behavior 

The robot must recognize and appropriately respond to the situation where it has 
knocked on the wrong door, the householder is not home, or the robot is not wel-
come to enter the house. 

Wozniak 
Test 

Reasoning Physical Be able to use incomplete or alternative tools and equipment. For instance, a drip 
pot may be used without its top, but not a percolator. This may require physical 
simulation, based on an understanding of naive physics. 

Wozniak 
Test 

Reasoning Induction On the other hand, the above-mentioned knowledge about drip pots and percola-
tors may be gathered through inductive reasoning based on observations in multi-
ple relevant situations. 

Table 1. Mapping Human General Intelligence Competencies to Scenario Tasks and Task Families.



progress indications one could get without this
sort of roadmap.

We have already explicitly noted many of the
limitations of our treatment of this challenging
topic. While there is no consensus among AGI
researchers on the definition of general intelli-
gence, we can generally agree on a pragmatic goal.
The diversity of scenarios presented reflects a diver-
sity of perspectives among AGI researchers regard-
ing which environments and tasks best address the
most critical aspects of AGI. Most likely neither the
tentative list of competencies nor the Laird and
Wray criteria are either necessary or sufficient.
There is no obvious way to formulate a precise
measure of progress toward AGI based on the com-
petencies and scenarios provided — though one
can use these to motivate potentially useful
approximative measures.

But in spite of its acknowledged limitations, a
capability roadmap of the sort outlined here allows
multiple researchers following diverse approaches
to compare their work in a meaningful way; allows
researchers, and other observers, to roughly assess
the degree of research progress toward the end goal
of human-level artificial general intelligence; and
allows work on related road-mapping aspects, such
as tools roadmaps and study of social implications
and potential future applications, to proceed in a
more structured way.

With this in mind, we encourage AGI
researchers to join with us in the ongoing collabo-
rative construction of a more detailed AGI
roadmap along the lines suggested here.

Notes
1. See the DARPA Grand Challenge Rulebook
(www.darpa.mil/grandchallenge05/Rules_8oct04.pdf).

2. See the DARPA Urban Challenge Rules (www.
darpa.mil/grandchallenge/rules.asp).

3. See the Standard Performance Evaluation Corporation
(www.spec.org).
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