MARACAS

Ying Ye, Richard West Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

MARACAS: A Real-Time Multicore VCPU Scheduling Framework

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Computer Science Department Boston University

Overview

MARACAS

Ying Ye, Richard West Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

Introduction

Quest RTOS

3 Background Scheduling

Memory-Aware Scheduling

5 Multicore VCPU Scheduling

6 Evaluation

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Multicore platforms are gaining popularity in embedded and real-time systems
 - concurrent workload support
 - less circuit area
 - lower power consumption
 - lower cost

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Multicore platforms are gaining popularity in embedded and real-time systems
 - concurrent workload support
 - less circuit area
 - lower power consumption
 - lower cost
- Complex on-chip memory hierarchies pose significant challenges for applications with real-time requirements

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Shared cache contention:

- page coloring
- hardware cache partitioning (Intel CAT)
- static VS dynamic

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Shared cache contention:

- page coloring
- hardware cache partitioning (Intel CAT)
- static VS dynamic
- Memory bus contention:
 - bank-aware memory management
 - memory throttling

Contribution

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- We proposed the use of foreground (reservation) + background (surplus) scheduling model
 - improves application performance
 - effectively reduces resource contention
 - well-integrated with real-time scheduling algorithms

Contribution

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- We proposed the use of foreground (reservation) + background (surplus) scheduling model
 - improves application performance
 - effectively reduces resource contention
 - well-integrated with real-time scheduling algorithms
- We proposed a new bus monitoring metric that accurately detects traffic

Application

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Imprecise computation/Numeric integration
 - MPEG video decoding: mandatory to process I-frames, optional to process B- and P-frames to improve frame rate

Application

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Imprecise computation/Numeric integration
 - MPEG video decoding: mandatory to process I-frames, optional to process B- and P-frames to improve frame rate
- Mixed-criticality systems running performance-demanding applications
 - machine learning
 - computer vision

Quest RTOS

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- VCPU model (C, T) in Quest RTOS
 - C: Capacity
 - T: Period

Quest RTOS

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- VCPU model (C, T) in Quest RTOS
 - C: Capacity
 - T: Period
 - Partitioned scheduling using RMS

Quest RTOS

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- VCPU model (C, T) in Quest RTOS
 - C: Capacity
 - T: Period
- Partitioned scheduling using RMS
- Schedulability test $\sum_{1}^{n} \left(\frac{C_{i}}{T_{i}}\right) \leq n(\sqrt[n]{2}-1)$

MARACAS

Ying Ye, Richard West Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

 VCPU enters background mode upon depleting its budget (C)

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

 VCPU enters background mode upon depleting its budget (C)

 Core enters background mode when all VCPUs are in background mode

MARACAS

- Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
- Introduction
- Quest RTOS

Background Scheduling

- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

 VCPU enters background mode upon depleting its budget (C)

- Core enters background mode when all VCPUs are in background mode
- Background CPU Time (**BGT**): time a VCPU runs when core in background mode

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

 VCPU enters background mode upon depleting its budget (C)

- Core enters background mode when all VCPUs are in background mode
- Background CPU Time (**BGT**): time a VCPU runs when core in background mode
- Background scheduling: schedule VCPUs when core is in background mode
 - fair share of **BGT** amongst VCPUs on core

DRAM structure

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

DRAM

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Prior work [MemGuard] uses "Rate Metric": number of DRAM accesses over a certain period

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Prior work [MemGuard] uses "Rate Metric": number of DRAM accesses over a certain period
 - Bank-level parallelism

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Prior work [MemGuard] uses "Rate Metric": number of DRAM accesses over a certain period
 - Bank-level parallelism
 - Row buffers

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Prior work [MemGuard] uses "Rate Metric": number of DRAM accesses over a certain period
 - Bank-level parallelism
 - Row buffers
 - Sync Effect

Sync Effect

Sync Effect

• Each task reduces its access rate by a factor of (T-t)/T

• Contention in [0, t] remains the same

Latency Metric

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

- UNC_ARB_TRK_REQUEST.ALL (requests): counts all memory requests going to the memory controller request queue
- UNC_ARB_TRK_OCCUPANCY.ALL (occupancy): counts cycles weighted by the number of pending requests in the queue

Latency Metric

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

- UNC_ARB_TRK_REQUEST.ALL (requests): counts all memory requests going to the memory controller request queue
- UNC_ARB_TRK_OCCUPANCY.ALL (occupancy): counts cycles weighted by the number of pending requests in the queue

• Average latency: $latency = \frac{occupancy}{requests}$

Memory Throttling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• When core gets throttled, background scheduling is disabled

Memory Throttling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- When core gets throttled, background scheduling is disabled
- Latency threshold: MAX_MEM_LAT if latency > MAX_MEM_LAT then num_throttle + +

Memory Throttling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- When core gets throttled, background scheduling is disabled
- Latency threshold: MAX_MEM_LAT if latency > MAX_MEM_LAT then num_throttle + +
- Proportional throttling
 - Every core is throttled at some point
 - Throttled time proportional to core's DRAM access rate

MARACAS
Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
Multicore VCPU Scheduling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Run migration thread with highest priority on each core: pushing local VCPUs to other cores (starts from highest utilization ones)

MARACAS

- Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
- Introduction
- Quest RTOS
- Background Scheduling
- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

- Run migration thread with highest priority on each core: pushing local VCPUs to other cores (starts from highest utilization ones)
 - Only one migration thread active during a migration period

MARACAS

- Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
- Introduction
- Quest RTOS
- Background Scheduling
- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

- Run migration thread with highest priority on each core: pushing local VCPUs to other cores (starts from highest utilization ones)
- Only one migration thread active during a migration period
- Its execution of its entire capacity C does not lead to any other local VCPUs missing their deadlines

MARACAS

- Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
- Introduction
- Quest RTOS
- Background Scheduling
- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

- Run migration thread with highest priority on each core: pushing local VCPUs to other cores (starts from highest utilization ones)
- Only one migration thread active during a migration period
- Its execution of its entire capacity C does not lead to any other local VCPUs missing their deadlines
- Constraint on C:

$$C \geq 2 \times E_{lock} + E_{struct}$$

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• For every core, define Slack-Per-VCPU (**SPV**): $SPV = \frac{1 - \sum_{i=1}^{n} (C_i/T_i)}{n}$

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• For every core, define Slack-Per-VCPU (**SPV**): $SPV = \frac{1 - \sum_{i=1}^{n} (C_i/T_i)}{n}$

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Balance Background CPU Time (**BGT**) used by every VCPU across cores: equalize **SPV**s of all cores

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Balance Background CPU Time (**BGT**) used by every VCPU across cores: equalize **SPV**s of all cores
 - BGT fair sharing

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Balance Background CPU Time (**BGT**) used by every VCPU across cores: equalize **SPV**s of all cores
 - BGT fair sharing
 - balanced memory throttling capability on each core

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Balance Background CPU Time (**BGT**) used by every VCPU across cores: equalize **SPV**s of all cores
 - BGT fair sharing
 - balanced memory throttling capability on each core

Cache-Aware Scheduling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- Static cache partitioning amongst cores
 - page coloring

Cache-Aware Scheduling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

- Static cache partitioning amongst cores
 - page coloring

• New API:

bool vcpu_create(uint C, uint T, uint cache);

Cache-Aware Scheduling

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introductior

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

- Static cache partitioning amongst cores
 - page coloring
- New API:

bool vcpu_create(uint C, uint T, uint cache);

 Extension of VCPU Load Balancing: destination core meets the cache requirement

Evaluation

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• MARACAS running on the following hardware platform:

Processor	Intel Core i5-2500k quad-core
Caches	6MB L3 cache, 12-way set associative, 4 cache slices
Memory	8GB 1333MHz DDR3, 1 channel, 2 ranks, 8KB row buffers

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

 Micro-benchmark m_jump: byte array[6M]; for (uint32 j = 0; j < 8K; j += 64) for (uint32 i = j; i < 6M; i += 8K) < Variable delay added here > (uint32)array[i] = i;

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

 Micro-benchmark m_jump: byte array[6M]; for (uint32 j = 0; j < 8K; j += 64) for (uint32 i = j; i < 6M; i += 8K) < Variable delay added here > (uint32)array[i] = i;

• Three m_jump (task 1,2,3) running on separate cores without memory throttling, utilization (C/T) 50%

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

 Micro-benchmark m_jump: byte array[6M]; for (uint32 j = 0; j < 8K; j += 64) for (uint32 i = j; i < 6M; i += 8K) < Variable delay added here > (uint32)array[i] = i;

- Three m_jump (task 1,2,3) running on separate cores without memory throttling, utilization (C/T) 50%
- Each run, insert a different time delay in task1 and task2, task3 has no delay

MARACAS

- Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng
- Introduction
- Quest RTOS
- Background Scheduling
- Memory-Aware Scheduling
- Multicore VCPU Scheduling
- Evaluation
- Conclusion

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

	Bus Traffic (GB)	Latency	task3 Instructions Retired ($ imes 10^8$)
Н	1128	228	249
М	1049	183	304
L	976	157	357

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

	Bus Traffic (GB)	Latency	task3 Instructions Retired ($ imes 10^8$)
Н	1128	228	249
М	1049	183	304
L	976	157	357

- Setting comparable thresholds:
 - rate-based: derived from Bus Traffic (1128/time)
 - latency-based: from Latency (228)

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

	Bus Traffic (GB)	Latency	task3 Instructions Retired ($\times 10^8$)
Н	1128	228	249
М	1049	183	304
L	976	157	357

- Setting comparable thresholds:
 - rate-based: derived from Bus Traffic (1128/time)
 - latency-based: from Latency (228)
- Last column serves as reference, showing the **expected** performance of task3 using the corresponding thresholds

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• Repeat experiment with memory throttling enabled and fixed delay for task1/task2

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Backgroun Scheduling

Memory-Aware Scheduling

Multicore VCPU Schedulin

Evaluation

Conclusion

• Repeat experiment with memory throttling enabled and fixed delay for task1/task2

Conclusion

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

Conclusion

• MARACAS uses background time to improve task performance; when memory bus is contended, it gets disabled through throttling

Conclusion

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- MARACAS uses background time to improve task performance; when memory bus is contended, it gets disabled through throttling
- MARACAS uses a latency metric to trigger throttling, outperforming prior rate-based approach

Conclusion

MARACAS

Ying Ye, Richard West, Jingyi Zhang, Zhuoqun Cheng

Introduction

Quest RTOS

Background Scheduling

Memory-Aware Scheduling

Multicore VCPU Scheduling

Evaluation

- MARACAS uses background time to improve task performance; when memory bus is contended, it gets disabled through throttling
- MARACAS uses a latency metric to trigger throttling, outperforming prior rate-based approach
- MARACAS fairly distributes background time across cores, for both fairness and better throttling