
MapReduce for Data Intensive
Scientific Analyses

Jaliya Ekanayake
Shrideep Pallickara

Geoffrey Fox
Department of Computer Science

Indiana University Bloomington, IN, 47405

5/11/2009 1Jaliya Ekanayake

Presentation Outline

• Introduction

• MapReduce and the Current Implementations

• Current Limitations

• Our Solution

• Evaluation and the Results

• Future Work and Conclusion

5/11/2009 Jaliya Ekanayake 2

Data/Compute Intensive Applications

• Computation and data intensive applications are
increasingly prevalent

• The data volumes are already in peta-scale
– High Energy Physics (HEP)

• Large Hadron Collider (LHC) - Tens of Petabytes of data
annually

– Astronomy
• Large Synoptic Survey Telescope -Nightly rate of 20 Terabytes

– Information Retrieval
• Google, MSN, Yahoo, Wal-Mart etc..

• Many compute intensive applications and domains
– HEP, Astronomy, chemistry, biology, and seismology etc..
– Clustering

• Kmeans, Deterministic Annealing, Pair-wise clustering etc…

– Multi Dimensional Scaling (MDS) for visualizing high
dimensional data

5/11/2009 Jaliya Ekanayake 3

Composable Applications
• How do we support these large scale applications?

– Efficient parallel/concurrent algorithms and implementation techniques

• Some key observations
– Most of these applications are:

• A Single Program Multiple Data (SPMD) program
• or a collection of SPMDs

– Exhibits the composable property
• Processing can be split into small sub computations
• The partial-results of these computations are merged after some

post-processing
• Loosely synchronized (Can withstand communication latencies

typically experienced over wide area networks)
• Distinct from the closely coupled parallel applications and totally

decoupled applications

– With large volumes of data and higher computation
requirements, even closely coupled parallel applications can
withstand higher communication latencies?

5/11/2009 Jaliya Ekanayake 4

The Composable Class of Applications

Composable class can be implemented in high-level

programming models such as MapReduce and Dryad

5/11/2009 Jaliya Ekanayake 5

Cannon’s Algorithm for
matrix multiplication –

tightly coupled application

Loosely
synchronized
(milliseconds)

SPMDsInput

Composable application

Set of TIF
files

Totally decoupled
application

PDF Files

Tightly
synchronized

(microseconds)

MapReduce

5/11/2009 Jaliya Ekanayake 6

“MapReduce is a programming model and an associated implementation
for processing and generating large data sets. Users specify a map function
that processes a key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated
with the same intermediate key.”

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

MapReduce

• The framework supports:
– Splitting of data
– Passing the output of map functions to reduce functions
– Sorting the inputs to the reduce function based on the intermediate keys
– Quality of services

5/11/2009 Jaliya Ekanayake 7

O1
D1

D2

Dm

O2

Data
map

map

map

reduce

reduce

data split map reduce

Data is split into
m parts

1

map function is
performed on each of

these data parts
concurrently

2

A hash function maps the results of
the map tasks to r reduce tasks

3

Once all the results for a
particular reduce task is
available, the framework
executes the reduce task

4

A combine task may
be necessary to
combine all the
outputs of the reduce
functions together

5

Hadoop Example: Word Count

5/11/2009 Jaliya Ekanayake 8

• Task Trackers
Execute Map tasks

• Output of map
tasks are written
to local files

• Retrieve map
results via HTTP

• Sort the outputs

• Execute reduce
tasks

1

2

TTDN

1

TTDN

Data/Compute Nodes

2
M M

3

4

TTDN

3

TTDN

4
M M

RR

R

map(String key, String value):
// key: document name
// value: document contents

reduce(String key, Iterator values):
// key: a word
// values: a list of counts

E.g. Word Count

Current Limitations

5/11/2009 Jaliya Ekanayake 9

• The MapReduce programming model could be
applied to most composable applications but;
• Current MapReduce model and the runtimes

focus on “Single Step” MapReduce
computations only

• Intermediate data is stored and accessed via
file systems

• Inefficient for the iterative computations to
which the MapReduce technique could be
applied

• No performance model to compare with other
high-level or low-level parallel runtimes

CGL-MapReduce

• A streaming based MapReduce runtime implemented in Java
• All the communications(control/intermediate results) are routed via a content

dissemination network
• Intermediate results are directly transferred from the map tasks to the reduce

tasks – eliminates local files
• MRDriver

– Maintains the state of the system
– Controls the execution of map/reduce tasks

• User Program is the composer of MapReduce computations
• Support both single step and iterative MapReduce computations

5/11/2009 Jaliya Ekanayake 10

Data Split

D MR
Driver

User
Program

Content Dissemination Network

D

File System

M

R

M

R

M

R

M

R

Worker Nodes
M

R

D

Map Worker

Reduce Worker

MRDeamon

Data Read/Write

Communication

Architecture of CGL-MapReduce

CGL-MapReduce – The Flow of Execution

5/11/2009 Jaliya Ekanayake 11

1

2

3

4

5

Initialize

map

reduce

combine

Terminate

Variable Data

Fixed Data

Iterative MapReduce

Initialization

• Start the map/reduce workers

• Configure both map/reduce
tasks (for configurations/fixed
data)

Map

• Execute map tasks passing
<key, value> pairs

Reduce

• Execute reduce tasks passing
<key, List<values>>

Combine

• Combine the outputs of all
the reduce tasks

Termination

• Terminate the map/reduce
workers

CGL-MapReduce, the flow of execution

Data Split

D MR
Driver

User
Program

Content Dissemination Network

D

File System

M

R

M

R

M

R

M

R

Worker Nodes

HEP Data Analysis

5/11/2009 Jaliya Ekanayake 12

• Hadoop and CGL-MapReduce both show similar performance
• The amount of data accessed in each analysis is extremely large
• Performance is limited by the I/O bandwidth
• The overhead induced by the MapReduce implementations has negligible

effect on the overall computation

Data: Up to 1 terabytes of data,
placed in IU Data Capacitor
Processing:12 dedicated computing
nodes from Quarry (total of 96
processing cores)

MapReduce for HEP data analysis

HEP data analysis, execution time vs. the
volume of data (fixed compute resources)

HEP Data Analysis Scalability and Speedup

5/11/2009 Jaliya Ekanayake 13

Execution time vs. the number of compute
nodes (fixed data)

Speedup for 100GB of HEP data

• 100 GB of data
• One core of each node is used (Performance is limited by the I/O bandwidth)
• Speedup = MapReduce Time / Sequential Time
• Speed gain diminish after a certain number of parallel processing units (after

around 10 units)

Kmeans Clustering

5/11/2009 Jaliya Ekanayake 14

• All three implementations perform the same Kmeans clustering algorithm
• Each test is performed using 5 compute nodes (Total of 40 processor cores)
• CGL-MapReduce shows a performance close to the MPI implementation
• Hadoop’s high execution time is due to:

• Lack of support for iterative MapReduce computation
• Overhead associated with the file system based communication

MapReduce for Kmeans Clustering Kmeans Clustering, execution time vs. the
number of 2D data points (Both axes are in log

scale)

Overheads of Different Runtimes

Overhead f(P)= [P T(P)–T(1)]/T(1)

P - The number of hardware processing
units
T(P) – The time as a function of P
T(1) – The time when a sequential
program is used (P=1)

• Overhead diminishes with the amount of computation

• Loosely synchronous MapReduce (CGL-MapReduce) also
shows overheads close to MPI for sufficiently large problems

• Hadoop’s higher overheads may limit its use for these
types(iterative MapReduce) of computations

More Applications

• Matrix multiplication -> iterative
algorithm

• Histogramming words -> simple
MapReduce application

• Streaming approach provide
better performance in both
applications

5/11/2009 Jaliya Ekanayake 16

MapReduce for Matrix Multiplication

Matrix Multiply

Histogramming Words

Multicore and the Runtimes

• The papers [1] and [2] evaluate the performance of MapReduce using Multicore
computers

• Our results show the converging results for different runtimes

• The right hand side graph could be a snapshot of this convergence path

• Easiness to program could be a consideration

• Still, threads are faster in shared memory systems

5/11/2009 Jaliya Ekanayake 17

[1] Evaluating MapReduce for Multi-core and Multiprocessor Systems. By C. Ranger et al.
[2] Map-Reduce for Machine Learning on Multicore by C. Chu et al.

Conclusions

• Given sufficiently large problems, all runtimes
converge in performance

• Streaming-based map reduce implementations
provide faster performance necessary for most
composable applications

• Support for iterative MapReduce computations
expands the usability of MapReduce runtimes

Parallel Algorithms with:
•Fine grained sub computations
•Tight synchronization constraints

Parallel Algorithms with:
•Corse grained sub computations
•Loose synchronization constraints

MapReduce /Cloud

Future Work

• Research on different fault tolerance strategies for
CGL-MapReduce and come up with a set of
architectural recommendations

• Integration of a distributed file system such as
HDFS

• Applicability for cloud computing environments

5/11/2009 Jaliya Ekanayake 19

Questions?

Thank You!

5/11/2009 Jaliya Ekanayake 20

Links

• Hadoop vs. CGL-MapReduce
– Is it fair to compare Hadoop with CGL-MapReduce ?

• DRYAD

• Fault Tolerance

• Rootlet Architecture

• Nimbus vs. Eucalyptus

5/11/2009 Jaliya Ekanayake 21

Hadoop vs. CGL-MapReduce

5/11/2009 Jaliya Ekanayake 22

Feature Hadoop CGL-MapReduce

Implementation Language Java Java

Other Language Support Uses Hadoop Streaming (Text
Data only)

Requires a Java wrapper classes

Distributed File System HDFS Currently assumes a shared file
system between nodes

Accessing binary data from
other languages

Currently only a Java
interface is available

Shared file system enables this
functionality

Fault Tolerance Support failures of nodes Currently does not support fault
tolerance

Iterative Computations Not supported Supports Iterative MapReduce

Daemon Initialization Requires ssh public key
access

Requires ssh public key access

Is it fair to compare Hadoop with CGL-MapReduce ?

• Hadoop access data via a distributed file system
• Hadoop stores all the intermediate results in this file system to ensure fault

tolerance
• Is this is the optimum strategy?
• Can we use Hadoop for only “single pass” MapReduce computations?
• Writing the intermediate results at the Reduce task will be a better strategy?

– Considerable reduction in data from map -> reduce
– Possibility of using duplicate reduce tasks

5/11/2009 Jaliya Ekanayake 23

Fault Tolerance

• Hadoop/Google Fault Tolerance
– Data (input, output, and intermediate) are stored in HDFS
– HDFS uses replications
– Task tracker is a single point of failure (Checkpointing)
– Re-executing failed map/reduce tasks

• CGL-MapReduce
– Integration of HDFS or similar parallel file system for

input/output data
– MRDriver is a single point of failure (Checkpointing)
– Re-executing failed map tasks (Considerable reduction in

data from map -> reduce)
– Redundant reduce tasks

• Amazon model S3, EC2 and SQS
– Reliable Queues

5/11/2009 Jaliya Ekanayake 24

DRYAD

• The computation is structured as a directed graph
• A Dryad job is a graph generator which can synthesize any directed acyclic

graph
• These graphs can even change during execution, in response to important

events in the computation
• Dryad handles job creation and management, resource management, job

monitoring and visualization, fault tolerance, re-execution, scheduling,
and accounting

• How to support iterative computations?

5/11/2009 Jaliya Ekanayake 25

http://research.microsoft.com/research/sv/Dryad/

