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1 Intro

Electron transfer (ET) is one of the most important chemical process in
nature and it plays a central role in many biological, physical and chemical
(both organic and inorganic) systems. In nature ET occurs in photosynthetic
reaction center where transfer of electrons is used to create charge imbalance
across a membrane, originating a proton pumping mechanism to produce
ATP. In chemical system, ET at the metal surface with oxygen is responsible
of the corrosion. Solid state electronics depends on the control of the ET in
semiconductors and the new area of molecular electronics depends critically
on the understanding and the control of the transfer of electrons in and
between molecules. Figure 1 shows some fields related to the ET.

2 History and Concepts

The main contribute to the ET theory comes from Marcus, Nobel for the
chemistry in the 1992, which has given a first formulation of the theory in
1956[1]. Early experiments in the electron transfer field were on “isotopic
exchange reactions” (self-exchange reactions) and later “cross reactions”.
Equation 2.1 shows a typical self exchange process, where the asterisk denote
a radioactive isotope.

Fe2+ + Fe∗3+ → Fe3+ + Fe∗2+ (2.1)
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Figure 1.1: Examples of topics in the electron transfer field.

These experiments originate by the huge amount of radioactive isotopes avail-
able after the Second World War and by the introduction of new instrumen-
tation which permitted to study the rates of rapid chemical reactions such
the electron transfer. Before 1940s only slow electrochemical reactions, such
as the discharge of an H3O

+ ion at en electrode to form H2, had been inves-
tigate extensively.
For Marcus the inspiration to develop his theory was a paper of Bill Libby
in which Franck-Condon principle was used to explain why reactions, as in
eq. 2.1, between pairs of small cations in aqueous solution are relatively slow
with respect the same electron transfer reactions involving larger ions, such
as Fe(CN)4−

6 . In contrast with the classical chemical reaction (eq. 2) in sim-
ple electron transfer reactions no chemical bonds are broken or formed, so a
different picture is needed for the reaction-rate for electron transfer.

AB + C → A + BC (2.2)

2.1 Frank-Condon principle applied to Electron Trans-

fer

In his paper in 1952 Libby noted that when an electron transfer from one
reacting ion or molecule to another, the two new ions or molecules formed
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Figure 2.1: Typical nuclear configurations for reactants, products and sur-
rounding solvent molecules in reaction 2.1. The longer M-OH2 bond length
in the state +2 is indicated schematically by the larger ionic radius.

are in the wrong environment of the solvent molecules since the nuclei do not
have time to move during the fast electron jump. Looking at the electron
transfer reaction 2.1, after the electron jump the Fe2+ ion would be formed
in some configuration of the many nearby dipolar solvent molecules that was
appropriate to the original Fe3+ ion. This introduce a “solvatation energy
barrier” for the process (Figure 2.1). The “solvatation energy barrier” is
not the only mechanism playing an important role in the electron transfer
reaction rate: the self exchange reaction 2.3 involve big ions but the experi-
mental rate for the reaction is really slow, in contrast to the picture of a ET
governed by the “solvatation energy barrier”.

[Co(NH3)6]
2+ + [Co(NH3)6]

3+ → [Co(NH3)6]
3+ + [Co(NH3)6]

2+ (2.3)

The missing ingredient to explain the slow rate of the reaction 2.3 is the fact
that there is a dramatic difference in the equilibrium Co-N bond length in
the 3+ and 2+ ions so that each ions would be formed in a very “foreign”
configuration of the vibrational coordinates. It is clear then that electron
transfer implies changing in the chemical structure of the reactants.
To understand how the Franck-Condon principle is used, is better to recall
its classical definition in spectroscopy: an electronic transition is most likely

to occur without changes in the positions of the nuclei in the molecular entity

and its environment. The resulting state is called a Franck-Condon state,

and the transition involved, a vertical transition. As electronic transitions,
electron transfers are instantaneous compared to the motion of the nuclei of
the molecules or ions involved in the process and of the orientation of the
molecules in the medium (e.g. solvent molecules). The foreign environment
for the new electronic state after the electronic jump can be seen as an
energetic barrier for the ET process.

4



Figure 2.2: Potential energy surface for the reactants and the products

2.2 The Marcus Correction

The idea of Libby turns out to be incorrect, or incomplete, because for re-
actions occurring in the dark the energy is not conserved: the ions would
be formed in the wrong high-energy environment, but the only way such a
non conserving event could happen would be by absorption of light (vertical
transition) and not in the dark. To clarify let’s consider the energy transfer
reaction 2.4.

[Fe(H2O)6]
2+ + [Fe(H2O)6]

3+ → [Fe(H2O)6]
3+ + [Fe(H2O)6]

2+ (2.4)

Here the Fe-O equilibrium distance in the ion Fe(II) is 2.21Åwhile is 2.05Åfor
the ion Fe(III). Scheme 2.2 shows the potential energy surfaces for the reac-
tants and the products: If the electron transfer takes place at their equilib-
rium positions, then we would have compressed Fe(II) ion and a stretched
Fe(III) ion. These are in vibrational excited states and would release energy:
if the ET occurs in dark, then the energy is not conserved. Thus the reagents
must match their energies before electron transfer can occur. In the limit of
weak electron interactions between the reactants both the Franck-Condon
principle (vertical transition) and energy conservation must be satisfied.
Fluctuations had to occur in the various nuclear coordinations as well as in
the orientation coordinates of the solvent molecules and in any other coordi-

5



Figure 2.3: Potential energy surface for the reactants and the products

nates whose most probable distribution for the products differs from that of
the reactants. With such fluctuations, values of the coordinates (i.e. reac-

tion coordinates) could be reached which satisfy both the Franck-Condon
and energy conservation conditions so to permit ET to occur in the dark.

2.3 Potential energy surfaces: adiabatic and non-adiabatic

process

The potential energy of the system is a function of the translational, rota-
tional and vibrational coordinates of the reacting species and of the molecules
of the surrounding medium. A profile of the potential energy surface is given
in figure 2.3. The abscissa, a line draw in the many-dimensional coordi-
nates space introduced before, represents any concerted motion (fluctuation)
leading from any spatial configuration (on all atoms) that is suited to the
electronic structure of the reactants to one suited to that for the products.
Surface R denotes the potential energy profile when the reacting species have
the electronic structure of the reactants, while surface P corresponds to their
having the electronic structure of the products. If the distance between the
reactants is sufficiently small there is the usual splitting of the two surfaces
at their intersection. If the electronic interaction is very weak the splitting at
the intersection of the two surfaces is negligible. In the first case the system
will always remain on the lowest surface as it moves from left to right in
figure 2.3. Thus the system has moved from the R to the P surface adiabat-
ically. On the other hand, if the splitting is negligible, a system initially on

6



Figure 3.1: Potential energy surface for the reactants and the products

the surface R will tend to remain on R as it passes to the right across the in-
tersection. The probability that as a result of this nuclear motion the system
ends up on surface P is calculated by treating this motion non-adiabatically.
Please note that the potential curves can be approximate to a parabola.

2.4 Classical and semi-classical ET

Considering figure 2.3, it should be noted that the system can undergo this
electron transfer either by surmounting the barrier if it has enough energy
(classical) or by tunneling (semi-classical). If nuclear tunneling is unimpor-
tant, the rate of the ET reaction is simply the rate of crossing the barrier top
times its relative population. The top of the barrier is then the activation
energy for the electron transfer.

3 Classical electron transfer theory

The free energy barrier, ∆G∗ (figure 3) is the difference between the cross-
ing point (for diabatic process) and the bottom of the reactant free energy
parabola. If the entropy changes are ignored, the free energy becomes en-
ergy or potential energy. Referring to figure 3 the barrier top occurs at the
crossing (position qc) and is given by the conditions 3.1.

VR(qc) = VP (qc) (3.1)

In the approximation of parabolic potential energy, the condition 3.1 can be
rewritten in terms of the position of the minima for the potential energy of
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the reactants and the products, qR and qP respectively.

1

2
f (qc − qR)2 = ∆G0 +

1

2
(qc − qP )2 (3.2)

We can solve for the crossing the previous equation obtaining

qc =
∆G0

f

1

(qc − qP )
+ (qP + qR)2 (3.3)

A fundamental physical quantity is the reorganization energy, λ which can
be defined as

λ =
1

2
f (qR − qP )2 (3.4)

This energy increases with increasing the separation between the minima
corresponding to the initial and final state and with increasing the stiffness
or force constant f .
The potential energy barrier is thus given by:

∆G∗ = GR(qc) − GR(qR) = VR(qc) − VR(qr) = frac12f (qc − qR)2 (3.5)

Substituting for qc the expression in eq 3.3

∆G∗ =
λ

4

[

1 +
∆G0

λ

]2

(3.6)

This express the barrier height or the free energy activation for crossing two
adiabatic curves in terms of the overall free energy of reaction ∆G0 and
the reorganization energy λ. The expression for the rate constant ket of the
reaction is given from the standard Arrhenius reletionship in eq 3.7.

ket = A exp

[

−∆G∗

KBT

]

(3.7)

The prefactor A in equation 3.7 depends on the nature of the electron trans-
fer reaction (e.g., bimolecular or intramolecular). ∆G0 is the standard free
energy for the reactions (and equals to zero for a self-exchange reaction) and
λ is a “reorganization term” composed of solvational (λ0) and vibrational
(λi) components:

λ = λ0 + λi (3.8)

The standard estimation for solvational energy in eq 3.9 was obtained by
Marcus by using a model in which reactants and products were modeled as
spheres and the solvent as a dielectric continuum.

λ0 = (∆e)2

[

1

2a1

+
1

2a2

−
1

R

] [

1

ǫ∞
−

1

ǫ0

]

(3.9)
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Here a1 , a2, R, ǫ∞ and ǫ0 are respectively the radii of the donor and acceptor
in the Marcus’ two spheres model, the distance between the centers of the
donor and acceptor spheres and the optical and static dielectric constants. ∆e

is the amount of charge transferred. The difference in the inverse dielectric
constants relates to the fact that nuclear degrees of freedom cannot readjust
instantaneously to the motion of the electrons and thus contribute to the
barrier. This is a manifestation of the Born-Oppenheimer separation.
The vibrational contribute to the reorganization energy λi is given by the
equation 3.10.

λi =
∑

l

λi,l =
1

2

∑

l

fl (∆qe,l)
2 (3.10)

Here, the summation is over the coupled intramolecular vibrations. The con-
tribution of the lth normal mode to the reorganization energy is given in
terms of its constant force fl and the change in equilibrium positions between
the reactants and the products,∆qe,l = qP,e − qR,e. As mentioned above, in
case of self-exchange reactions the driving force −∆G0 vanishes and equa-
tion 3.7 becomes:

ket(∆G0 = 0) = A exp

[

−λ

KBT

]

(3.11)

and the activation free energy for self-exchange ET is simply one-fourth of
the reorganization energy.
A more extensive mathematical treatment can be found in the paper of New-
ton.[3]

4 The semi-classical formulation

The equations 3.7 and 3.11 completely characterize the electron transfer re-
action in terms of three quantities: the prefactor A, the free energy ∆G0 and
the reorganization energy λ. On the other way, the theory as presented be-
fore shows some limits, and the most important is probably the temperature
dependence. Equation 3.7, in fact, predicts a vanishing electron transfer rate
constant at zero temperature, in contrast with experiments (Figure 4). This
and other problems arise from the classical assumption that the energy bar-
rier must be crossed (overcome) while, in reality, it exists the possibility to
have tunneling through the barrier. A semi-classical approach has been ad-
dressed by a number of workers to include quantum effects into the classical
Marcus theory. Experimental results in figure 4 shows that the predictions
of eq. 3.7 are verified at high temperature, where the electron transfer is an
activated process. Relation 4.1 provides a guide to which modes l coupled
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Figure 4.1: Comparison of theories with data on C. vinosum cytochrome
oxidation. Data are points and various theoretical models yield the curves.
Note the nonvanishing rate constant at low temperature.

to electron transfer must be treated as quantum mechanical and which can
be assumed classical.

h̄ωl

KbT
≫ 1 quantum

h̄ωl

KbT
≪ 1 classical (4.1)

The necessity to introduce quantum effects become clear introducing the
harmonic oscillator vibrational energy levels within the potential curves of
figure 2.3, as shown in figure 4. As shown there, tunneling can occur between
the ground level in the reactant potential and the ninth vibrational level in
the product curve. The extent to which tunneling plays a role depends on
the extent of the vibrational overlap between the initial and the final states.
The rate constant for electron transfer, from the Fermi’s golden rule of per-
turbation theory with the full Hamiltonian of the system, gives the ET rate
constant KET as in eq. 4.2.

kET =
2π

h̄
|< R | H | P >|2|< rvib | pvib >|2 δ (ER − EP ) (4.2)

=
2π

h̄
|< R | H | P >|2|< rvib | pvib >| ρ(EP ) (4.3)

=
2π

h̄
|< R | H | P >|2 (DFWC) (4.4)

=
2π

h̄
HRP (DFWC) (4.5)
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Figure 4.2: Schematic one-dimensional representation of the intersection be-
tween reactant and product vibrational levels. Here the splitting at the
crossing is not shown and the optimal overlap of the ν = 0 initial vibrational
level is with the ν ′ = 9 product level.
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Here the electron transfer rate constant is given first in terms of isolated lev-
els for the reactant and product, then in terms of density of states,ρ(EP ) of
the product, and finally in terms of density of states weighted Franck-Condon
factor (DWFC). HRP is the electronic matrix element that mixes the donor
and acceptor states. The states | rvib > and | pvib > are vibrational states
of reactant and product respectively. H is the Hamiltonian for the entire
system, and the matrix elements in eq. 4.2 and 4.3 are averaged over the full
Hamiltonian of the system.
In the case of non-adabatic ET, with the Condon approximation this formu-
lation is correct, while for adiabatic ET a more general prefactor is required.
We focus now on the case of non-adiabatic ET.
Using the polaron model, each electronic state is coupled with a number
of vibration, treated as harmonic oscillators with separation of nuclear and
electronic coordinates assumed (i.e. in Born-Oppenheimer approximation
regime). Under these conditions, the Hamiltonian for the system can be
written as:

H =| R >< R |

[

E0

R +
1

2

∑

l

fl (ql − qR,l)
2

]

+

| P >< P |

[

E0

P +
1

2

∑

l

fl (ql − qP,l)
2

]

+

(| R >< P | + | P >< R |)HRP (4.6)

Here, the first term in braces is the energy represented by the left parabola
of figure 4, and the second set of braces is the same energy term for the right
potential. E0

R and E0
P are respectively the energy origin for these states and

are characterized by the force constant fl for the lth mode, whose displace-
ment origin is qR,L and qP,l in the reactants and products respectively.
This Hamiltonian is called polaron models and consists in two electronic
states coupled with a number of vibrational levels, which can be either clas-
sical or quantum mechanical, according to relation 4.1. In addition to the
classical solvent motion, one can specifies one coupled vibration character-
ized by frequency ω and equilibrium displacement ∆qe, then is possible to
define the intramolecular reorganization energy for this mode as

λi = (
f

2
)(∆qe)

2 (4.7)

This can be related to a related adimensional quantity: the electron vibra-
tional coupling constant, or Huang-Rhys factor as define in eq. 4.8.

S =
λi

h̄ω
(4.8)
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The generalization of equations 3.7 for non-adiabatic ET for one coupled
mode in the quantum mechanical limits is then:

kET =
2π

h̄
H2

RP

(

1

4πλ0KBT

)1/2

(FC) (4.9)

where FC is the Franck-Condon factor

(FC) =
∑

ν′

exp(−S)
Sν′

ν ′!
exp

[

−(λ0 + ν ′h̄ω + ∆G0)2

4λ0KBT

]

(4.10)

The term in front the FC factor is the frequency of electron transfer in the
absence of barrier and contains HRP and the classical density of states. The
FC factor consists of the sum over all possible vibrational overlap integrals
between the initial vibrational level ν and the final level. ν ′. Each individ-
ual ν ′ represents a separate ν = 0 → ν ′ reaction channel. Each separated
exponential term in the sum is the population of molecules having the re-
quired energy to undergo electron transfer with energy conservation through
channel ν = 0 → ν ′. The sum is dominated by those channels for which
| ∆G0 |∼ λ0 + ν ′h̄ω, so there is a close energy match between the energy
released (∆G0) and the sum of the reorganization energy and the initial
product vibrational energy (ν ′h̄ω).
A more complete treatment of the semi-classical ET theory can be found in
papers [2] and [4].
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