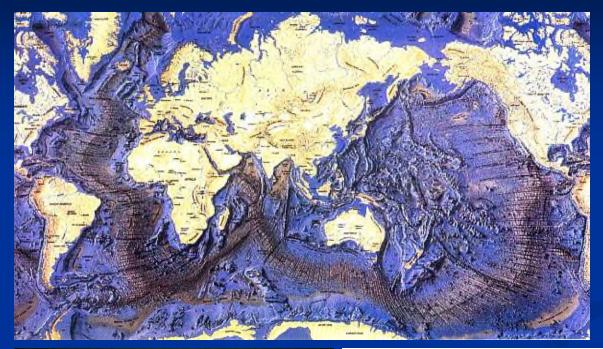
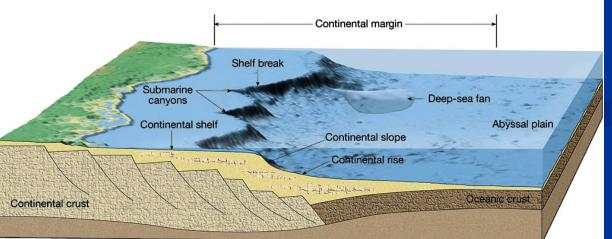

Marine Sediments Lab



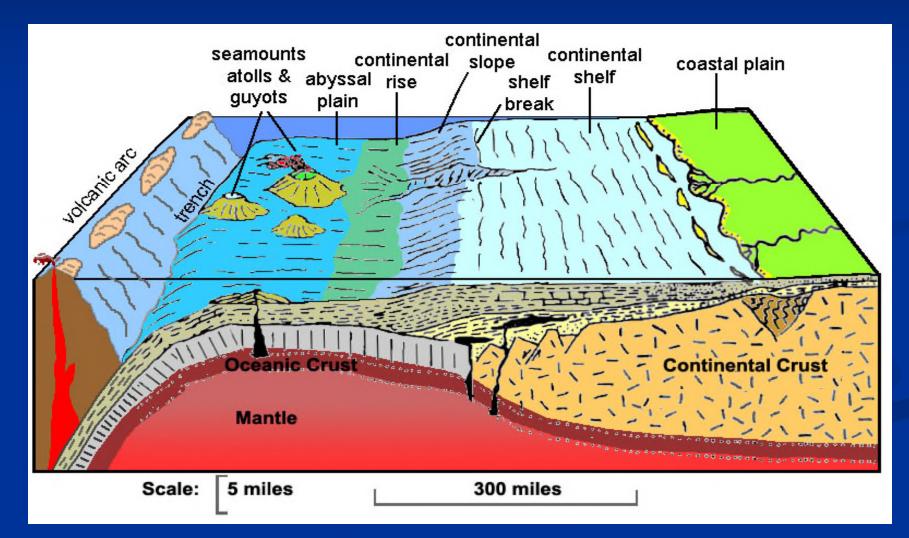
Introductory Oceanography Laboratory

Ray Rector: Instructor

Ocean Basins are Vast Depositories for Huge Amounts of Sediments Coming from Numerous Different Sources



Shallow Inter-Tidal Sea Bottom

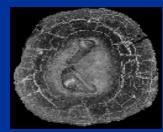


Marianas Trench Sea Bottom

TASA Graphic Arts, 2002

Ocean Basins Act as Earth's Memory Files: Recording 100's of Millions of Years of Geologic Events and Sedimentation History

Four Major Origins for Seafloor Sediments


1. Lithogenous

- Sources: Erosion of land; volcanic eruptions; wind-blown dust
- ✤ Material: Gravels, Sands, Silts, and Clays


2. Biogenous

- **Sources:** Organic; accumulation of plant and animal hard parts
- ✤ Material: Calcareous and Siliceous Oozes

3. Hydrogenous

- **Sources:** Precipitation of minerals from solution
- ✤ Material: Carbonates, Metal Oxides and Sulfides

- 4. Cosmogenous
 - Sources: Extraterrestrial dust and meteorites
 - ✤ Material: Tektite particles, Glassy spheres, Silicate dust

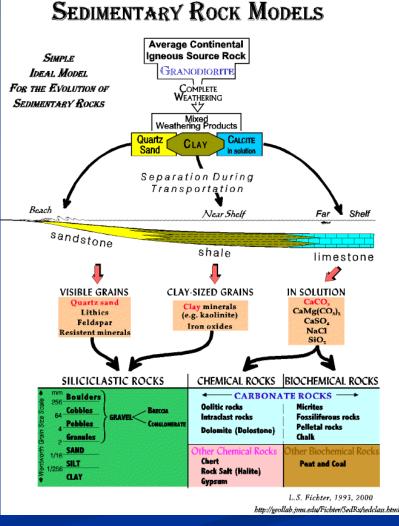
Classification of Marine Sediments

Туре	Comp	osition	Sources		Main locations found
Lithogenous	p	Rock fragments	Rivers; coastal erosion; landslides Glaciers		Continental shelf
	Continental margin	Quartz sand			Continental shelf in high latitudes
		Quartz silt Clay	Turbidity currents		Continental slope and rise; ocean basin margins
	Oceanic	Quartz silt Clay	Wind-blown dust; rivers Volcanic eruptions		Deep-ocean basins
	0	Volcanic ash			
Biogenous	Calcium carbonate (CaCO ₃)	Calcareous ooze (microscopic)	Warm surface water	Coccolithophores (algae); Foraminifers (protozoans)	Low-latitude regions; sea floor above CCD; along mid-ocean ridges and the tops of volcanic peaks
		Shell coral fragments (macroscopie)		Macroscopic shell-producing organisms	Continental shelf; beaches
				Coral reefs	Shallow low-latitude regions
	Silica (SiO ₂ . nH ₂ O)	Siliceous ooze	Cold surface water	Diatoms (algae); Radiolarians (protozoans)	High-latitude regions; sea floor below CCD; upwelling areas where cold, deep water rises to the surface, especially that caused by surface cur rent divergence near the equator
Hydrogenous	Manganese nodules (manganese, iron, copper, nickel, cobalt)		Precipitation of dissolved materials directly from seawater due to chemical reactions		Abyssal plain
	Phosphorite (phosphorous)				Continental shelf
	Oolites (CaCO ₃)				Shallow shelf in low-latitude regions
	Metal sulfides (iron, nickel, copper, zinc, silver)				Hydrothermal vents at mid-ocean ridges
	Evaporites (gypsum, halite, other salts)				Shallow restricted basins where evaporation is high in low-latitude regions
Cosmogenous	Iron–nickel spherules Tektites (silica glass)		Space dust		In very small proportions mixed with all types of sediment and in all ma- rine environments
osm	Iron-nickel meteorites		Meteors		Localized near meteor impact structures

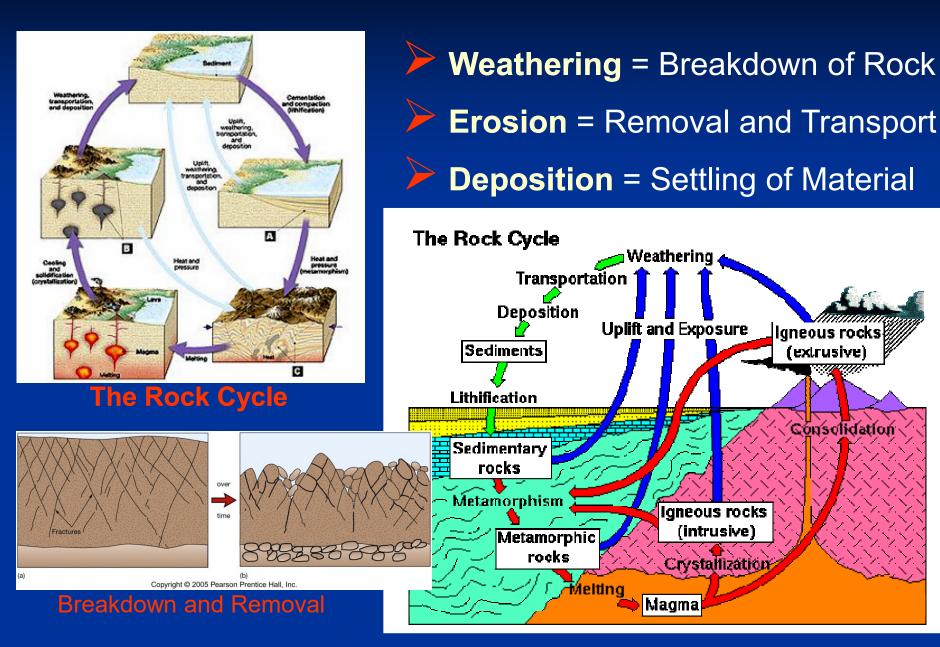
Origin of Lithogenous Sediments

<u>Key Points</u>

- 1) Primary source is continental rocks
 - Granodiorite most common rock

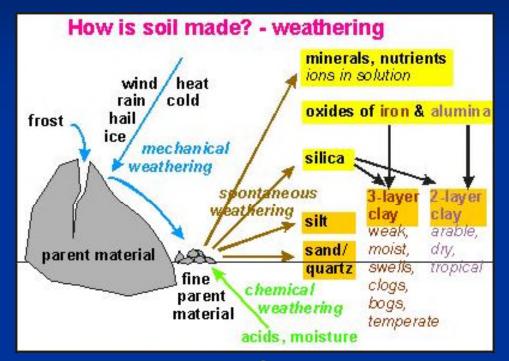

2) Granodiorite is mechanically broken down into smaller and smaller pieces

- From boulder size to silt size
- Courser near source, finer farther away


3) Granodiorite is chemically altered where most original minerals turn in clays

- Feldspars, micas, amphiboles and olivine get altered to clays
- Quartz is mineral is not altered

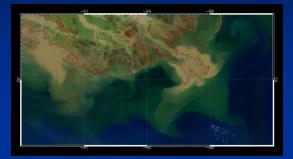
4) Weathered rock is then eroded away (removed and transported from source region to region of deposition.



Lithogenous Sediments and the Rock Cycle

SEDIMENTARY PROCESSES

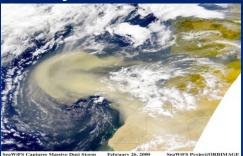
The Chemical/Physical Breakdown and Removal of Rock



Formation of Lithoenous Sediments

Weathered Products ✓ Clays ✓ Quartz ✓ Dissolved lons **Erosion Methods** Running water Moving ice Blowing wind Turbidity currents

Lithogenous Sediment Sources


Sources: Rivers; Glaciers; Wind-blown dust; Coastal Erosion; Volcanic eruptions **Materials:** Silicate-rich Gravels, Sands, Silts, and Clays

1) Rivers

2) Glaciers

3) Wind-blown dust

Major Sediment Input to the Oceans				
Source	Estimated Amount (10 ⁹ tons/yr)			
Rivers	18.3			
Glaciers	2.0			
Wind blown dust	0.6			
Coastal erosion	0.25			
Volcanic debris	0.15			
Groundwater	<0.48			

4) Coastal erosion

5) Ash from volcanic eruptions

Origin of Biogenous Sediments

<u>Key Points</u>

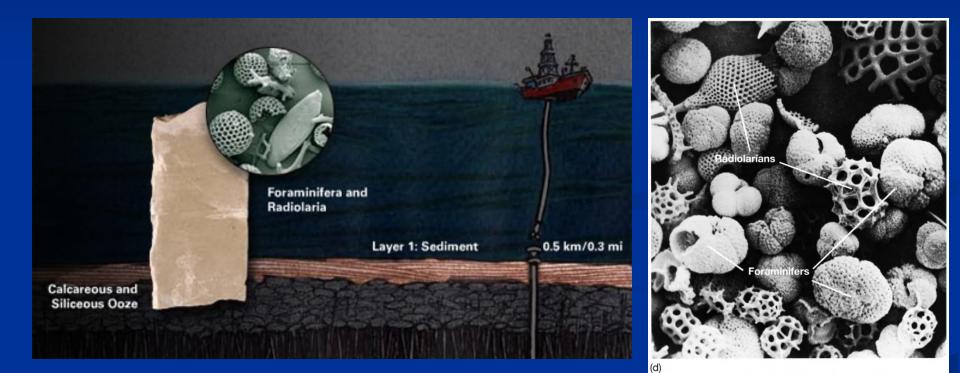
1) Primary source is marine life hard parts

Shells and skeletons of dead organisms

2) Hard parts from dead planktonic and benthic organisms settle to the bottom

- From cobble size to microscopic
- Material may be further broken down by weathering and erosional processes
- Courser near source, finer farther away
- 3) Biogenic material is mainly of two types
 - \succ Silica SiO₂
 - Calcium carbonate CaCO₃

4) Two general biogenous sediment depositional regions are shallow (littoral and shelf) and deep (abyssal pelagic)


Shallow, benthic biogenous material

Deep pelagic biogenous material

Biogenous Sediment Sources

Sources: Organic; accumulation of plant and animal hard partsMaterial: Mostly Calcareous and Siliceous Shells and Skeletons

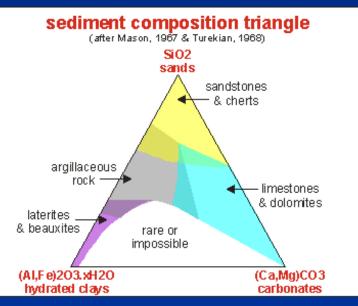
Deep Ocean Seafloor

Plankton Tests

Copyright © 2005 Pearson Prentice Hall, Inc.

Shallow Water Biogenous Sediments Key Points

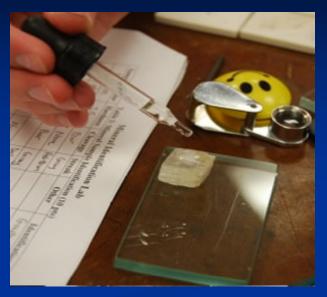
- 1) Remains of invertebrate animal hard parts
 - Shells and skeletons of benthic organisms
- 2) Organisms living from shore out on the shelf
 - Mollusks, corals, forams, sponges, crustaceans
 - Material collects to form beach and shelf deposits
 - Mostly carbonate in composition
- 3) Biogenous material can dominate the shoreline and shallow water seafloor if there is little to no lithogenous sediment input in the region
 - Coral sand beaches are a good example
 - Extensive carbonate shelf platforms in tropical regions



Coral-rich beach sand from Molokai, Hawaii

Foraminifera-rich beach sand Hatoma Island Okinawa Japan

The Most Common Minerals in Marine Sediments


Sediment Composition Chart

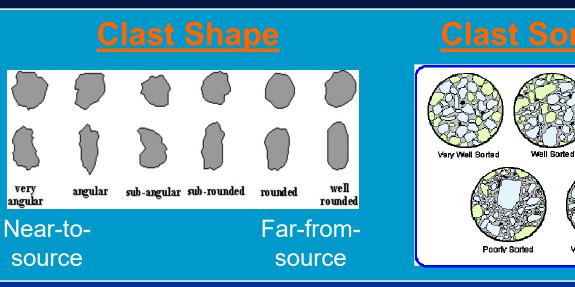
"Biggie" Sediment Minerals ✓ Quartz-Silica Clays Carbonates **Other Sediment Minerals** ✓ Iron Oxides Phosphates Sulfates Sulfides

Reaction to Acid – The "Acid Test"

Defined: Carbonate minerals react to acid solution (HCI): bubble and dissolve

- ✓ Good for positive ID of **carbonates**
- ✓ Typically either calcite or dolomite
- ✓ Limestone & Calcareous oozes will fizz
- ✓ Silicate minerals and rocks do not fizz
- ✓ Use the acid test only if you think that your unknown mineral or rock has low hardness close to 3.

Sediment Clast Characteristics


Sand-size

Silt-size

Clay-size

1) Clast size is a function of transport time & transport medium

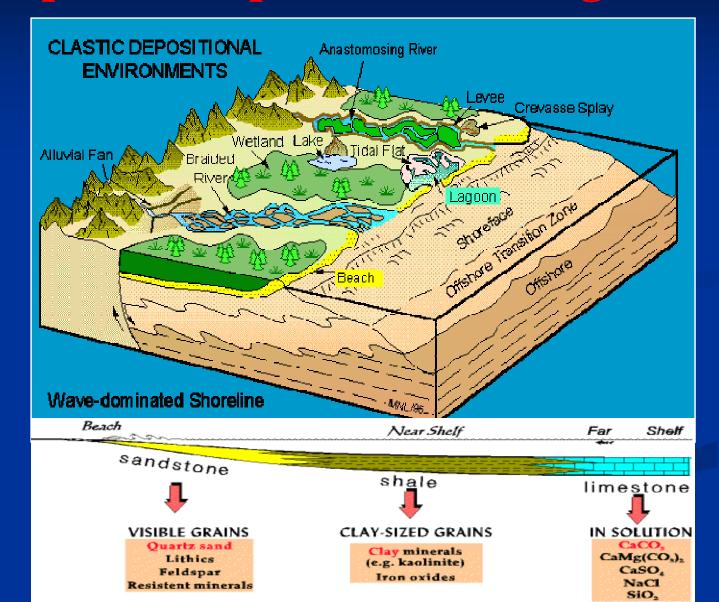
Moderately Sorted

Very Poorly Sorted

- ✓ An indicator of depositional environment
- 2) Clast shape is a function of transport distance and time
 - ✓ An indicator of sediment "maturity"
- 3) **Clast sorting** is a function of transport medium
 - ✓ An indicator of depositional environment

256 mm and up	BOULDE	RS CR
64-256 mm	COBBLES	12
2-64 mm	PEBBLES	Ē
0.0625-2 mm	SAND	
0.002-0.0625 mm	SILT	
O.OO2 mm and smaller	CLAY	

Predominant Sediment Types and Grain Sizes at Specific Depositional Settings


Gravel-size

Sand-size

Silt-size

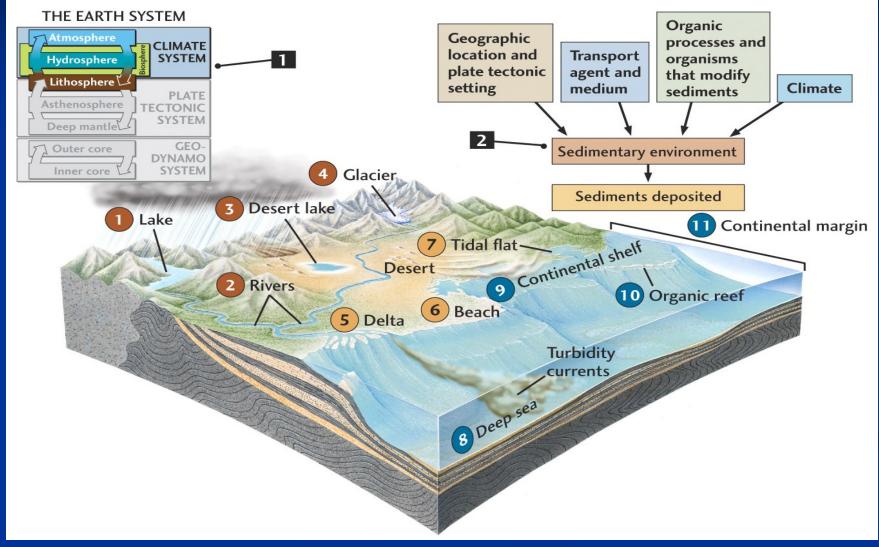
Clay-size Clast Size

Predominant Sediment Types and Grain Sizes at Specific Depositional Settings

Gravel-size

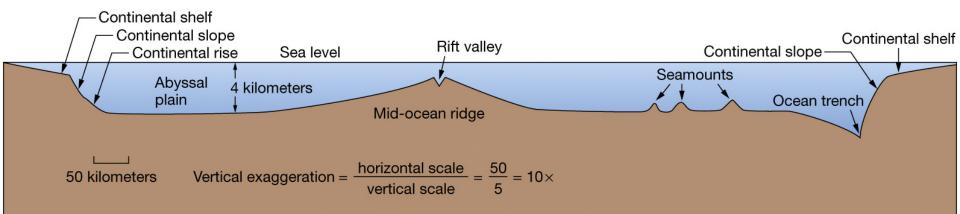
Sand-size

Silt-size



Clay-size Clast Size

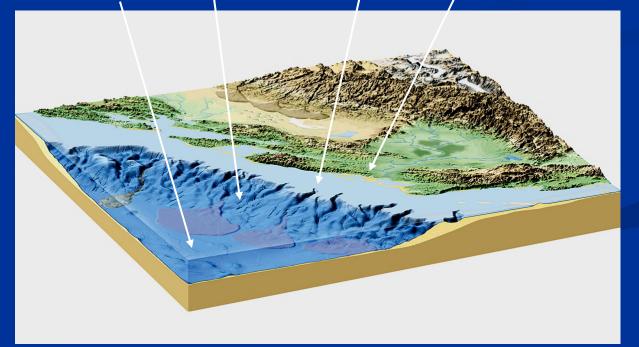
Sedimentary Environments are Where Sediments Deposit and Sedimentary Rocks Form


MULTIPLE FACTORS INTERACT TO CREATE SEDIMENTARY ENVIRONMENTS

Seafloor Sediment Provinces

Passive continental margin

Convergent active continental margin



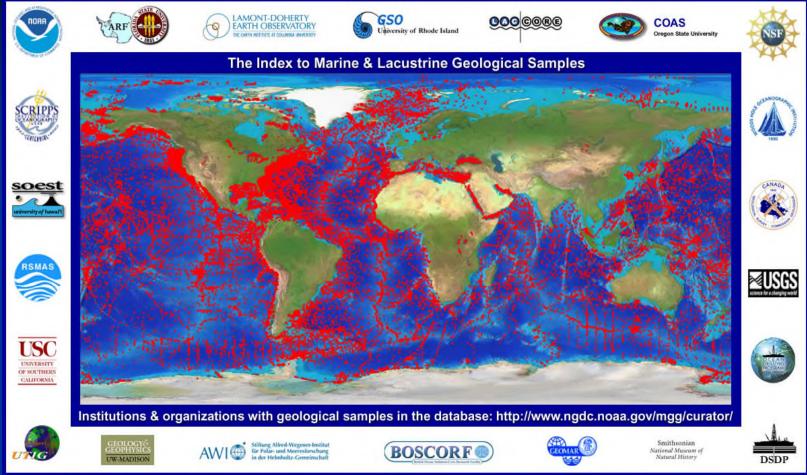
Cross-Section Profile of an Ocean Basin

Continental shoreline = Littoral Province
 Continental shelf = Neritic Province
 Continental slope to rise = Transitional
 All deep sea regions = Oceanic

Marine Depositional Environments Four Major Depositional Provinces

- 1) Very Shallow (shoreline and back shoreline) = "Littoral"
- 2) Shallow (over the shelf and banks) = "Neritic"
- 3) Slope/Rise (transitional) or "Bathyl"
- 4) Deep (the abyss) = "Oceanic"

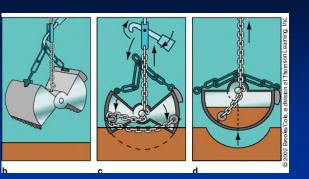
Type and Locality of Marine Sediments


<u>Types</u>

- 1) Lithogenous
- 2) Biogenous
- 3) Hydrogenous
- 4) Cosmogenous

Localities

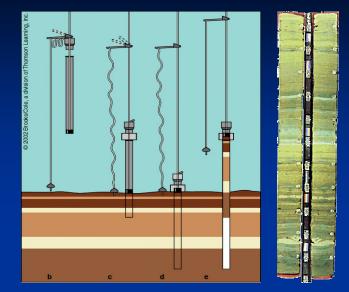
- 1) Littoral
- 2) Shelf
- 3) Slope/Rise
- 4) Pelagic


Marine Sediment Sampling Locations

Primary Sampling Institutions:

- 1) Governments Agencies
- 2) Academic Institutions
- 3) Oil Companies

Marine Sediment Sampling Methods



1) Bucket-Scooping

4) Submersible

2) Piston Coring

3) Drilling

Continental Margins of the World

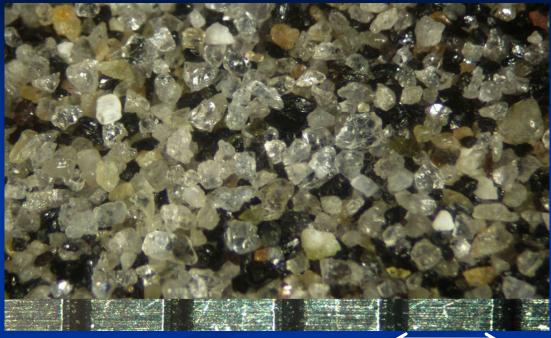
1) Seafloor that includes shorelines and continental shelves

- 2) Submerged continental margins are colored pale orange
- 3) Average width of continental margins is 80 km
- 4) Depths of continental margins typically down to 150 meters
- 5) Continental margin seafloor bedrock mostly granitic rock

Shoreline and Shelf Sediments

Key Points

1) Shallow marine sediments that deposit along shorelines and offshore shelf are termed neritic Land-derived inorganic rock and mineral fragments of gravel, sand, silt, and clay ✓ Organic carbonate materials of marine life skeletons and seawater precipitates 3) Shelf sediments mostly arrive via rivers 4) Coastal sediments may reach deep waters via turbidity currents moving down submarine canyons


Lithogenous Beach Sand

Mineral Composition

- **Light-Colored Minerals**
 - 1) Quartz
 - 2) Feldspar
 - 3) Muscovite mica

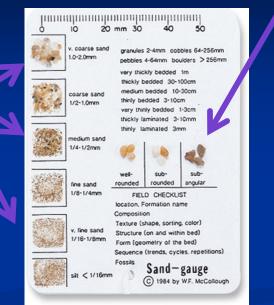
Dark-Colored Minerals

- 1) Hornblende
- 2) Biotite
- 3) Pyroxene
- 4) Garnet
- 5) Olivine
- 6) Magnetite

Location: San Diego

1 millimeter

Sediment Grain Size and Shape

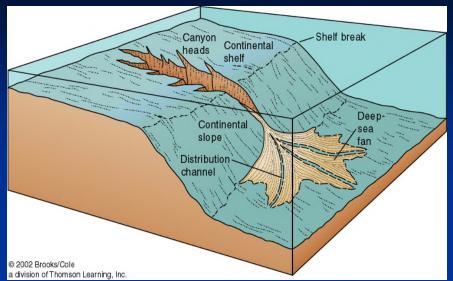

Beach Sand Analysis

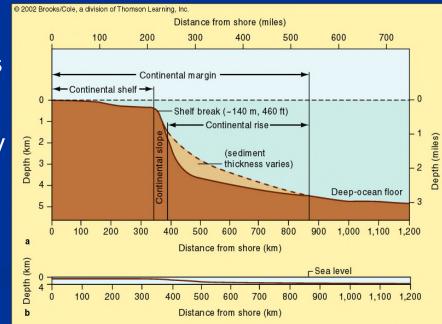
Grair

Sizes

Do the Following Steps

- Determine Mineralogy and Mineral Percentages
- 2) Determine Grain Size Use this chart
- 3) Determine Grain Shape (Roundness)
- 4) Sketch several sand grains
- 5) Think about sediment sources/origin and how it got transported
- 6) Think about the relationship between grain size and energy of environment
- 7) Think about the relationship between grain shape and sediment maturity

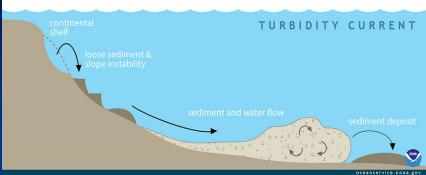

Grain Shape

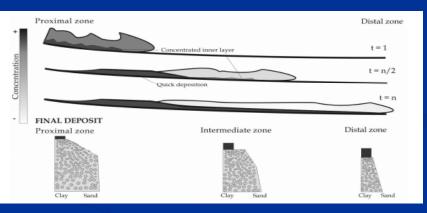

Continental Slope and Rise Sediments Key Points

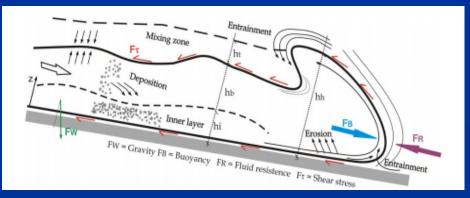
Thickest ocean sediment piles
 ✓ Up to 20 km thick!

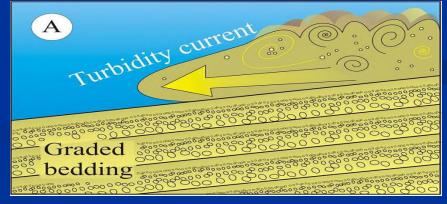
• Thickest sections found at base of submarine canyons in the form of fanshape sediment wedges

- Mainly consists of sand, silt and clay within "graded" bedding layers
- Continentally derived, but classified as transitional-deep sediment
- Primarily transported and deposited by turbidity current processes
- Turbidity currents are dense mixtures of sediment and seawater that flow down slopes of seafloor
- Associated with submarine canyons






TURBIDITY SEDIMENTATION PROCESSES


Lab Simulation of Turbidity Currents and Deposition of Graded Bedding

Turbidity Current Experiment

Do the Following Steps

- 1) Prepare Turbidity Sediment Sample in a graduated beaker:
 - Mix: 15 mL of sand,
 15 mL of silt, and
 25 mL of vermiculate slurry
- Carefully, but quickly, pour the sample (all at once) into up-slope end of seawater-filled turbidity tank
- 3) Record observations of turbidity event
- 4) Draw cross-section sketch of your turbidity layer
- 5) Answer set of turbidity question on worksheet

Turbidity Tank Demo

Graded Bedding Experiment

Do the Following Steps

 Prepare Graded Bed Sample:
 ✓ Add 50 mL of poorly-sorted sediment mixture in a graduated beaker

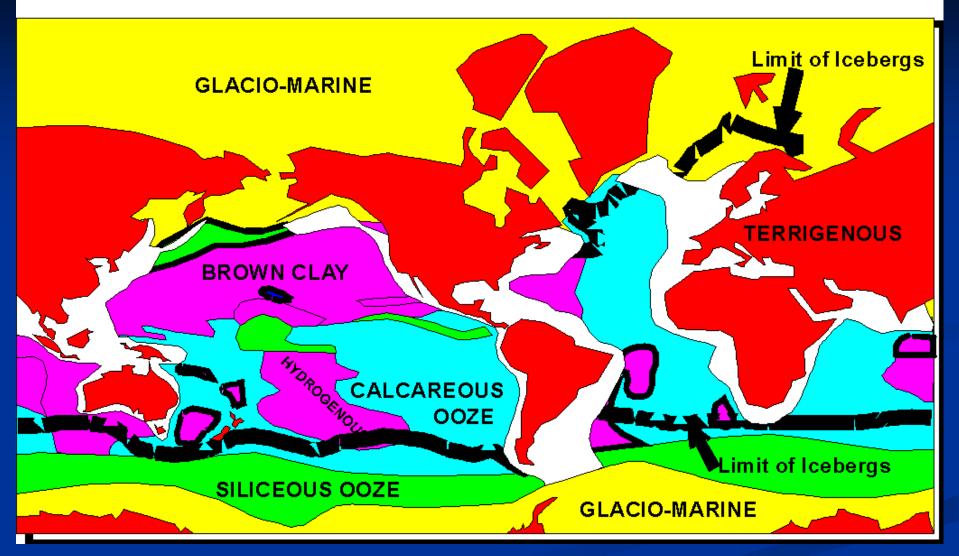
2) Carefully, but quickly, pour sample into top of sediment settling tube

3) Record observations of event

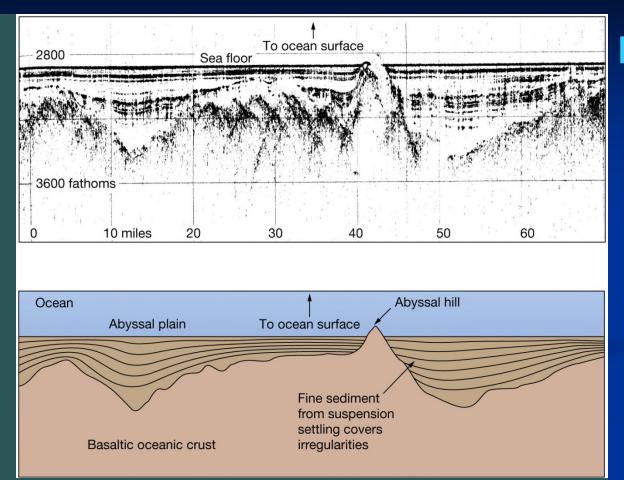
4) Draw cross-section sketch of your graded bed

5) Answer set of graded bedding question on worksheet

Deep Ocean Basins



1) Deep seafloors from continental slope to mid-ocean ridge


3) Deep ocean bottom is shown in blue color (except for lakes)

- 4) Average depth of abyssal seafloor is 4000 meters
- 5) Deepest seafloor down to 11,000 meters
- 6) Deep seafloor bedrock consists of basaltic volcanic rock

DISTRIBUTION OF DEEP-SEA SEDIMENTS

Abyssal Plain and Hill Sediment Province

Key Points

Thick pelagic sediment covers a rugged subsurface bedrock of basalt

Abyssal plains are the flattest, most featureless provinces on Earth

Abyssal hills are tops of seamounts sticking out

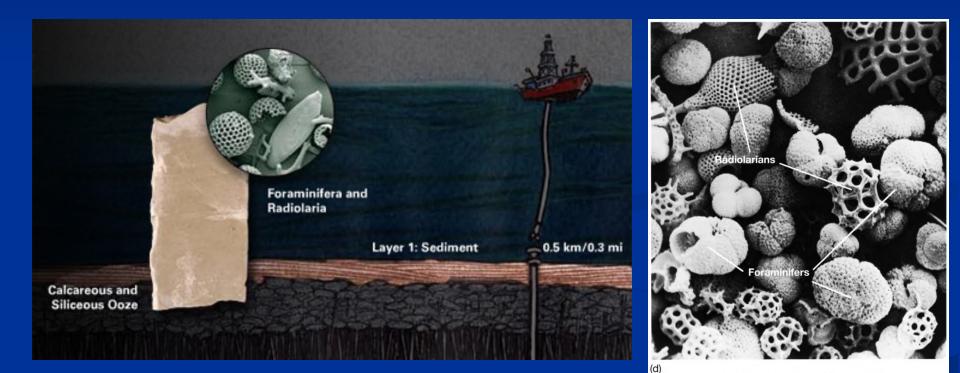
Abyssal plains and hills cover the most extensive tracts of ocean seafloor

Subsurface imaging of abyssal plains and hills from seismic reflection studies and deep sea drilling

Deep Marine Sediments

<u>Key Points</u>

1) Deep ocean sediments are dominantly of "*pelagic"* origin

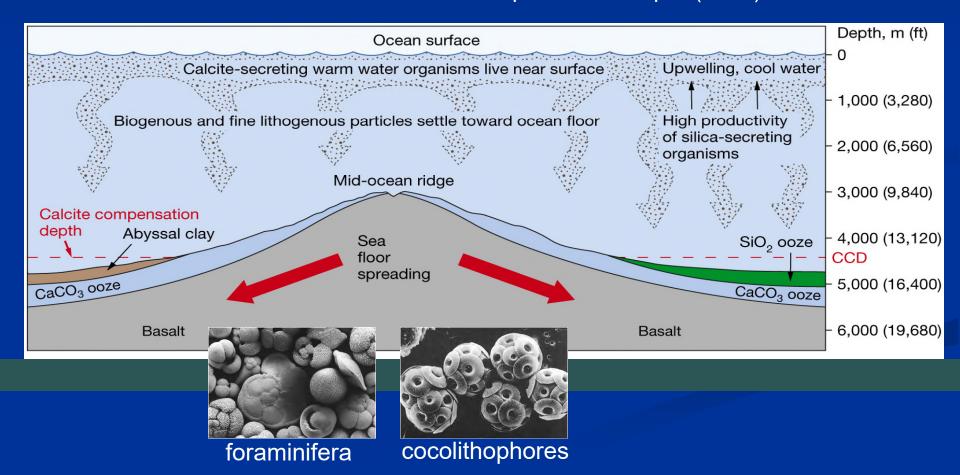

2) Pelagic sediments originate in surface waters, and get to deep ocean by vertical settling through water column

- 3) Pelagic sediment is very fine-grained
- 4) Two types of pelagic sediments
 - ✓ Inorganic clays
 - ✓ Biogenic oozes
- 5) Two types of biogenic oozes
 - ✓ Calcareous
 - ✓ Siliceous

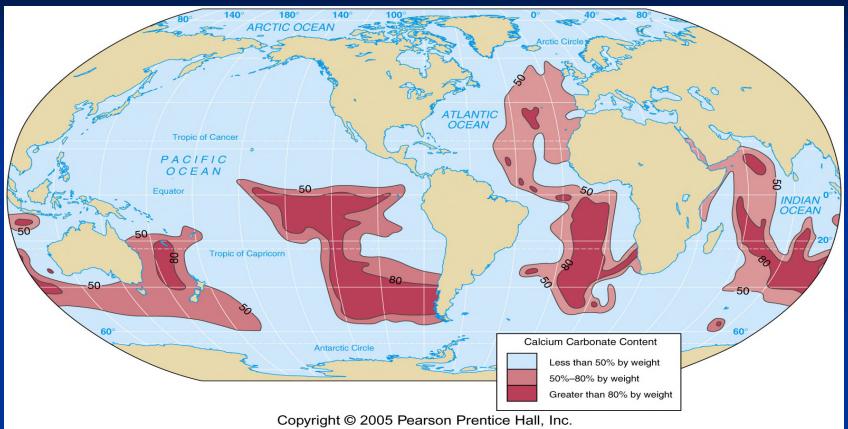
6) Each type of pelagic sediment has a unique region of deep sea floor where it is most abundant

Biogenous Sediment Sources

Sources: Organic; accumulation of plant and animal hard partsMaterial: Calcareous and Siliceous Oozes and Detritus


Deep Ocean Seafloor

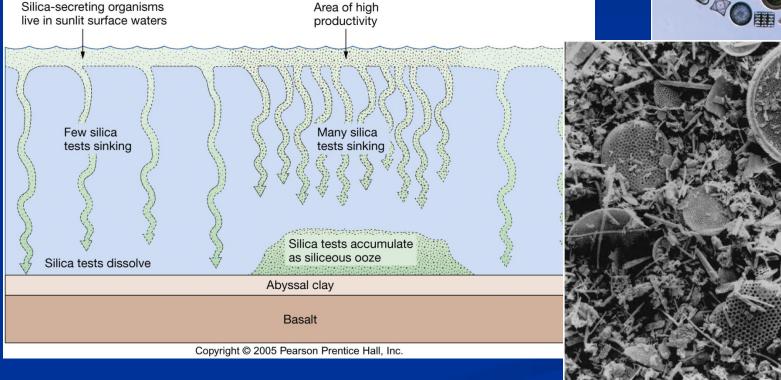
Plankton Tests


Copyright © 2005 Pearson Prentice Hall, Inc.

Calcareous Ooze Sediments

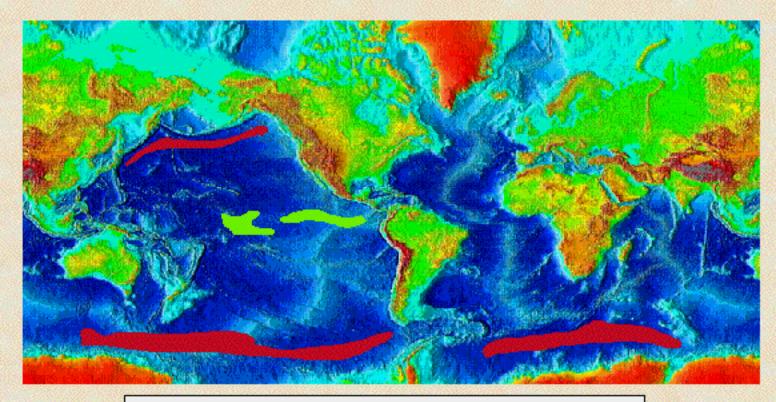
Accumulation of calcium carbonate hard parts from dead microscopic plankton
 Mainly consists of cocolithophores and foraminifera tests
 Calcite-shelled plankton abundant in warmer surface waters
 Accumulate above the Carbonate Compensation Depth (CCD)

Distribution of Calcareous Ooze Sediments



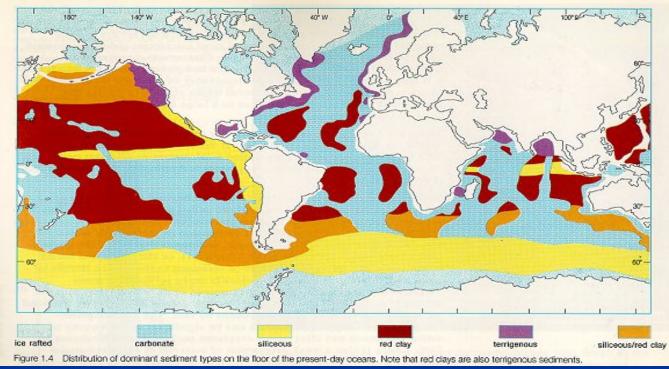
 Calcareous oozes principally deposit in relatively shallow, low- to mid-latitude regions of deep ocean
 Concentrated on tops and flanks of mid ocean ridges

Silica Ooze Sediments


Accumulation of silica hard parts from dead plankton
 Mainly consists of diatoms and radiolarian tests
 Abundant in deeper, cooler surface waters – high latitude

Siliceous Oozes:

- Areas of high nutrients, cold waters
 - two types: diatomaceous oozes, radiolarian oozes



Comparing Silica and Carbonate Oozes

 Table 4.3 Comparison of environments interpreted from deposits of siliceous and calcareous ooze in surface sediments

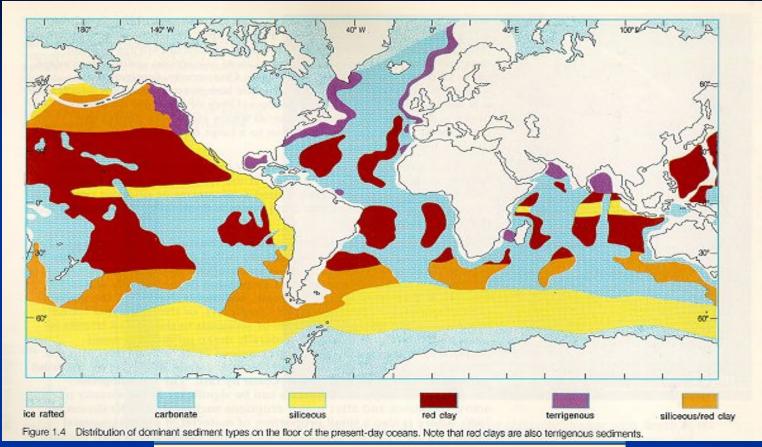
	Siliceous ooze	Calcareous ooze
Surface water temperature above sea floor deposits	Cool	Warm
Main location found	Sea floor beneath cool surface water in high latitudes	Sea floor beneath warm surface water in low latitudes
Other factors	Upwelling brings deep, cold, nutrient-rich water to the surface	Calcareous ooze dissolves below the CCD
Other locations found	Sea floor beneath areas of upwelling, including along the equator	Sea floor beneath warm surface water in low latitudes along the mid-ocean ridge

Types of Hydrogenous Sediment

Sources: Precipitation of minerals from solution

Minerals: Carbonates, Phosphates, Metal Oxides and Sulfides

Black Smoker Chimneys Sulfides



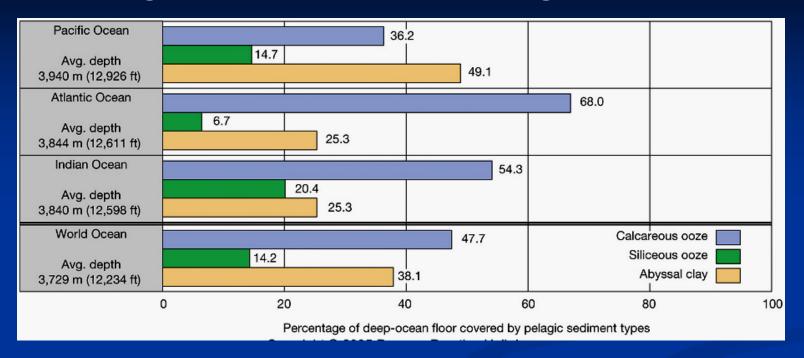
Copyright © 2005 Pearson Prentice Hall, Inc.

Manganese Nodules

Type and Distribution of Marine Sediments

Region	Percent of Ocean Area	Percent of Total Volume of Marine Sediments	Average Thickness
Continental shelves	9%	15%	2.5 km (1.6 mi)
Continental slopes	6%	41%	9 km (5.6 mi)
Continental rises	6%	31%	8 km (5 mi)
Deep-ocean floor	78%	13%	0.6 km (0.4 mi)

Deep Ocean Sediment Analysis

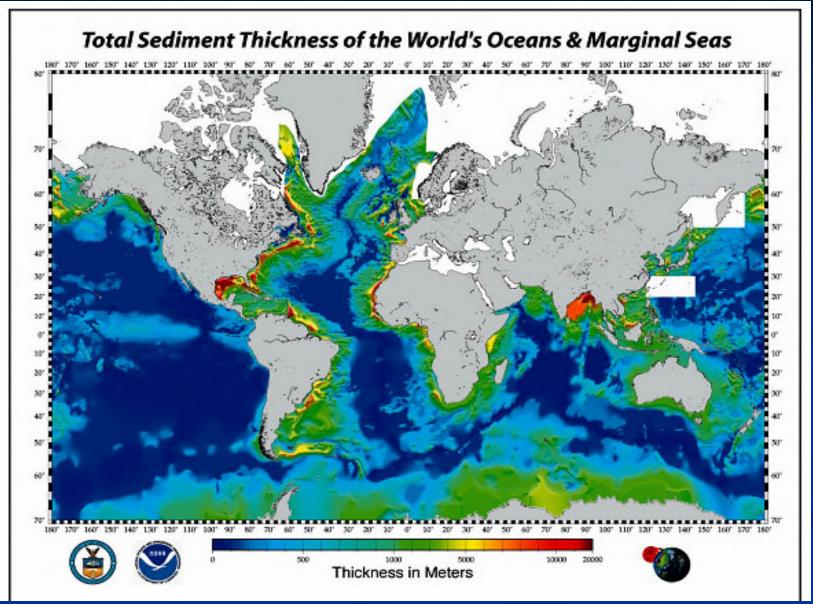

Do the Following Steps

- 1) Determine Mineralogy of Deep Sea Sediment
 - Lithogenous? Biogenous? Hydrogenous?
- 1) Determine mineralogy
 - ✓ Siliceous? (Silica or Clay)
 - Calcareous? (calcite) Use acid test if you think you might have a carbonate
 - ✓ Oxide? (dark and crusty)
- 3) Name the type sediment sample
 - Ooze? Pelagic clay?
- 4) Sketch sample grains if visible
- 5) Think about origin and where in the deep ocean would this sediment most likely accumulate
 - If it's an ooze, would it accumulate above or below the CCD?

Percentage Distribution of Pelagic Sediments

1) Calcareous Oozes = covers 48% of deep seafloor

- 2) Siliceous Oozes = covers 15% of deep seafloor
- 3) Abyssal Clays = covers 38% of deep seafloor


Note the variation in the proportions of the three pelagic sediment types from one ocean basin to another

Rates of Deposition of Marine Sediments

Table 4.4 Avera	ge rates of	f deposition of se	elected marine sediments.
-----------------	-------------	--------------------	---------------------------

Type of sediment/deposit	Average rate of deposition (per 1000 years)	Thickness of deposit after 1000 years equivalent to		
Coarse lithogenous sediment, neritic deposit	1 meter (3.3 feet)	A meter stick		
Biogenous ooze, pelagic deposit	1 centimeter (0.4 inch)	The diameter of a dime		
Abyssal clay, pelagic deposit	1 millimeter (0.04 inch)	The thickness of a dime		
Manganese nodule, pelagic deposit	0.001 millimeter (0.00004 inch)	A microscopic dust particle		
	Copyright © 2005 Pearson Prentice Hall, Ir	nc.		
	Deep (pelagic) s Micrometeorite debris, volcanic and wind-blown dust f lithogenous ments (coarse)	sediments		
Subr cany	Turbidity currents Turbidites (utbracine fanc) Pelagic clays Nang nodul	Cold Warm water CCD Mid- ccean ridge calcareous ooze ooze Calcareous ooze		
Lithogenous sediments Biogenous sediments Copyright © 2005 Pearson Prentice Hall, Inc.				

Sediment Pile Thickness on Ocean Bottoms

MARINE SEDIMENTSLab Discussion

