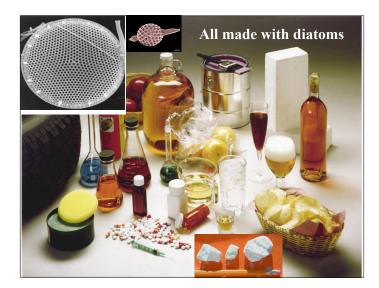
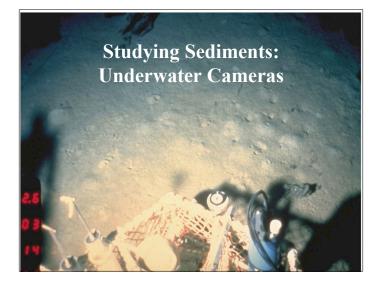

"When I think of the floor of the deep sea, the single, overwhelming fact that possesses my imagination is the accumulation of sediments. I see always the steady, unremitting, downward drift of materials from above, flake upon flake, layer upon layer...For the sediments are the materials of the most stupendous snowfall the Earth has ever seen."

-Rachel Carson, The Sea Around Us (1956)

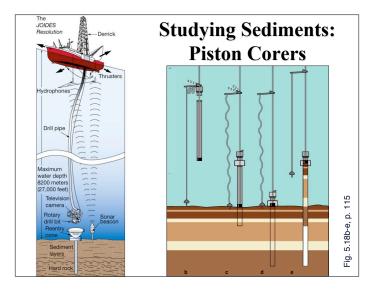
Some Important Concepts in Chapter 5

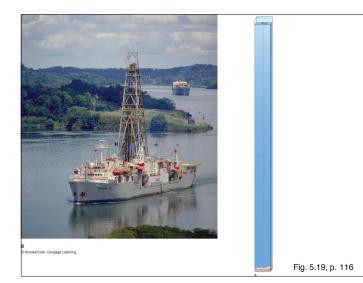
- Ocean sediment includes particles from land, from chemical processes, from biological activity, and from space.
- * Ocean sediment is thickest over continental margins and thinnest over active oceanic ridges.
- * Sediment deposited on a quiet seafloor can provide a sequential record of recent events in the water column above. Sediments may be recycled into the Earth at subduction zones.
- * Sediments are an important source of crude oil and natural gas, food materials, and manganese and other economically important materials.

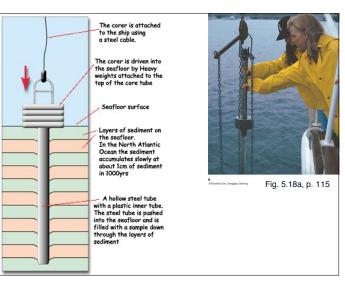


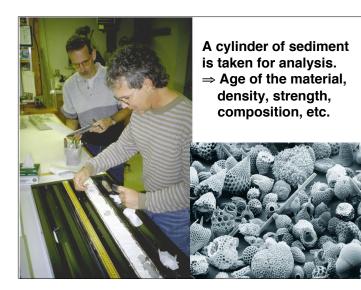

- What is sediment?
- * "Who cares?"
- Types of sediment
 - By particle size/texture
 - By origin/formation
- * How is it transported?
- * Where is it distributed?

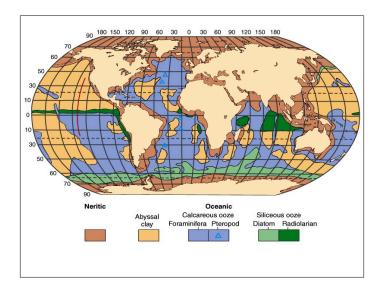
What is sediment, and who cares?


- Sediment = Layers of loose material on ocean bottoms (or elsewhere). "Marine snow".
- **Records Earth history** (mineral composition, sediment texture). "Forensics".
 - Past climate Age of seafloor
 - Plate motions Fossil evolution & extinction





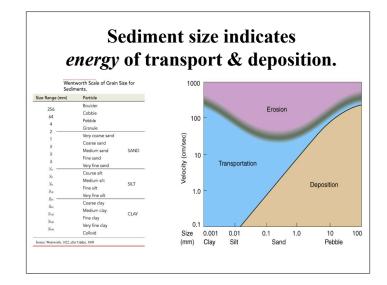




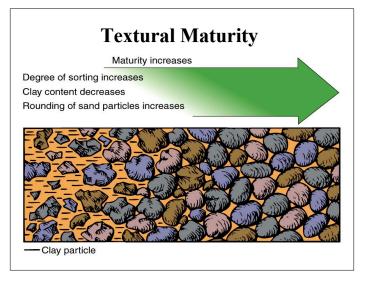
Distribution of Sediments

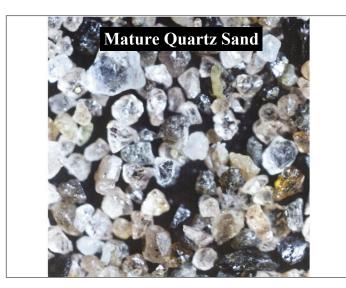
The sediment of continental shelves is called neritic (="of the coast") sediment, and contains mostly terrigenous material.

			Thickness
Continental shelves	9	15	2.5 km (1.6 m
Continental slopes	6	41	9 km (5.6 mi)
Continental rises	6	31	8 km (5 mi)
Deep-ocean floor	78	13	0.6 km (0.4 m


Table 5.3, p. 107

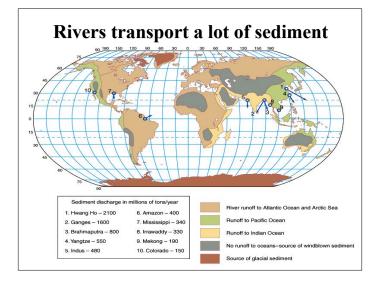
Types of Sediment By particle size (texture) By origin (formation): Terrigenous (Lithogenous) Biogenous (Biogenic) Hydrogenous (Authigenic) Cosmogenous (Cosmogenic)

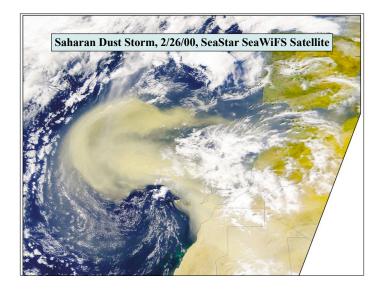

Classifying Sediment -	
(a) By Particle Size	


Size range (millimeters)	Particle name	Grain size	Example	Energy conditions
Above 256	Boulder	Coarse-grained	Coarse material found in	High energy
64 to 256	Cobble	↑	stream beds near the source	≜
4 to 64	Pebble		areas of rivers	
2 to 4	Granule			
$\frac{1}{16}$ to 2	Sand		Beach sand	
$^{1}/_{256}$ to $^{1}/_{16}$	Silt	ţ	Feels gritty in teeth	¥
$\frac{1}{4096}$ to $\frac{1}{256}$	Clay	Fine-grained	Microscopic; feels sticky	Low energy

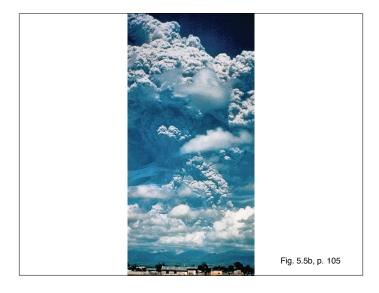
Waves & currents generally transport *smaller* particles *farther* than larger particles.

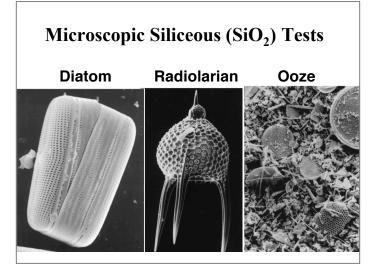
Type of Particle	Diameter	Settling Velocity in Still Water	Time to settle 4 km (2.5 mi)
Boulder	>256 mm (10 in.)		_
Cobble	64–256 mm (>2½ in.)		_
Pebble	4–64 mm (½–2½ in.)	-	_
Granule	(2–4 mm (¹ /12 - ¹ /6 in.)	—	-
Sand	0.062–2 mm	2.5 cm/sec (1 in./sec)	1.8 days
Silt	0.004–0.062 mm	0.025 cm/sec (½100 in./sec)	6 months
Clay	<0.004 mm	0.00025 cm/sec	50 years ^a

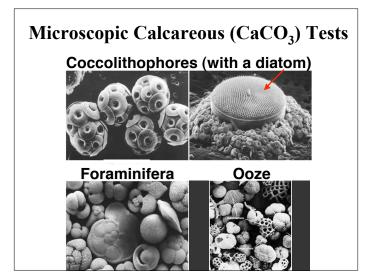



Classifying Sediment - (b) By Origin					
Classification of Marine Sediments by Source of Particles Percent of Al Sediment Sediment Type Source Examples Distribution Area Coveree					
Terrigenous	Erosion of land, volcanic eruptions, blown dust	Quartz sand, clays, estuarine mud	Dominant on continental margins abyssal plains, polar ocean floors	~45	
Biogenous	Organic; accumulation of hard parts of some marine organisms	Calcareous and siliceous oozes	Dominant on deep-ocean floor (siliceous ooze below about 5 km)	~55	
Hydrogenous (authigenic)	Precipitation of dissolved minerals from water, often by bacteria	Manganese nodules, phosphorite deposits	Present with other, more dominant sediments	<1	
Cosmogenous	Dust from space, meteorite debris	Tektite spheres, glassy nodules	Mixed in very small proportion with more dominant sediments	0	
Sources: Keni	Co nett, 1982; Weihaupt, 1979;	Smogel		5.2, p. 104	


1. Terrigenous (Lithogenous)

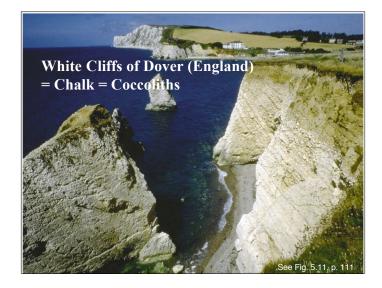

- Rock fragments from land
- Transported to oceans by:
 - Rivers Ice
 - Wind Gravity flows
- Mainly quartz (SiO₂)
 - Chemically stable
 - Abrasion resistant
- Most accumulates near continental margins
- Wind-blown dust makes abyssal clay

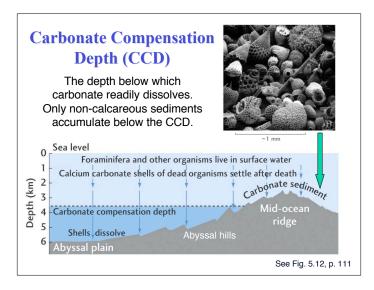

Distribution of Terrigenous Sediments

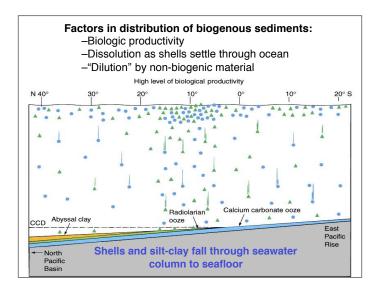

• Neritic = near-shore

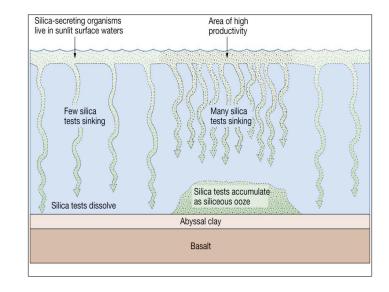
- Mainly from breakdown of continental rocks
- Coarser particles closer to shore
- Beach sands, continental shelf deposits, turbidite deposits, glacial deposits
- Shelf sediments may be converted to rock via lithification
- Pelagic = deep ocean
 - Finer particles farther from land
 - Wind blown or distal turbidite

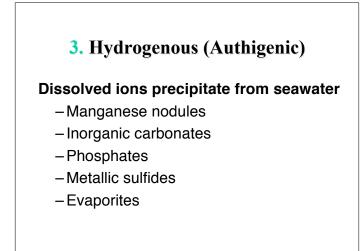
2. Biogenous (Biogenic)

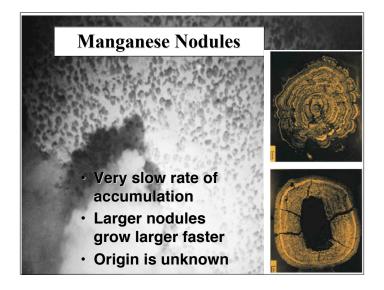

- Hard parts of once-living organisms (shells, teeth, bones, and even poop!)
- Calcareous (CaCO₃) = calcium carbonate
- Siliceous (SiO₂) = silica
- "Ooze" is >30% biogenic material (by weight)

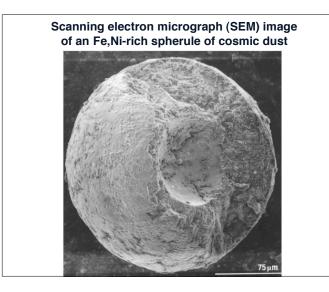


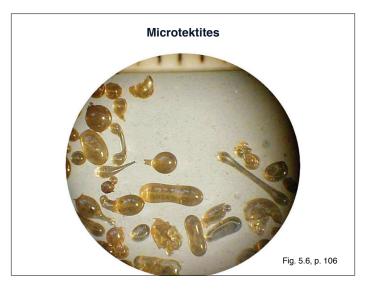



Distribution of Biogenous Sediments


- Neritic = near-shore
 - Carbonates in shallow, warm ocean
 - · Coral reefs, ooid shoals, beach sands
 - Stromatolites (carbonate, cyanobacteria, algae)
- Pelagic = deep ocean
 - SiO₂ ooze under areas of surface ocean upwelling (high biologic productivity)
 - **CaCO**₃ ooze on seafloor <4500 m deep
 - CaCO₃ dissolves in *cold* seawater





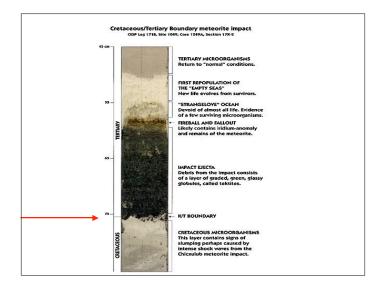


4. Cosmogenous (Cosmogenic)

Extraterrestrial fragments

- -Glassy tektites
- -Fe-Ni micrometeorites
- Found in deep ocean where other sediments accumulate very slowly

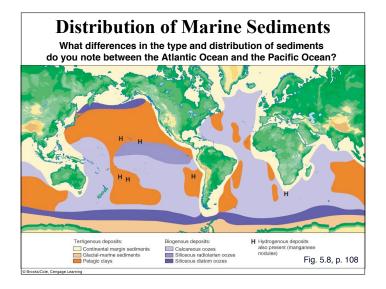


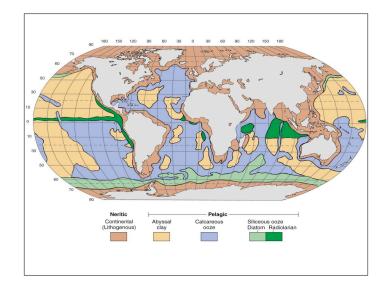


Meteorite Impact

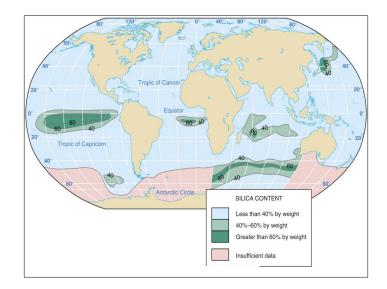
- K-T* meteorite crater off Yucatan Peninsula
- Tektites & spherules found in marine sediments
- Shocked quartz in marine sediments

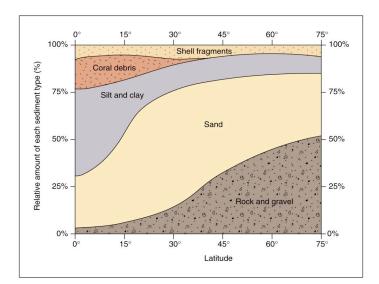
*Cretaceous -Tertiary boundary (65 Myr ago)

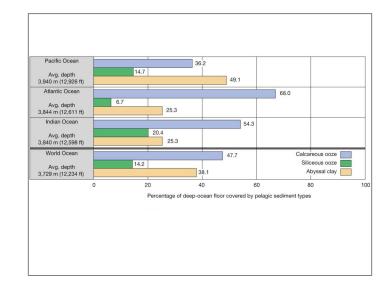


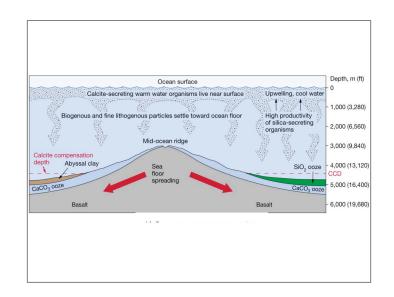

Mixtures of Sediment Types

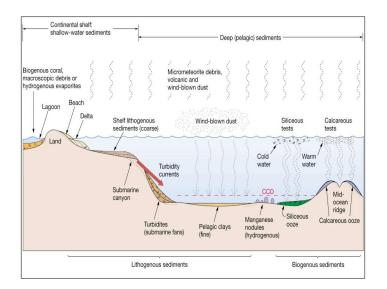
- Most marine sediments are mixtures of the 4 types of sediment
- Usually one sediment type is dominant


Туре	Comp	osition	Sources		Main locations found
Lithogenous	Rivers; coastal erosion; landalides Quartz sand Clay Clay Clay		ers	Continental shelf Continental shelf in high latitudes Continental slope and rise; ocean basin margins	
Lithe	Oceanic	Quartz silt Clay	Wind-blown dust; rivers Volcanic eruptions		Deep-ocean basins
	L. KARL	Volcanic ash			
	bonate 3)	Calcareous ooze (microscopic)	face	Coccolithophores (algae); Foraminifers (protozoans)	Low-latitude regions; sea floor above CCD; along mid-ocean ridges & the tops o volcanic peaks
Biogenous	Calcium carbonate (CaCO ₃)	Operatives Operatives Operatives Operatives Foramifiers (protozons) mid-occan ridge Operatives Shell/coral fragments Macroscopic shell-producing Continental she Operatives organisms Operatives Operatives Operatives	Continental shelf; beaches		
iog	Cal	(macroscopic)		Coral reefs	Shallow low-latitude regions
8	Silica	Siliceous ooze	Cold sur- face water	Diatoms (algae); Radiolarians (protozoans)	High-latitude regions; sea floor below CCD; surface current divergence near theEquator
Hydrogenous		Manganese nodules (manganese, iron, copper, nickel, cobalt) Phosphorite (phosphorous) Oolites (CaCO ₃) Metal sulfides (iron, nickel, copper, zinc, silver) Evaporites (gypsum, halite, other salts)	Precipitation of dissolved materials directly from seawater due to chemical reactions		Abyssal plain Continental shelf Shallow shelf in low-latitude regions Hydrothermal vents at mid-ocean ridges Shallow restricted basins where evaporation is high in low-latitude regions
Cosmogenous		Iron-nickel spherules Tektites (silica glass) Iron-nickel meteorites Silicate chondrites	Space dust Meteors		In very small proportions mixed with all types of sediment and in all marine environments Localized near meteor impact structures


Average rates of deposition of selected marine sediments.				
Type of sediment/deposit	Average rate of deposition (per 1000 years)	Thickness of deposit after 1000 years equivalent to		
Coarse lithogenous sediment, neritic deposit	1 meter (3.3 feet)	A meter stick		
Biogenous ooze, pelagic deposit	1 centimeter (0.4 inch)	The diameter of a dime		
Abyssal clay, pelagic deposit	1 millimeter (0.04 inch)	The thickness of a dime		
Manganese nodule, pelagic deposit	0.001 millimeter (0.00004 inch)	A microscopic dust particle		







Comparison of environments interpreted from deposits of siliceous and calcareous ooze in surface sediments.					
	Siliceous ooze	Calcareous ooze			
Surface water temperature	Cool	Warm			
above sea floor deposits					
Main location found	Sea floor beneath cool surface	Sea floor beneath warm surface			
	water in high latitudes	water in low latitudes			
Other factors	Upwelling brings deep, cold,	Calcareous ooze dissolves below			
	nutrient-rich water to the surface	the CCD			
Other locations found	Sea floor beneath areas of	Sea floor beneath warm surface			
	upwelling, including along the	water in low latitudes along the			
	Equator	mid-ocean ridge			

" 5-Mínute Wríte "

- Summarize the <u>main points</u> of today's lecture.
- List 3 to 5 <u>questions</u> you have, based on today's lecture.
- What did you find most <u>interesting</u> about today's lecture?
- How was the lecture <u>relevant</u> to you?