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Presentation Outline
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• Evaluation and the Results
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Data/Compute Intensive Applications

• Computation and data intensive applications are 
increasingly prevalent

• The data volumes are already in peta-scale 
– High Energy Physics (HEP)

• Large Hadron Collider (LHC) - Tens of Petabytes of data 
annually 

– Astronomy
• Large Synoptic Survey Telescope -Nightly rate of  20 Terabytes

– Information Retrieval
• Google, MSN, Yahoo, Wal-Mart etc..

• Many compute intensive applications and domains
– HEP, Astronomy, chemistry, biology, and seismology etc..
– Clustering 

• Kmeans, Deterministic Annealing, Pair-wise clustering etc… 

– Multi Dimensional Scaling (MDS) for visualizing high 
dimensional data
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Composable Applications
• How do we support these large scale applications?

– Efficient parallel/concurrent algorithms and implementation techniques

• Some key observations
– Most of these applications are:

• A Single Program Multiple Data (SPMD) program
• or a collection of SPMDs

– Exhibits the composable property
• Processing can be split into small sub computations
• The partial-results of these computations are merged after some 

post-processing
• Loosely synchronized (Can withstand communication latencies 

typically experienced over wide area networks)
• Distinct from the closely coupled parallel applications and totally 

decoupled applications

– With large volumes of data and higher computation 
requirements, even closely coupled parallel applications can 
withstand higher communication latencies?
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The Composable Class of Applications

Composable class can be implemented in high-level

programming models  such as MapReduce and Dryad

5/11/2009 Jaliya Ekanayake 5

Cannon’s Algorithm for
matrix multiplication –

tightly coupled application

Loosely 
synchronized 
(milliseconds)

SPMDsInput

Composable application

Set of TIF 
files

Totally decoupled 
application

PDF Files

Tightly  
synchronized 

(microseconds)



MapReduce
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“MapReduce is a programming model and an associated implementation 
for processing and generating large data sets. Users specify a map function 
that processes a key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function that merges all intermediate values associated 
with the same intermediate key.”

MapReduce: Simplified Data Processing on Large Clusters 
Jeffrey Dean and Sanjay Ghemawat



MapReduce

• The framework supports:
– Splitting of data
– Passing the output of map functions to reduce functions
– Sorting the inputs to the reduce function based on the intermediate keys
– Quality of services
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Hadoop Example: Word Count
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map(String key, String value):
// key: document name
// value: document contents

reduce(String key, Iterator values):
// key: a word
// values: a list of counts

E.g. Word Count 



Current Limitations
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• The MapReduce programming model could be 
applied to most composable applications but;
• Current MapReduce model and the runtimes 

focus on “Single Step” MapReduce 
computations only

• Intermediate data is stored and accessed via 
file systems

• Inefficient for the iterative computations to 
which the MapReduce technique could be 
applied

• No performance model to compare with other 
high-level or low-level parallel runtimes 



CGL-MapReduce

• A streaming based MapReduce runtime implemented in Java
• All the communications(control/intermediate results) are routed via a content 

dissemination network
• Intermediate results are directly transferred from the map tasks to the reduce 

tasks – eliminates local files
• MRDriver 

– Maintains the state of the system
– Controls the execution of map/reduce tasks

• User Program is the composer of MapReduce computations
• Support both single step and iterative MapReduce computations
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CGL-MapReduce – The Flow of Execution
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HEP Data Analysis
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• Hadoop and CGL-MapReduce both show similar performance
• The amount of data accessed in each analysis is extremely large
• Performance is limited by the I/O bandwidth
• The overhead induced by the MapReduce implementations has negligible 

effect on the overall computation

Data: Up to 1 terabytes of data, 
placed in IU Data Capacitor
Processing:12 dedicated computing 
nodes from Quarry (total of 96 
processing cores)

MapReduce for HEP data analysis

HEP data analysis, execution time vs. the 
volume of data (fixed compute resources)



HEP Data Analysis Scalability and Speedup
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Execution time vs. the number of compute 
nodes (fixed data) 

Speedup for 100GB of HEP data 

• 100 GB of data
• One core of each node is used (Performance is limited by the I/O bandwidth)
• Speedup = MapReduce Time / Sequential Time
• Speed gain diminish after a certain number of parallel processing units (after 

around 10 units) 



Kmeans Clustering
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• All three implementations perform the same Kmeans clustering algorithm
• Each test is performed using 5 compute nodes (Total of 40 processor cores)
• CGL-MapReduce shows a performance close to the MPI implementation 
• Hadoop’s high execution time is due to:

• Lack of support for iterative MapReduce computation
• Overhead associated with the file system based communication

MapReduce for Kmeans Clustering Kmeans Clustering, execution time vs. the 
number of 2D data points (Both axes are in log 

scale)



Overheads of Different Runtimes

Overhead f(P)= [P T(P)–T(1)]/T(1)

P - The number of hardware processing 
units
T(P) – The time as a function of P
T(1) – The time when a sequential 
program is used (P=1)

• Overhead diminishes with the amount of computation

• Loosely synchronous MapReduce (CGL-MapReduce) also 
shows overheads close to MPI for sufficiently large problems

• Hadoop’s higher overheads may limit its use for these 
types(iterative MapReduce) of computations



More Applications

• Matrix multiplication -> iterative 
algorithm

• Histogramming words -> simple 
MapReduce application

• Streaming approach provide 
better performance in both 
applications
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MapReduce for Matrix Multiplication

Matrix Multiply

Histogramming Words



Multicore and the Runtimes

• The papers [1] and [2] evaluate the performance of MapReduce using Multicore 
computers

• Our results show the converging results for different runtimes

• The right hand side graph could be a snapshot of this convergence path

• Easiness to program could be a consideration

• Still, threads are faster in shared memory systems
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[1] Evaluating MapReduce for Multi-core and Multiprocessor Systems. By C. Ranger et al.
[2] Map-Reduce for Machine Learning on Multicore by C. Chu et al.



Conclusions

• Given sufficiently large problems, all runtimes 
converge in performance

• Streaming-based map reduce implementations 
provide faster performance necessary for most 
composable applications

• Support for iterative MapReduce computations 
expands the usability of MapReduce runtimes 

Parallel Algorithms with:
•Fine grained sub computations
•Tight synchronization constraints

Parallel Algorithms with:
•Corse grained sub computations
•Loose synchronization constraints

MapReduce /Cloud



Future Work

• Research on different fault tolerance strategies for 
CGL-MapReduce  and come up with  a set of 
architectural recommendations

• Integration of a distributed file system such as 
HDFS

• Applicability for cloud computing environments
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Questions?

Thank You!
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Links

• Hadoop vs. CGL-MapReduce
– Is it fair to compare Hadoop with CGL-MapReduce ?

• DRYAD

• Fault Tolerance

• Rootlet Architecture

• Nimbus vs. Eucalyptus
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Hadoop vs. CGL-MapReduce
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Feature Hadoop CGL-MapReduce

Implementation Language Java Java

Other Language Support Uses Hadoop Streaming (Text 
Data only)

Requires a Java wrapper classes

Distributed File System HDFS Currently assumes a shared file 
system between nodes

Accessing binary data from 
other languages

Currently only a Java 
interface is available

Shared file system enables this 
functionality

Fault Tolerance Support failures of nodes Currently does not support fault 
tolerance

Iterative Computations Not supported Supports Iterative MapReduce

Daemon Initialization Requires ssh public key 
access

Requires ssh public key access



Is it fair to compare Hadoop with CGL-MapReduce ?

• Hadoop access data via a distributed file system
• Hadoop stores all the intermediate results in this file system to ensure fault 

tolerance
• Is this is the optimum strategy?
• Can we use Hadoop for only “single pass” MapReduce computations?
• Writing the intermediate results at the Reduce task will be a better strategy?

– Considerable reduction in data from map -> reduce
– Possibility of using duplicate reduce tasks
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Fault Tolerance

• Hadoop/Google Fault Tolerance
– Data (input, output, and intermediate) are stored in HDFS
– HDFS uses replications
– Task tracker is a single point of failure (Checkpointing)
– Re-executing failed map/reduce tasks

• CGL-MapReduce
– Integration of HDFS or similar parallel file system for 

input/output data
– MRDriver is a single point of failure (Checkpointing)
– Re-executing failed map tasks (Considerable reduction in 

data from map -> reduce)
– Redundant reduce tasks

• Amazon model S3, EC2 and SQS
– Reliable Queues
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DRYAD

• The computation is structured as a directed graph
• A Dryad job is a graph generator which can synthesize any directed acyclic 

graph
• These graphs can even change during execution, in response to important 

events in the computation
• Dryad handles job creation and management, resource management, job 

monitoring and visualization, fault tolerance, re-execution, scheduling, 
and accounting

• How to support iterative computations?
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http://research.microsoft.com/research/sv/Dryad/

