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Abstract

In a model with multiple agents with different risk aversions facing margin
constraints, we show how securities’ required returns are characterized both by
their beta and their margins. Negative shocks to fundamentals make margin con-
straints bind, lowering risk free rates and raising Sharpe ratios of risky securities,
especially for high-margin securities. Such a funding liquidity crisis gives rise to
a “basis,” that is, a price gap between securities with identical cash-flows but
different margins. In the time series, the basis depends on the shadow cost of
capital which can be captured through the interest-rate spread between collater-
alized and uncollateralized loans, and, in the cross section, it depends on relative
margins. We apply the model empirically to the CDS-bond basis and other devi-
ations from the Law of One Price, and to evaluate the effects of unconventional
monetary policy and lending facilities.
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The paramount role of funding constraints has become apparent in the global liq-
uidity crisis that started in 2007. Banks unable to fund their operations closed down,
and the funding problems spread to other investors such as hedge funds who relied
on bank funding. Therefore, traditional liquidity providers have become forced sellers,
fixed-income markets have behaved wildly as Treasury rates dropped sharply, interest-
rate volatility increased, and interest-rate spreads increased dramatically, while central
banks have stretched their balance sheets to facilitate funding. These funding problems
have had profound asset-pricing effects, the most extreme example being the failure
of the Law of One Price: securities with (nearly) identical cash flows have traded at
different prices giving rise to a so-called “basis” (i.e., price gap).

This paper attempts to model these effects in a dynamic general-equilibrium model
with multiple agents with different risk aversion and realistic constraints. We consider
a group of risk-averse agents and a group of risk-tolerant agents. Each risk-tolerant
investor uses leverage but is subject to margin requirements. He must fund all the
margins on his positions with his equity capital and, possibly, uncollateralized loans.
We can think of these levered investors as banks or the financial sector more broadly,
including hedge funds. The risk-averse investors are constrained in their trading of
derivatives and cannot lend uncollateralized, so the uncollateralized loan market is a
pure “inter-bank market” among the risk-tolerant investors.

We derive several results that are useful in understanding liquidity crises and asset
pricing more generally. We show that 1) the consumption CAPM is augmented by
a security’s margin times the general funding cost; 2) a basis between a security and
a derivative with identical cash flows arises as the difference in their margin require-
ments times the funding cost; 3) the funding cost can be captured by the interest-rate
differential between collateralized and uncollateralized borrowing; 4) the margin effect
strengthens non-linearly in “bad times” as margin requirements are hit, leading to
sharp drops in the risk-free collateralized and Treasury rates, to a rise in the spread
between collateralized and uncollateralized interest rates, and to a rise in risk premia
and especially margin premia, and we 5) solve the model explicitly and calibrate it
using macro parameters; 6) apply the model empirically to help explain the CDS-bond
basis and the failure of the covered interest rate parity; 7) compute explicitly the effect
of the Fed’s lending facilities on asset values, and 8) quantify a bank’s incentive to
perform regulatory arbitrage to loosen capital requirements.

We first show how margin requirements affect the required returns for both underly-
ing assets and derivatives.1 For a typical asset where the risk-tolerant agents hold long
positions in equilibrium, the required excess return is elevated above the level predicted
by the standard consumption CAPM by an amount equal to these agents’ shadow cost
of funding, multiplied by the relative importance of these agents, and further multi-

1If there were no redundant securities and margins were constant over time, the result for the
underlying assets would specialize a result in Cuoco (1997) for general convex portfolio constraints,
and it is also closely related to results in Aiyagari and Gertler (1999) and Hindy and Huang (1995).
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plied by the margin requirement. This result can readily be applied to understand
risk premia. Suppose that in a crisis the risk-tolerant investors have a shadow cost
of capital of 10% (consistent with our estimates during the height of the crisis and
with our calibration), the risk-tolerant investors account for 40% of the aggregate risk
tolerance, and a security has a margin requirement of 50%. Then, the security’s risk
premium is elevated 10%×40%×50% = 2% above the level predicted by the standard
consumption CAPM, a significant effect.

We show that “bad times” with binding margin constraints naturally occur after
negative shocks to fundamentals. This phenomenon leads to several intriguing effects.
First, risk-free interest rates for collateralized loans and Treasuries spike down. This
happens because the risk-tolerant agents cannot borrow as much as they would like
due to margin constraints and, therefore, in equilibrium the risk-averse agents must
lend less than they otherwise would. In order to induce the risk-averse agents not to
lend, the interest rate must drop.

Further, in bad times the spread between the inter-bank uncollateralized loans and
the collateralized loans (or Treasuries) increases, even abstracting from credit risk. This
liquidity-driven interest-rate premium arises from the fact that the risk-averse investors
do not participate in the uncollaralized inter-bank market. Since the risk-tolerant banks
are constrained, the inter-bank interest rate must be greater than the Treasury rate
to reflect the banks’ positive shadow cost of capital. While this pure liquidity-driven
interest-rate spread is zero in “normal” times when margin requirements do not bind,
it increases non-linearly following negative shocks as when the crisis hit in 2007, as well
as in previous liquidity crisis.

Hence, the deviation from the standard CAPM is most apparent in “bad times,”
when the funding-liquidity effects are the strongest. A stark illustration of this margin-
based asset-pricing effect is the price difference between securities with the same cash
flows but different margin requirements. We show that the required return on a high-
margin security — e.g., a corporate bond — is greater than that of a low-margin
security with the same cash flows — e.g., proxied by a CDS. This is because of the high
shadow cost of capital of the risk tolerant investor. When the risk tolerant investor’s
margin constraint binds, he is willing to accept a lower yield spread on a CDS since it
uses less margin capital.

Interestingly, the model also implies that such securities with identical cash flows
can be less than perfectly correlated due to their different exposures to funding-liquidity
risk. The low-margin CDS has less systematic risk since its price drops less in liquidity
crisis, and, therefore, its required return is lower even before the margin constraint
binds.

When there are several pairs of underlying/derivative securities, each of which hav-
ing an associated basis, we show that these bases are correlated in the time series due
to their common dependence on the shadow cost of capital, and, cross-sectionally, the
bases should be proportional to each pair’s difference in margin requirements.
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The model predicts that the magnitude of the basis is the shadow cost of capital
times the margin difference plus the difference in betas. To understand this predicted
magnitude, consider the CDS-bond basis, that is, the yield difference between a cor-
porate bond and a comparable derivative. With a shadow cost of capital of 10%
during the crisis, a margin on investment grade bonds of 25%, and a margin on the
corresponding CDS of 5%, the direct effect of the margin difference on the basis is
10% × (25% − 5%) = 2%, close to what was observed empirically. Additionally, the
model predicts that the corporate bond’s higher margin makes it riskier since it is more
sensitive to further funding crisis, leading to an additional, but smaller, effect on the
basis.

As further evidence consistent with the model’s predictions, we find that the time-
series variation of the basis lines up with the time-series variation of the LIBOR-GC
repo interest-rate spread (i.e., the spread between uncollateralized and collateralized
loans), as well as the tightness of credit standards as estimated by the Federal Reserve
Board’s “Senior Loan Officer Opinion Survey on Bank Lending Practices.”

We also compare the basis of investment-grade (IG) bonds with the basis for high-
yield (HY) bonds and find that they move closely together and that the difference in
their magnitudes corresponds to the difference in their margins, consistent with our
model’s prediction. Indeed, the margin difference between HY bonds and CDS is about
twice that of IG bonds/CDS, so the model predicts a HY basis effect which is about
twice the IG basis, consistent with the data.

Further consistent evidence arises from the related time-series variation of the
interest-rate spread and that of the deviation from the covered interest parity (CIP).
Indeed, in the funding crises of 1998 and 2007-2009, when margins are likely to have
been binding, interest-rate spreads were wide and the CIP deviation was substantial
since agents did not have enough capital to eliminate it.

As another application of the model, we show how the Fed’s lending facilities affect
asset prices, providing new insights on the monetary transmission mechanism during
liquidity. We discuss how the lending facilities lower margin requirements, and show
that the model-implied increase in asset prices is of the same order of magnitude as
the bank’s increase in their bid price when margins are lowered in surveys conducted
by the Federal Reserve Bank of New York.

Further, we derive the shadow cost of banks’ regulatory-capital requirements, which
gives an estimate of their incentive to perform regulatory arbitrage by placing assets
off the balance sheet or tilting towards AAA securities with low capital requirements.

The paper is related to the large literature on equilibrium with multiple agents in
frictionless markets (Dumas (1989), Constantinides and Duffie (1996), Wang (1996),
Chan and Kogan (2002), Bhamra and Uppal (2007), Weinbaum (2009), Gârleanu and
Panageas (2008), Longstaff and Wang (2009)), and especially to the strand of liter-
ature that introduces borrowing constraints and shows the importance of collateral
value of assets (Bernanke and Gertler (1989), Hindy (1995), Detemple and Murthy
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(1997), Geanakoplos (1997), Kiyotaki and Moore (1997), Caballero and Krishnamurthy
(2001), Lustig and Van Nieuwerburgh (2005), Coen-Pirani (2005), Fostel and Geanako-
plos (2008)) and the possibility of arbitrage in equilibrium (Basak and Croitoru (2000,
2006), Geanakoplos (2003)). Also, the paper is related to the link between margins and
market liquidity and volatility (Gromb and Vayanos (2002), Brunnermeier and Ped-
ersen (2009), Adrian and Shin (2009), Danielsson, Shin, and Zigrand (2009)) and the
related literatures in banking (Allen and Gale (1998, 2004, 2005)) and corporate finance
(Holmström and Tirole (1998, 2001)), and the link between market asset prices and
market liquidity (Amihud and Mendelson (1986), Longstaff (2004), Duffie, Gârleanu,
and Pedersen (2007)), market liquidity risk (Acharya and Pedersen (2005), Mitchell,
Pedersen, and Pulvino (2007), Gârleanu, Pedersen, and Poteshman (2008), He and
Krishnamurthy (2008)), and limited arbitrage (Shleifer and Vishny (1997)).

The specification of the margin requirement is key to our results. First, we make
the realistic assumption that both long and short positions use capital, rather than a
linear constraint where shorting frees up capital (as is often assumed in the literature,
e.g., Hindy and Huang (1995)). While bases with natural properties arise in our model,
we show that a basis cannot arise with a linear constraint. Second, we consider assets
with identical cash flows and different margin requirements, while margins for such as-
sets would be the same if margins arose solely from limited commitment (Geanakoplos
(1997)). In the real world, securities with (almost) identical cash flows can have sub-
stantially different margins since margins depend on the market liquidity of the securi-
ties (Brunnermeier and Pedersen (2009)) and because of various institutional frictions.
For instance, corporate bonds have low market liquidity in over-the-counter search
markets (Duffie, Gârleanu, and Pedersen (2005, 2007), Vayanos and Weill (2008)) and
this makes them less attractive as collateral since they can be difficult to sell. Further,
to get credit exposure through a corporate bond, one must actually buy the bond for
cash and try to fund it using a repo, which uses a broker’s balance sheet, while a CDS
is an “unfunded” derivative with zero net present value, so the margin is only necessary
to limit counterparty risk; the CDS does not inherently use cash. Our model further
allows for time-varying margins, given that margins tend to increase during crises due
to a margin spiral as explained by Brunnermeier and Pedersen (2009) and documented
empirically by Gorton and Metrick (2009a, 2009b).

We complement the literature by providing a tractable model with explicit pric-
ing equations that provide testable time-series and cross-sectional implications in a
framework that can be directly calibrated using realistic parameters, deriving the basis
(i.e., price gap) between securities with identical cashflows depending on their different
margins, showing how the shadow cost of funding can be captured using interest-rate
spreads, illustrating how risk-tolerant investors over-weight low-margin securities, and
applying this theory to the Federal Reserve’s lending facilities, the incentive to perform
regulatory arbitrage, and to the empirical CDS-bond basis, the failure of the CIP, and
other failures of the Law of One Price during liquidity crises such as the current one.
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The rest of the paper is organized as follows. Section 1 lays out the model, Section 2
derives our main theoretical results and calibrates the model, and Section 3 applies the
model empirically to the CDS-bond basis, the failure of the covered interest rate parity,
the pricing of the Fed’s lending facilities, and quantifies the cost of banks’ regulatory
capital requirements. Section 4 concludes.

1 Model

We consider a continuous-time economy in which several risky assets are traded. Each
asset i pays a dividend δi

t at time t and is available in a supply normalized to 1. The
dividend of each security i is a continuous Itô process driven by a multi-dimensional
standard Brownian motion w:2

dδi
t = δi

t

(

µδi

t dt+ σδi

t dwt

)

, (1)

where µδi

t is the dividend growth and the dividend volatility is given by the vector σδi

t

of loadings on the Brownian motion.
Each security is further characterized by its margin (also called a haircut) mi

t ∈
[0, 1], an Itô process, measured as a fraction of the investment that must be financed
by an agent’s own capital as discussed below. For instance, the margin on a corporate
bond could be mbond

t = 50%, meaning that an agent can borrow half of the value and
must pay half of the value using his own capital.

In addition to these “underlying assets” in positive supply, the economy has a
number of “derivatives” in zero net supply. For each underlying security i there are Ni

derivative securities ik, k = 1, . . . , Ni, paying the same cash flows δi
t as i, but with a

lower margin requirement: mik
t < mi

t.
We assume that the prices of underlying assets and derivatives are Itô processes

with expected return (including dividends) denoted µi
t and volatility vectors σi

t, which
are linearly independent across the underlying assets:

dP i
t = (µi

tP
i
t − δi

t)dt+ P i
tσ

i
tdwt. (2)

Finally, the set of securities includes two riskless money-market assets, one for
collateralized loans and one for uncollateralized loans as explained further below. The
equilibrium interest rate for collateralized loans is rc

t and for uncollateralized loans is
ru
t .

The economy is populated by two agents: agent a is averse to risk, whereas b is
braver. Specifically, agent g ∈ {a, b} maximizes his utility for consumption given by

Et

∫

∞

0

e−ρsug(Cs) ds, (3)

2All random variables are defined on a probability space (Ω,F) and all processes are measurable
with respect to the augmented filtration Fw

t generated by w.
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where ua(C) = 1
1−γaC

1−γa

with relative risk aversion γa > 1, and ub(C) = log(C) with

relative risk aversion γb = 1. We can think of agent a as a representative pension fund
or risk-averse private (retail) investor, and of agent b as representing more risk-tolerant
investors using leverage such as banks or hedge funds.

At any time t, each agent g ∈ {a, b} must choose his consumption, Cg
t — we

omit the superscript g when there is little risk of confusion — the proportion θi
t of

his wealth Wt that he invests in risky asset i, and the proportion ηu
t invested in the

uncollateralized loans; the rest is invested in collateralized loans. The agent must keep
his wealth positive, Wt ≥ 0, and the wealth evolves according to

dWt =

(

Wt

(

rc
t + ηu

t (ru
t − rc

t ) +
∑

i

θi
t(µ

i
t − rc

t )

)

− Ct

)

dt+Wt

∑

i

θi
tσ

i
tdwt, (4)

where the summation is done over all risky underlying and derivative securities.
Each agent faces a margin constraint that depends on the securities’ margins mi

t:

∑

i

mi
t|θ

i| + ηu ≤ 1. (5)

In words, an agent can tie up his capital in margin for long or short positions in risky
assets and invest in uncollateralized loans (or borrow uncollateralized if ηu < 0), and
these capital uses, measured in proportion of wealth, must be less than 100% of the
wealth. The rest of the wealth, as well as the money in margin accounts, earn the
collateralized interest rate.3 This key constraint is a main driver of our results. The
literature often assumes a linear margin constraint (i.e., without the absolute-value
operator), but Appendix A shows that deviations from the Law of One Price cannot
arise in this case. Our constraint captures well the problem facing any real-world
investor (e.g., real-world investors cannot finance unlimited long positions by short
ones as is implied by the linear constraint) and it gives rise to deviations from the Law
of One Price that match those observed empirically.

3Alternatively, the constraint can be written as

∑

i

|θi| + ηu ≤ 1 +
∑

i

|θi|li.

For a long position, li is the proportion of the security value that can be borrowed in the collateralized
lending market (e.g., the repo market). Hence, the left-hand-side of the equation is the fraction of
wealth θi used to buy the security, and the right-hand-side is the total wealth 1 plus the borrowed
amount θili. Naturally, the margin mi = 1 − li is the fraction of the security value that cannot be
borrowed against.

For a short position, one must first borrow the security and post cash collateral of (1 + mi)θi and,
since the short sale raises θi, the net capital use of miθi. Derivatives with zero net present value have
margin requirements too. See Brunnermeier and Pedersen (2009) for details.
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In addition, the risk-averse agent a does not participate in the markets for uncol-
lateralized loans and may be allowed only limited positions in derivatives. That is, he
must choose ηu = 0 and θik ∈ Aik for every derivative ik, where the admissible set Aik

can, for instance, be specified as Aik = {0}, meaning that he cannot trade derivatives,
or as Aik = [A,A], meaning that he can only trade a limited amount. This captures the
fact that certain agents are often limited both by risk aversion and a lack of willingness
to participate in some transactions, e.g., those with apparent operational risk — i.e.,
the risk that something unspecified can go wrong — and by a lack of expertise. Also,
this means that the uncollateralized market may capture an inter-bank loan market.

Our notion of equilibrium is standard. It is a collection of prices, consumption
plans, and positions, such that (i) each agent maximizes his utility given the prices
and subject to his investment constraints; (ii) the markets for risky and risk-free assets
clear.

2 Margin-Based Asset Prices

We are interested in the properties of the equilibrium and consider first the optimization
problem of the brave agent b using dynamic programming. The logarithmic utility for
consumption implies that the Hamilton-Jacobi-Bellman equation reduces to the myopic
mean-variance maximization

max
θi
t,η

u
t

{

rc
t + ηu

t (ru
t − rc

t ) +
∑

i

θi
t(µ

i
t − rc

t ) −
1

2

∑

i,j

θi
tθ

j
tσ

i
t(σ

j
t )

⊤

}

(6)

subject to the margin constraints
∑

im
i
t|θ

i
t| + ηu

t ≤ 1.
Attaching a Lagrange multiplier ψ to the margin constraint, the first-order condition

for the uncollateralized investment or loan ηu is

ru
t − rc

t = ψt (7)

and the first-order condition for any risky investment θi is

µi
t − rc

t − βCb,i
t = ψtm

i
t if θi > 0

µi
t − rc

t − βCb,i
t = −ψtm

i
t if θi < 0

µi
t − rc

t − βCb,i
t = yi

tψtm
i
t with yi

t ∈ [−1, 1] if θi = 0,

(8)

where we simplify notation by letting

βCb,i
t = covt

(

dCb

Cb
,
dP i

P i

)

(9)

denote that conditional covariance between agent b’s consumption growth and the
return on security i.

These first-order conditions have the following immediate implications:
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Proposition 1 (CAPM based on Margins and Financial Sector Risk) An un-
derlying or derivative security’s expected excess return µi

t − rc
t depends on its margin

mi
t, the risk tolerant agent’s shadow cost of funding ψt, and the security’s covariance

with the risk tolerant agent’s consumption growth:

µi
t − rc

t = βCb,i
t + yi

tψtm
i
t (10)

where yi
t is 1 if agent b is long security i, -1 if he is short, and in [-1,1] if he has no

position.

Proposition 2 (Interest-Rate Spread) The interest-rate differential between un-
collateralized and collateralized interbank loans captures the risk tolerant agent’s shadow
cost of an extra dollar of funding, ru

t − rc
t = ψt.

To characterize the way in which returns depend on aggregate consumption, we also
need to consider agent a’s optimal policy and aggregate across agents.4. If a’s margin
requirement does not bind, standard arguments show that the underlying securities
are priced by his consumption, µi − rc = γaβCa,i, but the general problem with margin
constraints and spanned securities is more complex. In the general case, we derive a
CCAPM depending on aggregate consumption (which is easier to observe empirically)
in the appendix. For this, we first introduce some notation: βC,i

t is the covariance of
the growth of the aggregate consumption C = Ca + Cb and the return of security i,

βC,i
t = covt

(

dC

C
,
dP i

P i

)

, (11)

and γt for the “representative” agent’s risk aversion, i.e.,

1

γt

=
1

γa

Ca
t

Ca
t + Cb

t

+
1

γb

Cb
t

Ca
t + Cb

t

. (12)

The fraction xt of the economy’s risk-bearing capacity due to agent b is

xt =

Cb

γb

Ca

γa + Cb

γb

(13)

and the remaining fraction due to agent a is denoted by x̄t = 1− xt. We recall that ψ
is agent b’s shadow cost of funding, and a’s shadow cost of funding is denoted by ψ̄.
Finally, yi indicates whether b is long, (yi

t = 1), short (yi
t = −1), or has no position

(yi
t ∈ [−1, 1]) in an asset, and similarly ȳi indicates the sign of a’s position. With these

definitions, we are ready to state:

4See Proposition 3 in Cuoco (1997) for a CAPM relation for general time-invariant convex portfolio
constraints in the absence of redundant securities
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Proposition 3 (Margin CCAPM) The expected excess return µi
t − r

c
t on an under-

lying asset is given by the standard consumption CAPM adjusted for funding costs:

µi
t − rc

t = γtβ
C,i
t + λm,i

t mi
t, (14)

where the funding cost is the product of the margin requirement and the margin pre-
mium:

λm,i
t = x̄tψ̄tȳ

i
t + xtψty

i
t. (15)

If agent a’s margin constraint does not bind, ψ̄t ≡ 0, and the margin premium simplifies
to

λm,i
t = xtψty

i
t. (16)

This proposition relates excess returns to the covariance between aggregate con-
sumption growth and a security’s returns, as well as to the funding constraints. The
covariance term is the same as in the classic CCAPM model of Breeden (1979). The
difference is the funding term, which is seen most clearly in the natural case where the
risk-averse agent’s margin constraint does not bind and agent b is long:

µi
t − rc

t = γtβ
C,i
t + xtψt m

i
t. (17)

We see that the funding term is the product of the security-specific margin mi
t and

the general coefficients ψt and xt that measure the tightness of the margin constraints.
Naturally, the tightness of the margin constraint depends on the levered risk-tolerant
agent’s shadow cost of funding, ψ, and the relative importance of this agent, x.

The margin-CCAPM’s economic foundation dictates the magnitude of the coeffi-
cients. Since γb = 1 and γa is a number between 1 and 10, say, the aggregate risk
aversion γt is somewhere between 1 and 10, and varies over time depending on the
agents’ relative wealths. The relative importance x of agent b is a number between 0
and 1. While this risk-tolerant agent might be a small part of the economy in terms of
total consumption or wealth, his risk tolerance is larger, which raises his importance.
For instance, if we think that he has 2% of the aggregate consumption and that agent
a has a risk aversion of 10, then x is around 17%, close to 10 times the consumption
share. The shadow cost ψ can be as much as 10% in our calibration and empirical
analysis. Hence, for a security with a 50% margin, the funding term would raise the
required return by 17% × 10% × 50% ≈ 1% in this case.

The CAPM can also be written in terms of a mimicking portfolio in place of the
aggregate consumption. Specifically, let q be the portfolio whose return has the highest
possible (instantaneous) correlation with aggregate consumption growth and qi

t be the
weight of asset i in this portfolio. Further, any asset i’s return beta to portfolio q is
denoted by βi

t , i.e.,

βi
t =

covt

(

dP q

P q ,
dP i

P i

)

vart

(

dP q

P q

) . (18)

10



Proposition 4 (Margin CAPM) The expected excess return µi
t − rc

t on an under-
lying asset is given by the standard CAPM adjusted for funding costs based on the
margins mi

t:

µi
t − rc

t = λβ
t β

i
t + λm,i

t mi
t, (19)

where λβ
t = µq

t−r
c
t−
∑

j q
j
tλ

m,j
t mj

t is a covariance risk premium and the margin premium

λm,i is defined in Proposition 3.

We next turn to the basis between underlying securities and derivatives. The op-
timization problem of the brave agent b implies the following relation for the basis.

Proposition 5 (Basis) A basis arises when b’s margin constraint binds and a’s derivative-
trading constraint or margin constraint binds. Depending on the constraints, the basis
is influenced by the difference or sum of margins:
(A. Levered Investor Causing Basis) Suppose that agent b is long security i and
long derivative ik. Then the required return spread µi

t−µ
ik
t between security i and deriva-

tive ik (the “basis”) depends on the shadow cost of capital ψ, the securities’ difference
in margins, mi

t −mik
t , and the difference in their covariance with the consumption of

the brave agent b through

µi
t − µik

t = ψt

(

mi
t −mik

t

)

+
(

βCb,i
t − βCb,ik

t

)

. (20)

(B. Levered Investor Reducing Basis) If agent b is long i and short derivative ik,
then the basis equals

µi
t − µik

t = ψt

(

mi
t +mik

t

)

+
(

βCb,i
t − βCb,ik

t

)

. (21)

This proposition provides useful intuition about the drivers of a basis. Since a non-
zero basis constitutes a failure of the Law of One Price, all agents must be constrained
for this to happen in equilibrium. Such a situation obtains when the risk-tolerant agent
b is constrained by his leverage and agent a is constrained by his limited ability to hold
derivatives.

If the risk-averse investor can short only a limited amount of derivatives, then case
A in the proposition arises. In this case, the risk-tolerant investor b wants to go long
both the underlying and the derivative to earn the associated risk premium. He can
get exposure to the derivative with less use of margin, and, therefore, he is willing to
accept a smaller return premium on the derivative. In fact, the basis as measured by
the return spread is the difference in margins multiplied by the shadow cost of capital,
adjusted for the beta difference.

The second case obtains, for instance, if agent a has a structural need — for some
institutional reason — to hold a long position in the derivative, i.e., Aik = {Aik}, where
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Aik > 0. This creates a demand pressure on the derivative, and, in equilibrium, agent
b will do a basis trade, that is, shortsell the derivative and go long the underlying. The
basis trade uses margin on both the long and the short side, and therefore the basis
depends on the sum of the margins mi

t +mik
t times the shadow cost of capital.

Proposition 5 provides natural empirical predictions that we consider in Section 3:
First, the basis varies in the time-series with the scarcity of funding ψ, which is related
to the interest-rate spread (Proposition 2). Second, the basis varies with margins in
the cross-section of bases for the various security/derivative pairs.

It is interesting that the returns of the underlying security and its derivative may
have different sensitivities to underlying shocks and, therefore, can have different co-
variances with the brave agent’s consumption. The different sensitivities to funding
shocks are due to their different margin requirements. In particular, if a security has a
lower margin requirement, then it is less sensitive to a funding crisis where margin con-
straints become binding, and it therefore has a lower βCb,ik as our calibrated example
in Section 2.2 illustrates.

A natural benchmark is that the two covariances are relatively close, since the secu-
rities’ cash flows are identical. That is, βCb,i ≈ βCb,ik , which leads to the approximate
relation

µi − µik ≈ ψ
(

mi
t −mik

t

)

, (22)

which holds exactly in a limit case of the economy that we describe in the following
section.

Since margins do affect betas in general, however, it is not immediate from Propo-
sition 5 that higher margins increase the required return and, hence, lower prices. It is
nevertheless the case that higher margin requirements translate into lower prices under
certain conditions, as we show next.

Proposition 6 If assets i and j have identical cashflows, i always has a higher margin
requirement mi

t > mj
t , and agent b is long both assets a.e., then i has a lower price

P i
t ≤ P j

t . The inequality is strict if the margin constraint binds with positive probability
after time t.

This result follows from the fact that the price of a security can be expressed as the sum
of its cashflows discounted using an agent’s marginal utility, and its collateral value,
which depends monotonically on m. Another way to see this result is to express the
price as its discounted cashflows, where the discount factor depends both on marginal
utility and on margins (times the shadow cost of capital) so that higher margins imply
a larger discount rate.

2.1 Calculating the Equilibrium Explicitly with Many Assets

We next consider a simplified economy in which we can compute the equilibrium di-
rectly. This provides further intuition and allows us to calibrate the economy using

12



realistic macroeconomic parameters. The economy has a continuum of assets, each
available in an infinitesimal net supply of 1. The dividend paid by asset i is given by
a share si of the aggregate dividend, δi = siC, with

dCt = µCCt dt+ σCCt dwt

dsi
t = σsi

si
t dw

i
t ,

where the standard Brownian motions w and wi are independent. The dividend share
is initiated at si

0 = 1 and it is a martingale since its drift is zero. We appeal informally
to the Law of Large Numbers (LLN) to state Et[s

i
v | i ∈ I] = 1, ∀v ≥ t ≥ 0 and for any

interval I. In particular, the aggregate dividend naturally equals E[δi
t|Ct] = Ct. All the

underlying assets have the same margin requirement mi = m, and there are derivatives
in zero net supply with different margins mik ≤ m as before. The averse agent a’s
derivative-trading constraint is simple: he cannot participate in any derivative market.

The LLN implies that the idiosyncratic factors si are not priced and, therefore, the
price of any underlying security i is P i = siP , where P is the price of the market,
which is the same as in an economy with a single asset paying dividend C and having
margin m. We therefore concentrate on pricing this market asset.

To calculate an equilibrium, we use the fact that agent b’s consumption is his
discount rate ρ times his wealth, Cb = ρW b (as is well-known for log-utility agents).
This means that agent b’s consumption as a fraction of the total consumption, cb =
Cb/C, characterizes the wealth distribution and becomes a convenient state variable
to keep track of. Further, “level” variables are linear in the aggregate consumption
C since it is a geometric Brownian motion and utilities are isoelastic. Hence, we are
looking for an equilibrium in which the state is summarized by (C, cb), where stock
prices and wealths scale linearly with C for fixed cb, while interest rates, Sharpe ratios,
and volatilities depend only on cb, and assume throughout that such an equilibrium
exists.

The market price is of the form Pt = ζ(cbt)Ct, where the price-dividend ratio ζ( · )
is a function that we need to determine as the solution to a differential equation. We
provide the details of the analysis in the Appendix, and collect the main results in the
following proposition, including the differential equation for ζ . To state the proposition,
we use the representative agent’s risk aversion γt and agent b’s relative importance xt

given above in (12)–(13), as well as the following additional definitions:

κ̄ = γσC (23)

σ̄ = σC +
ζ ′cb

ζ
(κ̄− σC). (24)

As is clear from the proposition, κ̄ is the market Sharpe ratio without margin con-
straints and σ̄ is the return volatility without margin constraints for the same values
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of cb and ζ(·).5

Proposition 7 (Explicit Solution) The margin constraint binds if and only if κ̄
σ̄
>

1
m

or, equivalently, if and only if κ
σ
> 1

m
. The market Sharpe ratio, κ ≡ µ−rc

σ
, and the

return volatility, σ, are given by

κ = κ̄+
x

1 − x

σ̄

1 − ζ′cb

mζ

(

κ̄

σ̄
−

1

m

)+

(25)

σ = σ̄ −
ζ ′cb

ζ

σ̄

1 − ζ′cb

mζ

(

κ̄

σ̄
−

1

m

)+

. (26)

The optimal risky-asset allocation of the risk-tolerant agent b is

θb =
κ̄

σ̄
−

(

κ̄

σ̄
−

1

m

)+

(27)

and his shadow cost of capital, ψ, is

ψ =
σ2

m

(

κ

σ
−

1

m

)+

. (28)

Finally, the price-to-dividend ratio ζ(cb) solves the ordinary differential equation

0 = 1 + ζ
(

µC − rc − γaσC(1 − cb)−1(σC − cbσθb)
)

+

ζ ′cb
(

rc − ρ+ σθbκ− µC − γa(σθb − σC)(1 − cb)−1(σC − cbσθb)
)

+ (29)

1

2
ζ ′′(cb)2(σθb − σC)2.

This proposition offers a number of interesting insights in addition to illustrating
the explicit derivation of equilibrium. First, to understand when the margin constraint
binds, consider the brave agent’s optimal position without margin constraints: he wants
to invest µ−rc

σ2 = κ
σ

in the risky asset, but, since he faces a margin of m, he can at most
lever up to 1

m
. Hence, he is constrained if κ

σ
> 1

m
. The margin constraint changes the

equilibrium Sharpe ratio κ and volatility σ, but, nevertheless, the states of nature with
binding margin constraints can be determined simply by looking at whether the agent
would be constrained when the Sharpe ratio κ̄ and volatility σ̄ are computed without
margins, i.e., κ̄

σ̄
> 1

m
.

Importantly, Equation (25) shows that, for a given cb, the market Sharpe ratio κ is
higher when the constraint binds. This is intuitive because the constraint prevents the
optimal sharing of risk, meaning that the risk-averse agent a has to be induced, via a
higher reward for risk, to take on more risk than he would absent constraints.

5Note, however, that in an economy without margins cb
t

has a different distribution for given time-0
endowments and the function ζ is different.
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Equation (26), on the other hand, suggests that the volatility decreases with the
introduction of constraints, as long as the price-to-dividend ratio increases with the
importance of agent b.6 The explanation of the result lies in the fact that, when the
constraint binds, agent b takes less risk than he would otherwise, which makes cb, and
consequently the P/D ratio ζ , less volatile.

Finally, (28) gives the shadow cost of capital, ψ. On one hand, this shadow cost

depends on the distance
(

κ
σ
− 1

m

)+
between the unconstrained and the constrained

optima, which increases with the severity m of the margin constraint. On the other
hand, a higher m means that each dollar can be levered less, reducing the shadow cost
of capital. The overall effect of m on ψ is non-monotonic.

In our calibration, we solve for the function ζ numerically, using as boundary con-
ditions the price-to-dividend ratios that obtain in one-agent models with cb = 0 and
cb = 1. Once the equilibrium price dynamics for the market and the collateralized-loan
rate are thus computed, we calculate the value of the Lagrange multiplier ψ from (28)
and the uncollateralized interest rate ru then follows immediately from Proposition 2,
ru = rc + ψ. The price of a derivative ik, P

ik
t = ζ ik(cbt)Ct, is calculated by solving an

ODE for its price-dividend ratio ζ ik:

Proposition 8 The price-to-dividend ratio ζ ik(cb) for derivative ik solves the differ-
ential equation

0 = 1 + ζ ik

(

µC − rc − σθbσC −
mik

m
(µ− rc − σθbσ)

)

(30)

+ζ i′
kcb
(

rc − ρ+ σθbκ− µC − σθb(σθb − σC)
)

+
1

2
ζ i′′

k

(

cb
)2 (

σθb − σC
)2
.

While the general case can only be solved numerically, explicit expressions for the
prices of the underlying assets and agent b’s shadow cost of capital ψ are available in
a particular limit case.

Proposition 9 (Limit Prices and Shadow Cost of Capital) In the limit as the
relative wealth of agent b approaches 0, the price of underlying asset i approaches

P i =
Ct

ρ+ (γa − 1)µC − 1
2
γa(γa − 1) (σC)2 . (31)

and agent b’s shadow cost of capital approaches

ψ =

(

σC
)2

m

(

γa −
1

m

)+

. (32)

6Since agent b is the less risk averse, this property is intuitively appealing, but does not necessarily
obtain.
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We can further characterize the basis in the limit:

Proposition 10 (Limit Basis) In the limit as the relative wealth of agent b ap-
proaches 0, the required return spread between the underlying security i and a derivative
ik approaches

µi − µik = ψ(mi −mik) (33)

if agent b is long both securities, and

|µi − µik | = ψ(mi +mik) (34)

if he is long/short the underlying and the derivative.

This proposition provides a natural benchmark for the basis, namely a product of the
shadow cost of capital — which is common for all basis trades — and the margin
use, which is either the difference or the sum of margins. In the real world, pairs of
underlying and derivative securities with large margins mi +mik also tend to have large
margin spreads mi −mik , so testing the proposition does not rely heavily on knowing
whether (33) or (34) applies. In the empirical section, we compare the basis per margin
use for investment grade CDS-bond basis with the high-yield CDS-bond basis, relying
on the prediction that:

µi − µik

mi −mik
=

µj − µjl

mj −mjl
. (35)

2.2 Calibration

We present here a set of quantitative results based on the solution of the model de-
scribed above and the parameters in Table 1. An advantage of our model is that all
the parameters are easy to relate to real-world quantities so the interpretation of our
assumptions and results is clear.

The aggregate consumption growth µC and its volatility σC are chosen between
that of actual consumption growth and actual dividend growth since the literature
uses these benchmarks. The risk aversion γa = 8 of agent a is chosen in the high
end of what the literature typically views as the “reasonable” range between 1 and
10 since agent a is the more risk averse agent, and the discount rate ρ is also at a
conventional level. The margin of each underlying asset m is 40%, and we consider
a low-margin derivative with margin mlow = 10%, an medium-margin derivative with
mmedium = 30%, and a derivative with a margin that varies randomly between 10%
and 30% depending on the state of the economy as described below.

Figures 1–4 shows different key properties of the model as functions of the economy’s
state variable, namely the proportion of consumption accruing to agent b. Since agent
b is less risk averse, he is more heavily invested in the risky asset and therefore loses
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µC σC γa ρ m mmedium mlow

0.03 0.08 8 0.02 0.4 0.3 0.1

Table 1: Parameters used in calibration

more following a series of bad shocks. Thus, the states in which cb is small are states
with “bad” fundamentals.

It is apparent in all three figures that the margin constraint binds if and only if cb is
low enough, more precisely when cb is lower than 0.22. The property is natural: when
agent b is poor his margin constraint is more binding and his shadow cost of capital is
larger. This is because agent a becomes a larger part of the market, which increases
the market price of risk, and therefore increases the desired leverage of agent b.

Figure 1 shows three interest rates: the interest rate obtaining in the absence of
constraints, and the collateralized and uncollateralized rates obtaining with constraints.
As is seen in the figure, the collateralized interest rate (solid line) can be substantially
lower than the complete-market rate in the bad states, while the uncollateralized rate
can be extremely high, indicating the high value of capital to agent b. The difference
between these rates is the shadow cost of capital, which can get close to 10% as in the
data that we present in the next section.

Figure 2 plots the return spreads between the underlying security and two deriva-
tives. The derivatives are distinguished by their different margin requirements: one
has an intermediate margin requirement mmedium = 30% — lower than the margin re-
quirement of the underlying asset, m = 40%, but not as low as the margin requirement
on the other derivative, which is mlow = 10%. We see that the required return spread
(or basis) can be up to 1% and 3%, respectively, for the two derivatives, a similar
magnitude to the empirically observed bases, and vary depending on the severity of
the crisis as captured by a low cb.

As predicted by the approximation (22), the return spread is roughly three times
higher for the low-margin derivative than for the intermediate-margin derivative due
to its three times larger margin spread, (m−mlow)/(m−mmedium) = 3.

Another interesting feature of this figure is that the return spread is significantly
above zero even in states where the constraint does not bind (cb > 0.22). The explana-
tion for this lies with the securities’ different betas. Indeed, low-margin securities have
a lower loading on the aggregate risk, βCb,low < βCb,medium < βCb,high. This is because
negative fundamental shocks lead to tightening of margin requirements, thus increasing
the margin-based return premium, which leads to larger price drops for high-margin
securities. It is noteworthy that this phenomenon amplifies the return spread and kicks
in even before margin constraints bind.

In addition, the dependence of the sensitivity to aggregate risk on the margin size
also implies that, once the idiosyncratic components si are taken into account, the
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returns on low-margin securities are less highly correlated than those on high-margin
securities, all else equal, and that bases between underlying-derivative pairs are more
correlated with each other than the underlying securities are.

Figure 3 plots the Sharpe Ratios (SR) of the underlying in an alternative economy
with no margin constraints, the underlying when there exist margin constraints, and
of the two derivatives. We see that the Sharpe ratio of the underlying is higher with
the constraint than without it to compensate for the cost of margin use. The SR of
the derivatives is lower than that of the underlying due to their lower margins.

Finally, Figure 4 shows the price premium of derivatives above the price of the
underlying, P derivative/P high−1. We consider this both for the low and medium margin
derivatives, as well as for the varying-margin derivative. The margin of the latter is
10% is “good states” where the cb ≥ 0.15 and increases to 30% in “bad states” with
cb < 0.15. The price premia can be very large, especially for low-margin securities in
bad states of the economy. Interestingly, the price premia are significant even when the
margin constraints are not binding or even close to being binding. This is because the
price reflects the possibility of future binding margin constraints, and puts a premium
on securities with low margins in such states of nature. Since the random-margin
security has a high margin in the worst states, it is priced similarly to the high-margin
security even when its margin is low.

3 Empirical Applications

This section applies our model to the CDS-bond basis, the failure of the covered-interest
rate parity, the pricing of the Fed’s lending facilities, and to quantify the cost of capital
requirements.

3.1 The CDS-Bond Basis

The CDS-bond basis is a measure of the price discrepancy between securities with
nearly identical economic exposures, namely corporate bonds and credit default swaps
(CDS). Said simply, the CDS-bond basis is what one earns by buying a corporate bond
and a CDS that protects against default on the bond.7 Since this package in principle
has no risk if one can hold to maturity (though there are certain risks in the real world),
the basis reflects a deviation from the Law of One Price. However, to earn an arbitrage
profit one must use capital, and during a funding crisis capital is required to earn
excess returns for constrained investors, so this is consistent with our margin-based
asset pricing.

7Sometimes the CDS-bond basis is reported with the opposite sign. For simplicity, we use a
convention that implies a positive basis during the current crisis.
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Another way of stating the apparent puzzle is to note that the yield spread on
a corporate bond is higher than the CDS spread. According to our model, this is
because agents can get credit exposure with less use of margin capital through CDS
and, therefore, they are willing to earn a smaller expected return per notional, but a
similar return per use of margin capital.

To understand the difference in margin requirements of corporate bonds and CDS,
consider a hedge fund that buys a corporate bond. It must naturally use capital to
pay the bond’s price. The hedge fund can borrow using the bond as collateral, but
this uses the hedge fund’s broker’s balance sheet. In light of our model, all capital
use by risk-tolerant agents is costly, so the question is whether the broker can in turn
borrow against the bond from an unconstrained agent such a cash-rich commercial
bank. This can be done only to a limited extent if the commercial bank does not
have experience trading such bonds, since corporate bonds are illiquid, making the
evaluation of their value and risk potentially difficult. Importantly, the bond’s market
illiquidity also means that it can be difficult, time consuming, and costly to sell the
bond during times of stress.

A CDS, on the other hand, is a derivative with zero present value so it does not
inherently use capital. A hedge fund entering into a CDS must nevertheless post margin
to limit the counterparty risk of the contract. Since the CDS margin mostly reflects the
economic counterparty risk, whereas the corporate-bond margin additionally reflects
its inherent cash usage and market illiquidity, the corporate-bond margin is larger than
the CDS margin. In short, margins on “funded” underlying assets such as corporate
bonds are larger than those of “unfunded” derivatives.

To consider our model’s time-series predictions, Figure 5 shows the average CDS-
bond basis for high-grade bonds, the spread between the 3-month uncollateralized
LIBOR loans and 3-month general collateral (GC) repo rate, and a measure of tighten-
ing credit standards. The data of the CDS-bond basis are from a major broker-dealer,
the LIBOR and GC-repo data are from Bloomberg, and the net percent of respondents
tightening their credit standards is from the Federal Reserve Board’s survey, “Senior
Loan Officer Opinion Survey on Bank Lending Practices”.

We see that tighter credit standards (possibly reflecting more binding margin con-
straints) are associated with higher interest-rate spreads and a widening of the basis,
consistent with our model’s predictions. The link between the interest-rate spread and
the basis, in particular, is related to Propositions 5 and 10 that show how the basis
depends on the shadow cost of capital and Proposition 2 linking the cost of capital to
the interest-rate spread.

The model’s prediction regarding the relation between the magnitude of the interest-
rate spread and the magnitude of the basis is rejected in the data, if LIBOR is the true
uncollateralized interest rate. Proposition 10 predicts that the basis is the shadow cost
of capital multiplied by a number less than 1, and Proposition 2 that the shadow cost
of capital is equal to the interest-rate spread. However, the basis is in fact higher than
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the interest-rate spread at the end of the sample. This is likely because the financial
institutions’ shadow cost of capital is larger than the LIBOR spread because the Fed
keeps the LIBOR down (see next section), many arbitrageurs (e.g., hedge funds) cannot
borrow at LIBOR, and those that can borrow at LIBOR must limit their leverage and,
hence, cannot use a LIBOR loan to increase their trading.

The model’s cross-sectional predictions can be tested by comparing the basis of
investment-grade (IG) bonds with that of high-yield (HY) bonds. We do this in Fig-
ure 6. To facilitate the comparison in light of our model, we adjust the bases for their
relative margin spreads. Since IG corporate bonds have a margin around 25% and IG
CDS have margins around 5%, the IG margin differential is 20%. Hence, the adjusted
IG basis is basis/0.20. Similarly, we estimate that the HY margin differential is around
50% so the HY adjusted basis is basis/0.50. These margin rates are based on a broker’s
estimates and the estimate is subject to a substantial amount of uncertainty since mar-
gins are opaque and vary between brokers and clients and over time. Propositions 5
and 10 predict that the bases adjusted for margin in this way should line up in the
cross section so that the expected profit per margin use is constant in the cross section.
Figure 6 shows that the adjusted bases track each other quite closely.

3.2 Effects of Monetary Policy and Lending Facilities

The Federal Reserve has tried to alleviate the financial sector’s funding crisis by in-
stituting various lending facilities. These programs include the Term Auction Facility
(TAF), the Term Securities Lending Facility (TSLF), the Term Asset-Backed Secu-
rities Loan Facility (TALF), and several other programs.8 The TAF was instituted
in December 2007 in response to address the “pressures in short-term funding mar-
kets”. With the TAF, the Fed auctions collateralized loans to depository institutions
at favorable margin requirements with 28-day or 84-day maturity.

As the crisis escalated, the Fed announced on March 11, 2008 the TSLF, which
offers Treasury collateral to primary dealers in exchange for other program-eligible
collateral such as mortgage bonds and other investment grade securities for 28 days.
Since this is an exchange of low-margin securities for higher-margin securities, it also
improves the participating financial institutions’ funding condition. By exchanging a
mortgage bond for a Treasury and then borrowing against the Treasury, the dealer
effectively has its margin on mortgage bonds reduced.

The Federal Reserve announced the additional creation of the TALF on November
25, 2008. The TALF issues non-recourse loans with term up to three years of eligible
asset-backed securities (ABS) backed by such things as student loans, auto loans, credit
card loans, and loans relating to business equipment. The TALF is offered to a wide

8We thank Adam Ashcraft, Tobias Adrian, and participants in the Liquidity Working Group at
the NY Fed for helpful discussions on these programs.

20



set of borrowers, not just banks (but the borrowers must sign up with a primary dealer,
which creates an additional layer of frictions).

These programs share the feature that the Fed offers lower margins than what
is otherwise available in order to improve the funding of owners or buyers of various
securities. This improves the funding condition of the financial sector and, importantly,
makes the affected securities more attractive than they otherwise would be. Indeed, the
goal of the TALF is to “help market participants meet the credit needs of households
and small businesses by supporting the issuance of asset-backed securities.”9

In terms of our model, this can be understood as follows. The Fed offers a margin
mi,F ed for security i, say a student-loan ABS, which is lower than the prevailing margin,
mFed,i < mi. This lowers the required return of a derivative security:

E(ri,F ed) −E(ri,no Fed) = (mFed,i −mi)ψ < 0. (36)

Said differently, the Fed program increases the affected security’s price (Proposition 6).
Hence, this ABS can be issued at an increased price, which makes the market more
viable since students can only pay a certain interest rate.

The Fed has in fact surveyed financial institutions to see how their bid prices for
various securities depend on the financing the that Fed would offer (Ashcraft, Gârleanu,
and Pedersen (2009)). The surveyed bid price increases as the Fed reduces its offered
margin, consistent with our model. For instance, the surveyed bid price of a super
senior CMBS tranche with an expected life of 7 years with no Fed financing is $57, but
increases to $92.5 with maturity matched financing with a low margin, a very large
asset pricing effect. Similarly, the bid price of a tranche with 2.5 years of expected life
increases from $84 with no financing to $92 with financing with a low margin. This
corresponds roughly to an annualized decrease in expected return of 3.5%.

Let us consider this number in the context of our model. If the shadow cost of
capital is around 10% as implied by the IG and HY CDS-bond basis at the height of
the liquidity crisis, and CMBS tranches are derivatives only held by the risk-tolerant
investor, then Equation (36) implies an effect of 3.5% if the Fed improves the margin
terms by 35 percentage points, so the model-implied effect is in the right neighborhood.

3.3 Failure of the Covered Interest-Rate Parity (CIP) and the
Fed’s Liquidity Swap Lines

While textbooks on international finance acknowledge the failure of the uncovered
interest-rate parity, the so-called covered interest-rate parity (CIP) is often taken to
hold by definition since arbitrage should enforce the Law of One Price. The covered
interest rate parity says that if the local interest rate is r, the foreign interest rate is
r∗, the spot exchange rate is e, and the forward exchange rate that can be locked in

9See http://www.newyorkfed.org/markets/talf operations.html.
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now is f , then 1 + r = f/e(1+ r∗). That is, putting the money in the local bank earns
1+r which should be the same as exchanging a dollar for 1/e units of foreign currency,
earning 1 + r∗ abroad, and guaranteeing to exchange the money back at the exchange
rate of f to get f/e(1 + r∗).

This parity has nevertheless failed due to supply and demand imbalances in the
forward market and because it requires capital (margin) to trade to profit from devi-
ations from parity. To understand the background of this surprising effect, recall first
that the funding problems of financial institutions in the current crisis quickly spread
globally. Banks in many countries had funding problems both in their local currency
and in US dollars, perhaps because many transactions are done in dollars.

To facilitate dollar funding for foreign banks, the Fed authorized temporary recip-
rocal currency arrangements called “central bank liquidity swap lines” on December
12, 2007 (Coffey, Hrung, Nguyen, and Sarkar (2009)). Through these swap lines, the
Fed lent dollars to foreign central banks who in turn lent these dollars to their local
banks.

Despite this effort, parity has been violated as a clear sign that the currency ar-
bitrageurs’ margin requirements are binding as seen in Figure 7. The figure further
shows that the time series pattern of the deviation tracks the TED spread (i.e., the
spread between LIBOR and Treasury bills) in the current crisis and in liquidity crisis
of 1998 (involving LTCM among other events).

3.4 Quantifying the Cost of Capital Requirements: Incentives
for Regulatory Arbitrage

We can also use our model to quantify the shadow cost of Basel capital requirements
in order to help understand the banks’ incentives to perform “regulatory arbitrage” by
moving assets off their balance sheet and tilting their portfolios towards AAA securities
with low regulatory capital requirements.

For this, we note that the Basel requirement has a similar form to the margin
requirement. It can loosely be captured by a similar equation to our model’s margin
requirement (see Brunnermeier and Pedersen (2009)):

∑

i

mReg,i|θi| ≤ 1 (37)

where θi is the fraction of wealth in security i as before and mReg,i is the regulatory
capital requirement (8% times a risk weight under some rules).

When the prevailing margins are low, the regulatory requirement may be more
binding than the funding-based margin requirement. In this case, the margin mi in
our pricing formula is replaced by the regulatory requirement (37). Hence, a bank’s
required return increases in the regulatory capital requirement multiplied by the shadow
cost of capital, ψmReg,i. If the shadow cost of regulatory capital is 1% and a bank can
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move off balance sheet an asset with risk weight of 100%, then its required return for
that asset is reduced by 1% × 8% × 100% = 80 basis points.

4 Conclusion

We derive a tractable general-equilibrium asset-pricing model that accounts explicitly
for the pricing of margins. The model captures several of the salient features of the
current and past liquidity crises: a negative fundamental shock leads to losses for
levered agents including the financial sector, these agents face funding problems as
they hit margin constraints, and this leads to a drop in Treasury rates and general-
collateral interest rates, a spike in interest-rate spreads, a spike in risk premia, a spike
in the pricing of margins, and a basis (or price gap) between securities with identical
cash flows but different margins.

We illustrate the model through a calibration, apply it empirically to the CDS-
bond basis and the failure of the covered interest-rate parity, and show how the model-
implied cost of capital requirements quantifies the banks’ incentive to use off-balance
sheet vehicles. Finally, we estimate the value of the Fed’s lending facilities, which is
helpful in evaluating the effect of the unconventional monetary policy tools used during
liquidity crisis and their transmission to the real economy.
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Appendix

A Linear and Non-Linear Margin Constraints

We consider a non-linear margin requirement (5) that depends on the absolute value
of the position |θi|. Hence, both long (θi > 0) and short (θi < 0) positions make the
constraint tighter, i.e., both long and short positions use capital. It is interesting to
compare this to a linear constraint sometimes assumed in the literature:

∑

i

mi
tθ

i + ηu ≤ 1. (A.1)

While such a linear constraint is simpler to handle mathematically, it precludes the
bases that are central to our study:

Proposition 11 If agents face only linear margin requirements (A.1) and at least one
derivative exists with mik < mi, then any equilibrium is as if there were no margin con-
straints at all and there can be no deviations from the Law of One Price in equilibrium,
that is, the basis is always zero.

Proof of Proposition 11. For any asset allocations of the two agents, the linear
margin constraint is slack “in the aggregate”:

W a
t

∑

j

mj
tθ

j,a
t +W b

t

∑

j

mj
tθ

j,b
t < W a

t +W b
t . (A.2)

This means that the linear margin constraint must be slack for at least one of the
agents, who is therefore not constrained at time t.

Suppose now that on a non-zero-measure set there fails to exist a market-price-
of-risk process, i.e., a process κ taking values in R

N such that σj
tκt = µj

t − rc
t for all

securities j. Then one of the two agents can trade on a non-zero-measure set to make
risk-less strictly positive (although bounded) profits — i.e., a zero-value portfolio η
exists whose volatility is zero and that has strictly positive drift. This contradicts the
notion of equilibrium. Consequently, a market-price-of-risk process exists. It follows,
under technical integrability conditions, that an equivalent martingale measure, defined
by the stochastic exponential of this process, also exists, so that assets with identical
cashflows have identical payoffs. (See Duffie (2001), Chapter 6, Section G.)

Finally, consider two securities, i and j, with identical cashflows and prices but
different margin constraints: mi

t > mj
t on some set. If any agent is constrained when

mi
t > mj

t , then she can relax her constraint by going long n shares of asset j and
short n shares of asset i: the trade has no cash-flows implications and makes the
constraint slack. For n low enough, the other agent’s margin constraints remains slack
due to (A.2), and therefore both agents are unconstrained while their consumption
processes remain the same. (Alternatively, we can note that the CAPM relationship
µi

t − rc
t = βg,j + ψg

tm
i
t implies that ψg

t = 0 for both agents g ∈ {a, b}.)
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B Proofs

Proof of Propositions 1, 2, and 5. These proofs are in the body of the paper.

Proof of Proposition 3. To understand idea of the proof, suppose first that
agent a’s margin constraint never binds, he is (locally) unconstrained in his investment
in the underlying assets. Consequently, deflating the gains process of any of these se-
curities using his marginal utility process yields a local martingale. Specifically, agent
a’s marginal utility, which we denote by ξt, is given by

ξt = e−ρt(Ca)−γa

. (B.1)

Further, we denote its drift and volatility by µξ
t and σξ

t :

dξt = ξt

(

µξ
tdt+ σξ

t dwt

)

(B.2)

and Ito’s Lemma shows that

σξ = −γaσCa

. (B.3)

The discounted value of the price and accumulated dividends,

Ptξt +

∫ t

0

Csξs ds, (B.4)

is a local martingale, so it has zero drift:

0 = δi
t + P i

tµ
ξ
t + P i

tµ
i
t − δi

t + P i
tσ

i
t

(

σξ
t

)⊤

. (B.5)

Since ξ prices the risk-free collateralized lending, it holds that

µξ
t = −rc

t . (B.6)

Combining (B.3), (B.5), and (B.6) gives agent a’s key pricing equation:

µi − rc = γaβCa,i. (B.7)

Recall also agent b’s pricing equation:

µi − rc = βCb,i + yiψmi. (B.8)

Multiplying Equations (B.7) and (B.8) by (γa)−1Ca, respectively Cb, and adding the
results gives

(µi − rc)

(

Ca

γa
+ Cb

)

= CβC,i + Cbyiψmi,
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which is equivalent to (17).
The general proof of this proposition involves characterizing the optimal portfolio

choice of an arbitrary agent with utility function u who faces convex portfolio con-
straints and redundant assets. The steps are the following:

Step 1. Construct a family of fictitious economies in which there are no redundant
securities (derivatives) and where the drifts of asset prices and the (collateralized)
interest rate are given, for ν ∈ R

N , by

µi,ν = µi + νi + h(ν)

rc,ν = rc + h(ν),

which are to be explained shortly. For ease of exposition, define also κν = σ−1(µ+ν−rc)
to be the market price of risk for the underlying securities in the fictitious market and
let

νik,ν = σikκν + rc − µik

for all derivatives ik. Defining µik,ν analogously with µi,ν would mean that there would
be no arbitrage opportunity in the fictitious market even if the redundant securities
were traded.

For any ν ∈ R
N , the function h is defined as

h(ν) = sup

{

−

(

∑

i

θiνi +
∑

i,k

θikνik ,ν

)

∣

∣ θ ∈ K

}

= sup

{

−
∑

i

(

θiνi +
∑

k

θikσikσ−1ν

)

+

∑

i,k

θik
(

(µik − rc) − σikκ0
)
∣

∣ θ ∈ K

}

.

The function h(ν) captures the increase to the interest rate that an agent would have
to be offered in a world without redundant securities in order to achieve the same
utility as when arbitrage opportunities are available to him. The first term in the last
expression above represents the total additional return due to the higher drifts in the
fictitious economy, while the second represents the arbitrage gains. Note that, since K
is bounded, h takes finite values on R

N .
The fictitious economies are constructed so that any consumption feasible in the

original, constrained economy starting with a certain wealth is also feasible in each of
these economies — because available returns are at least as high. By including all such
economies, it also follows that there is one among them in which the optimal portfolio
and consumption choices satisfy the original constraints.
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Step 2. For any consumption plan, the trading strategy {φi}i that attains it at the
highest cost (initial wealth) among the optimal strategies in all fictitious economies is
equivalent, in terms of risk exposure, to a strategy

(

{θi}i, {θik}i,k
)

that finances the
consumption plan at the same cost and satisfies the constraints in the original economy.
This is the new step relative to the literature.

To prove this statement, follow Cvitanić and Karatzas (1993) to define the maxi-
mum cost of (super-)replicating the consumption plan among all fictitious economies,
from any time τ onwards:

Vτ ≡ sup
ν

Eν

[
∫ T

τ

e−
∫ T

t
r

c,ν
s dsct dt

]

,

where Eν is the equivalent martingale measure in the market defined by ν, given by
the state-price deflator ξν , which is defined by ξnu(0) = 0 and

dξν
t = −ξν

t

(

rc,νdt+ (κν)⊤ dBt

)

.

It follows that

Mν
t ≡ Vte

∫ t

0
r

c,ν
s ds

is a supermartingale, so that it can be decomposed as

Mν
t = V0 +

∫ t

0

φνs dw
ν
s −Bν

t (B.9)

with Bν
t an increasing process and wν a Brownian motion. Comparing Mν with M0

identifies φν as being independent of ν — let’s denote it by φ — and it also implies

∫ t

0

e
∫ s

0
r

c,ν
v dvdBν

s −

∫ t

0

e
∫ s

0
r

c,ν
v dvVs

(

h(νs) + ν⊤s φ
)

ds =

∫ t

0

e
∫ s

0
rc
v dvdB0

s . (B.10)

We claim that, since the right-hand side of (B.10) is increasing, φ is equivalent to a
strategy θ ∈ K. Indeed, suppose that this is not the case. The strategies in the original
market that are risk-equivalent to φ are θ = (θ̂, θ̃) such that

φ = θ̂ +
(

σ−1
)⊤
σ̃⊤θ̃,

where σ̃ is the matrix of volatility vectors of the redundant securities. If the linear
space Θφ consisting of all such θ does not intersect the compact convex set K, then it
is separated from it by a hyperplane, i.e., there exists a vector v, ǫ > 0, and O ∈ R

such that

v⊤θ ≥ O > O − ǫ ≥ v⊤θK
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for all θ ∈ Θφ and θK ∈ K. Note that v is orthogonal to Θφ, i.e., v⊤(θ1 − θ2) = 0 for
all θ1, θ2 ∈ Θφ. In fact, v⊤θ = v⊤(φ, 0) = O + ǫ on Θφ, and v⊤ is a linear combination

of the rows of (IN , (σ
−1)

⊤
σ̃⊤):

v⊤ = v̂⊤(IN ,
(

σ−1
)⊤

σ̃⊤)

for some v̂ ∈ R
N .

Note now that

h(ν) = sup

{

−ν⊤
(

θ̂ +
(

σ−1
)⊤
σ̃⊤θ̃

)

+
∑

i,k

θik

(

(

σik
)⊤
κ0 − (µik − rc)

)

∣

∣

(

θ̂, θ̃
)

∈ K

}

.

Let ν = Rv̂ for some (large) scalar R and note also that

h(ν) + ν⊤φ ≥ sup
{

−ν⊤
(

θ̂ +
(

σ−1
)⊤

σ̃⊤θ̃
)

∣

∣

(

θ̂, θ̃
)

∈ K
}

+ ν⊤φ+

sup

{

∑

i,k

θik
(

(µik − rc) − σikκ0
)
∣

∣

(

θ̂, θ̃
)

∈ K

}

≥ sup
{

−Rv̂⊤
(

I,
(

σ−1
)⊤
σ̃⊤

)

θ
∣

∣ θ ∈ K
}

+ ν⊤φ+D

= sup
{

−Rv⊤θ
∣

∣ θ ∈ K
}

+RO +D

≥ Rǫ+D,

where |D| <∞ because K is bounded.
Thus, if Θφ ∩K = ∅, h(ν) + ν⊤φ can be made arbitrarily large, and consequently,

the left-, and therefore right-hand, side of (B.10) can be made decreasing, which would
be a contradiction.

Step 3. The optimal consumption in the original economy is therefore optimal in
one of the fictitious, unconstrained economies. Consequently, the marginal utility of
the agent is proportional to ξν , giving

u(Cg)′′

u(Cg)′
CgσCg

= σ−1(µ− rc + ν),

or

µi − rc = γβCg,i − νi. (B.11)

Step 4. For ν that defines the constrained optimum, the optimal θ attains the
supremum in the definition of h(ν). The characterization of ν then comes down to a
simple linear optimization over a convex set.

Suppose, for instance, that θ1 > 0, which implies ν1 ≤ 0, and let ψ = − ν1

m1 . If

θ2 > 0 and, say, ν2

m2 > ψ, decreasing θ2 by m1ǫ and increasing θ1 by m2ǫ preserves
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the constraints but increases the objective by
(

ν2

m2 − ψ
)

m1ǫ > 0. All other cases are

treated similarly.
As for the derivatives, from the definition of νik we have the relationship

µik − rc = σikσ−1(µ+ ν − rc) − νik

= γβCg,ik − νik .

Therefore the treatment of the derivative is the same as that of any underlying asset as
long as the derivative position is not bound by a different constraint, which is entirely
natural. If the derivative positions are constrained by other constraints, then the form
of the ‘shadow returns’ νik is different.

Proof of Proposition 4.
The definition of the portfolio q implies that

dCt

Ct

= Qt

dP q
t

P q
t

+ dzt

for some process Q and Brownian moion z with covt(dP
i, dz) = 0 for all i. Proposition

3 therefore implies that

µi
t − rc

t − λm,i
t mi

t = Qt covt

(

dP q
t

P q
t

,
dP i

t

P i
t

)

. (B.12)

Multiplying this equation by qi
t and summing over all i yields

µq
t − rc

t −
∑

j

qj
tλ

m,j
t mj

t = Qt vart

(

dP q
t

P q
t

)

. (B.13)

Equations (B.12) and (B.13) immediately give the proposition.

Proof of Proposition 6. Write the agent’s objective as

E

∫

∞

t

e−ρs

(

u(Cg
s ) − λs

(

∑

j

|Wsθ
j
s|m

j
s +Wsη

u
s −Ws

))

ds,

where λ is a Lagrange multiplier. (In the case of agent b, the HJB equation shows
λ to equal (ρW )−1ψ.) The agent acts as if unconstrained, provided that λ is chosen
appropriately.

Suppose that the agent invests in ǫ more shares of asset i, borrowing at the collat-
eralized rate to do so. The agent adjusts consumption to absorb both the dividends
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and interest expense. Note that the only terms entering the constraint affected by this
deviation are |Wsθ

i
s| and Ws. Letting ǫ tend to zero, the gain in utility is proportional

to

sign(ǫ) Et

∫

∞

t

e−ρs
(

u
′

(Cg
s )(δi

s − rc
sP

i
t ) − λs

(

ỹsP
i
sm

i
s − (P i

s − P i
t )
)

)

ds

= sign(ǫ) Et

∫

∞

t

e−ρs
(

u
′

(Cg
s )(δi

s − rc
sP

i
t ) − λsP

i
t + P i

sλs

(

1 − ỹsm
i
s

)

)

ds,

where ỹs = 1 if θi
s > 0, ỹs = −1 if θi

s < 0, and ỹs = sign(ǫ) if θi = 0. Since the deviation
must (weakly) reduce utility regardless of the sign of ǫ, it follows that

P i
t Et

∫

∞

t

e−ρs
(

u
′

(Cg
s )rc

s + λs

)

ds = Et

∫

∞

t

e−ρs
(

u
′

(Cg
s )δi

s + P i
sλs

(

1 − ysm
i
s

)

)

ds,

(B.14)

where ys = 1 if θi
s > 0, ys = −1 if θi

s < 0, and ys ∈ [−1, 1] if θi
s = 0. Equation (B.15)

implies

P i
t Et

∫

∞

t

e−ρ(s−t)
(

u
′

(Cg
s )rc

s + λs

)

ds = Et

∫

∞

t

e−ρ(s−t)+
∫ s

t
e−ρvλv(1−yvmi

v) dvu
′

(Cg
s )δi

s ds.

(B.15)

Alternatively, u
′

(Cg
s )rc

s+λs in the previous two equations can be replaced with u
′

(Cg
s )ru

s .
Further, under mild regularity conditions, the left-hand sides of these equations equal
P i

tu
′

(Cg
t ).

The proposition follows from the fact that the right-hand side of the Equation (B.15)
is a monotonic function of yvm

i
v for all v ≥ t.

Proof of Proposition 7. We first derive the dynamics of the state variable cb

and the consumption dynamics more generally. Then, we derive the dependence of the
endogenous variables on the state variables and the exogenous variables.

The dynamics of agent b’s consumption Cb follows from Cb = ρW b and the dynamics
for W b given in (4):

dCb = Cb((rc − ρ+ φκ) dt+ φ dwt) (B.16)

where φ ≡ σθb is notation for the equilibrium volatility of agent b’s wealth. Using this,
the dynamics of the consumption ratio cb = Cb/C are seen to be

dcb = cb((rc − ρ+ φκ− µC − σCφ+ (σC)2) dt+ (φ− σC) dwt), (B.17)

while agent a’s consumption dynamics Ca = C − Cb are

dCa = (CµC − Cb(rc − ρ+ φκ)) dt+ (CσC − Cbφ) dwt (B.18)

= C(µC − cb(rc − ρ+ φκ)) dt+ C(σC − cbφ) dwt. (B.19)
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The interest rate is rc
t = −µξ

t (as seen in (B.6) above) and thus applying Ito’s
Lemma to the marginal utility ξ from (B.1) implies

rc = ρ+

(

γaµ
C − cbφκ

1 − cb
−

1

2
γa(γa + 1)

(

σC − cbφ

1 − cb

)2
)

1 − cb

1 + (γa − 1)cb
.

The ordinary differential equation (ODE) that characterizes the price-dividend ra-
tion ζ(cb) follows from the fact that (B.4) is a local martingale with zero drift:

0 = 1 + ζ
(

µC − rc − γaσC(1 − cb)−1(σC − cbφ)
)

+ (B.20)

ζ ′
(

rc − ρ+ φκ− µC − γa(φ− σC)(1 − cb)−1(σC − cbφ)
)

+
1

2
ζ ′′(cb)2(φ− σC)2.

It remains to determine the values of κ, σ, and φ as functions of ζ and its derivatives.
For this, we identify three equations for these three unknowns. First, the log-utility
investor’s optimal position θb maximizes

(µ− r)θb −
1

2
σ2(θb)2

subject to θb < m−1. Or, expressed in terms of volatility φ = σθb, he maximizes

κφ−
1

2
φ2,

so that the optimal position is

φ = min(κ,m−1σ) = κ− (κ−m−1σ)+. (B.21)

Next, since agent a is unconstrained with respect to the market asset and general-
collateral lending and borrowing, (B.7) gives

κ = γaσCa

= γaσ
C − cbφ

ca

= γaσ
C − cbκ+ cb(κ−m−1σ)+

1 − cb
,

where the second equality is due to the expression for the volatility of Ca in (B.19) and
the third to (B.21). It follows that

κ =
γa

1 + (γa − 1)cb
(

σC + cb(κ−m−1σ)+
)

= κ̄+ γcb
(

κ−
σ

m

)+

, (B.22)
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with γ−1 = ca (γa)−1 + cb as per (12) and κ̄ = γσC . Equation (B.22) provides a second
restriction on the three parameters that need to be calculated. The third restriction
comes from the fact that the volatility σ of the price Pt = Ctζ(c

b
t) is given by Ito’s

lemma and the dynamics of cbt in (B.17):

σ = σC +
ζ ′cb

ζ
(φ− σC). (B.23)

To solve the system of three equations (B.21)–(B.23), φ can be eliminated right away
to give

κ−m−1σ = (κ̄−m−1σ) + γcb(κ−m−1σ)+

σ = σC +
ζ ′cb

ζ
(κ− σC) −

ζ ′cb

ζ
(κ−m−1σ)+

and note that the solution (κ, σ) given in the proposition is trivially true if κ ≤ m−1σ,
which requires κ̄ ≤ m−1σ̄. Suppose therefore that κ − m−1σ > 0, leaving a linear
system of equations. This system can be written as

κ− κ̄ =
1

1 − γcb
(κ̄−m−1σ) +m−1σ − κ̄

=
γcb

1 − γcb
(κ̄−m−1σ)

σ − σ̄ = −
ζ ′cb

ζ
(κ̄−m−1σ),

which gives (25) and (26) easily.
The boundary values for ζ(cb) are its values at cb = 0 and cb = 1. These are the

price-dividend ratios in the single-agent economies in which either agent a or agent b
has all the wealth. The explicit expressions are well known:

ζ(0) =

(

ρ+ (γa − 1)µC −
1

2
γa(γa − 1)

(

σC
)2
)−1

(B.24)

ζ(1) = ρ−1. (B.25)

Finally, the value of the Lagrange multiplier ψ follows from the first-order condition
(8), given the optimal choice σCb

= φ:

ψ =
1

m
(µ− rc − βCb

) =
1

m
(µ− rc − σCb

σ)

=
σ

m
(κ− σCb

) =
σ

m
(κ− φ)

=
σ

m

(

κ−
σ

m

)+

. (B.26)
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Proof of Proposition 8. From Proposition 5,

µik = µ+ σC(σik − σ) + ψ(mik −m),

and applying Ito’s lemma to P ik = Cζ ik(cb) gives

µik =
ζ ik ′cb

ζ ik

(

rc − ρ+ φκ− µC
)

+ µC +
1

2

ζb′′(cb)2

ζ ik
(φ− σC)2 +

1

ζ ik

σik =
ζ ik ′cb

ζ ik
(φ− σC) + σC .

Together, these three equations and (B.26) yield the ODE (30). The boundary condi-
tions are

ζ ik(0) =
(

yik
)−1

ζ ik(1) = ρ−1,

where the dividend yield yik = y + µik − µ = y + ψ(mik − m) and y is the market
dividend yield at cb = 0, i.e., y = ζ(0)−1 from Equation (B.24).

Proof of Proposition 9. The limit price follows directly from Equation (B.24).
The limit value of ψ follows from (28), given that σ = σC (because the market price is
C times a constant price-dividend ratio in the limit) and κ = γaσC , which is seen from
(25) with x = 0 and γ = γa.

Proof of Proposition 10. Only the risk in C is priced. In the limit as cb → 0,
all valuation ratios are constant, and therefore all covariances with the market equal
(σC)2, so the result follows from Proposition 5 with equal betas.
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Figure 1: Collateralized and Uncollateralized Interest rates. This figures shows
how interest rates depend on the state of the economy as measured by cb the fraction
of consumption accruing to the risk tolerant investor. Low values of cb correspond to
bad states of the economy, and margin requirements bind for cb ≤ 0.22. The solid line
represents the collateralized interest rate rc (or Treasury rate), which drops sharply in
bad times. The dashed line represents the uncollateralized inter-bank interest rate ru.
As a frictionless benchmark, the dash-dot line represents the interest rate obtaining in
an economy without any constraints.
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Figure 2: Deviations from the Law of One Price (Basis). This figure shows the
difference between the expected return of an underlying security and a derivative with
the same cash flows and a lower margin. This return spread is depicted as a function
of the state of the economy as measured by cb (where a low cb is a bad state of the
economy). The dotted line represents the return spread for a low-margin derivative
mlow with a high margin spreadmunderlying−mlow = 30%, and the dashed line represents
a medium-margin derivative with a smaller margin spread of munderlying −mmedium =
10%.
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Figure 3: Sharpe Ratios (SR). The figure shows how the required SR depends on the
state of the economy as measured by cb (where a low cb is a bad state of the economy).
The solid line represents the SR of the underlying asset with a high margin, the dashed
line represents the SR of a derivative with identical cash flows and a medium margin,
and the dotted line that of a derivative with a low margin. As a frictionless benchmark,
the dash-dot line represents the SR obtaining in an economy without any constraints.

40



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cb

E
xc

es
s 

pr
ic

e

 

 
Low constant margin, m=10%
Time−varying margin, m∈ [10%,30%]
High constant margin, m=30%

Figure 4: Price Premium. The figure shows how the price premium above the price
of the underlying depends on the state of the economy as measured by cb (where a
low cb is a bad state of the economy). Each derivative has the same cash flows as the
underlying, but a lower margin requirement and, therefore, a larger price. The price
premium, P derivative/P underlying − 1, is illustrated for a derivative with a low constant
margin of 10%, one with a margin of 30%, and one that has a margin that increases
from 10% to 30% in a bad state of the economy with cb < 0.15. The price premium is
especially large for low margin securities during bad economic times, but is non-trivial
even before margin requirements bind (cb > 0.22) due to the risk of future binding
constraints.
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Figure 5: The CDS-Bond basis, the LIBOR-GC repo Spread, and Credit
Standards. This figure shows the CDS-bond basis, computed as the yield spread for
corporate bonds minus the CDS spread (adjusted to account for certain differences
between CDS and bonds), averaged across high grade bonds, as well as the spread
between the 3-month uncollateralized LIBOR loans and 3-month general collateral
(GC) repo rate, and the net percent of respondents tightening their credit standards
in the Federal Reserve Board’s “Senior Loan Officer Opinion Survey on Bank Lending
Practices”. Consistent with our model’s predictions, tighter credit is associated with
higher interest-rate spreads and a widening of the basis.
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Figure 6: Investment Grade (IG) and High Yield (HY) CDS-Bond Bases,
Adjusted for Their Margins. This figure shows the CDS-bond basis, computed
as the yield spread for corporate bonds minus the CDS spread (adjusted to account
for certain differences between CDS and bonds), averaged across IG and HY bonds,
respectively. Our model predicts that the basis should line up in the cross section ac-
cording to the margin differences. Since IG corporate bonds have a margin around 25%
and IG CDS have margins around 5%, the IG margin differential is 20%. Hence, the
adjusted IG basis is basis/0.20. Similarly, we estimate that the HY margin differential
is around 50% so the HY adjusted basis is basis/0.50. We adjust the level of each series
by subtracting the average during the first two years 2005-2006 when credit was easy
so margin effects played a small role. Consistent with the idea that the expected profit
per margin use is constant in the cross section, we see that the adjusted basis track
each other.
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Figure 7: Average Deviation from Covered-Interest Parity and the TED
Spread. This figure shows the average absolute deviation from the covered interest rate
parity for the Euro, Yen, and British Pound, as well as the TED spread, which is the
3-month uncollateralized LIBOR rate minus the 3-month T-bill rate. The magnitude
of the deviation from the CIP tracks the TED spread in the time series consistent with
the model’s prediction that the shadow cost of funding liquidity due to binding margins
drive both effects.
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